Essay 20

Toward a Multilevel Secure
Relational Data Model

Sushil Jajodia and Ravi S. Sandhu

A large number of databases in the Department of Defense, the intelli-
gence community, and civilian government agencies contain data that
are classified to have different security levels. All database users are also
assigned security clearances. It is the responsibility of a multilevel secure
(MLS) database management system (DBMS) to assure that each user
gains access — directly or indirectly — to only those data for which he
has proper clearance. Some private corporations also use security levels
and clearances to ensure secrecy of sensitive information, although their
procedures for assigning these are much less formal than in the govern-
ment.

Most commercial DBMSs provide some form of data security by con-
trolling modes of access privileges of users to data [GRIF76, RABI8S].
These discretionary access controls (DAC) do not provide adequate
mechanisms for preventing unauthorized disclosure of information.
Therefore, commercial DBMSs providing only DAC are not suitable for
use in multilevel environments. Multilevel systems require additional
mechanisms for enforcing mandatory (or nondiscretionary) access con-
trols (MAC) [DENN82].

As a result, there are several efforts under way to build multilevel se-
cure relational DBMSs. These efforts are following the same path taken
by object-oriented databases. On one hand, several database vendors
(Oracle, Sybase, and Trudata, to name a few) are busy building commer-
cial products, and others (for example, SRI [DENN87, LUNT90] and SCTC
[HAIG91a]) are building research prototypes. On the other hand, there is
no clear consensus regarding what exactly an MLS relational data model
is. This has led to continuing arguments about basic principles such as
integrity requirements and update semantics. This lack of consensus on
fundamental issues underscores the subtleties involved in extending the
classical relational model to a multilevel environment. In the absence of a
strong theoretical framework it is unfortunate, but inevitable, that much

460 Information Security

of the argument on basic issues is unduly influenced by implementation
details of specific projects.

Our aim in this essay is to discuss the most fundamental aspects of the
MLS relational model. It is our goal to be formal, analytical, and objective
— in the sense of implementation independent. The contents of this es-
say are summarized in the following subsections.

Core integrity properties. It is important to specify precisely all con-
straints that relations must satisfy, since these constraints ensure that
all instances in the database are meaningful. It is equally important to
require only the minimal necessary constraints so as to allow as large a
class of admissible instances as possible. In classical relational theory
(see C.J. Date’s work [DATES86], for example) the essential constraints
have been identified as entity integrity and referential integrity. In a later
section, we consider the multilevel analog of entity integrity. We identify
four core integrity properties that should be required of all multilevel re-
lations [JAJO91b]. One of these is a generalization of the usual entity
integrity requirement to a multilevel context, while the other three are
new to multilevel relations. For each property, we show why it is needed
in multilevel relations. Our focus in this essay is on single relations, and
we do not consider multilevel referential integrity here.

Relation updates. Somewhat paradoxically, the understanding of up-
date operations is crucial to achieving secrecy of information in multilevel
systems. We give a formal operational semantics for update operations on
multilevel relations, that is, relations in which individual data elements
are classified at different levels [JAJO9O0f]. For this purpose, the familiar
INSERT, UPDATE, and DELETE operations of SQL [DATE86] are suitably
generalized. Our goal here has been to preserve as much as possible the
intuitive simplicity of these operations in classical relations without sac-
rificing security in the process. The main difference, with respect to the
classical semantics of these operations, is that certain updates cannot be
carried out by overwriting the data in place because doing so would re-
sult in leakage or destruction of secret information. This inescapable fact
complicates the semantics of multilevel relations. These operations are
consistent (or sound) in that all relations that can be constructed will
satisfy the basic integrity properties required of multilevel relations. Ad-
ditionally, these operations are complete in that every multilevel relation
can be constructed by some sequence of these operations.

Decomposition and recovery of multilevel relations. We give a de-
composition algorithm that breaks a multilevel relation into single-level
relations and a new recovery algorithm that reconstructs the original
multilevel relation from the decomposed single-level relations [JAJO91Db].
There are several novel aspects to these decomposition and recovery algo-

Toward a Multilevel Secure Relational Data Model461

rithms, which provide substantial advantages over previous proposals
[DENN87, JAJO90c, LUNT9O]:

1. These algorithms are formulated in the context of an operational
semantics for multilevel relations, defined here by generalizing the
usual UPDATE operations of SQL to multilevel relations.

2. These algorithms, with minor modifications, can easily accommo-
date alternative update semantics that have been proposed in the
literature.

3. These algorithms are efficient because recovery is based solely on
unionlike operations without any use of joins.

4. The decomposition is intuitively and theoretically simple, giving us
a sound basis for correctness.

Overview. The rest of this essay is organized as follows. The next sec-
tion gives an overview of basic concepts of multilevel security. Then we
review basic definitions for standard (single-level) relations; those for
multilevel relations follow. We offer four core integrity requirements (to-
gether with their justification) that we feel must be met by all multilevel
relations. Then we examine various UPDATE operations in a multilevel
context, as outlined above. Before concluding, we give the decomposition
and recovery algorithms that have been formulated in terms of UPDATE
operations defined in the previous section.

Basic relational concepts and security requirements

The standard relational model is concerned with data without security
classifications. Data are stored in tables, called relations. Each relation
has a number of columns, called attributes. At any given time, a relation
contains a number of rows, called tuples. The number of tuples in a rela-
tion varies with time. As an example, consider the relation SOD given in
Figure 1, which contains for each starship its name, its objective, and its
destination.

Starship Objective Destination
Enterprise Exploration Talos
Voyager Spying Mars
Figure 1. SOD.

462 Information Security

There is a relation scheme corresponding to each relation, consisting of
the relation name together with a list of its attribute names. The relation
scheme for the relation SOD is denoted as follows:

SOD(Starship, Objective, Destination)

While the scheme for a relation is invariant over time, a relation is not
static over time. Tuples are continuously being inserted, deleted, or up-
dated in a relation to reflect changes in the real world. Not all possible
relations are meaningful in an application; only those that satisfy certain
integrity constraints are considered valid.

Let R(A;, A,, ..., A,) be a relation scheme, and let X and Y denote sets
of one or more of the attributes A; in R. We say Y is functionally depend-
ent on X, written X - Y, if any relation for R satisfies at all times the fol-
lowing property: It does not have two tuples with the same values for X
but different values for Y.

A candidate key of a relation scheme R is a minimal set of attributes on
which all other attributes of R are functionally dependent. The primary
key of a relation scheme R is one of its candidate keys that has been spe-
cifically designated as such.

Moving on to a multilevel world, a major issue is how access classes are
assigned to data stored in relations. Access classes can be assigned to
relations, to individual tuples in a relation, to individual attributes of a
relation, or to individual data elements of the tuples of a relation. In this
essay, we will consider the general (and most difficult) case, and assign
access classes to individual data elements of a relation.

As a consequence of Bell-LaPadula restrictions, subjects having differ-
ent clearances see different versions of a multilevel relation: A user hav-
ing a clearance at an access class c sees only that data which lies at
class ¢ or below. As an example, consider the relation scheme
SOD(Starship, Objective, Destination), where Starship is the primary key
and the security classifications are assigned at the granularity of individ-
ual data elements. A user with Secret clearance will see the entire multi-
level relation SODg shown in Figure 2, while a user having Unclassified
clearance will see only the filtered relation SOD; shown in Figure 3.

Now, consider once again the multilevel relation given in Figure 2.
Suppose that a U-user who sees the instance in Figure 3 wishes to re-
place the second tuple of SODy; by the tuple (Voyager, Exploration, Talos).
From a purely database perspective, this update by the U-user should be
rejected because the attribute Starship constitutes the primary key of
SODg. However, from the security viewpoint, this update cannot be re-
jected since doing so will be sufficient to establish a downward signaling
channel. Since a Secret process can send one bit of information by either
inserting or deleting a particular tuple at the Secret level, both Secret
and Unclassified processes can cooperate to establish a covert channel.

Toward a Multilevel Secure Relational Data Model463

Thus, both tuples (Voyager, Spying, Mars) and (Voyager, Exploration,
Talos) must somehow coexist in SODg, as in Figure 4. This is called
polyinstantiation: There are two or more tuples in a multilevel relation

with the same primary key.

Starship Objective Destination TC
Enterprise Exploration U | Talos U U
Voyager Spying S | Mars S S

Figure 2. SODg.

Starship Objective Destination TC
Enterprise Exploration U | Talos U U
Voyager Null U | Null 8] U

Figure 3. SODy,.

Starship Objective Destination TC
Enterprise Exploration U | Talos U U
Voyager Exploration U | Talos U U
Voyager Spying S | Mars S S

Figure 4. SODg.

Thus, we see that even the basic relational notion of a key does not
have a straightforward extension to multilevel relations. Polyinstantiation
illustrates the intrinsic difficulty of extending the standard relational
concepts to the multilevel world; therefore, we devote a separate essay
(Essay 21) to this problem. In this essay, our position is that there is a
need for polyinstantiation in multilevel systems. However, it must be
carefully controlled to avoid confusion and ambiguity in the database.
For example, the S-instance of Figure 5 should not be allowed because it
gives ambiguous information about the Voyager’s objective at the S level.

Throughout this essay, we use the terms high and low to refer to two
access classes such that the former is strictly higher than the latter in

464 Information Security

the partial order. Also, if a user is logged on at an access class c, we refer

to such a user as a c-user.

Starship Objective Destination TC
Voyager Exploration S | Mars S
Voyager Spying S | Mars S

Figure 5. An illegal S-instance.

Multilevel relations

In this section, we review the basic concepts for the multilevel rela-
tions. In the next section, we will state four core integrity requirements
that we feel must be satisfied by all multilevel relations. A multilevel rela-
tion consists of two parts: a relation scheme and relation instances.

Definition 1: Relation scheme. A state-invariant multilevel relation

scheme is of the form
R(A,, Ci, Ay, Gy, ..., A, C,, TC)

where each A, is a data attribute over domain D,, each C, is a classification
attribute for A;, and TC is the tuple-class attribute. The domain of C; is
specified by a set {L;, ..., H;} which enumerates the allowed values for
access classes, ranging from the greatest lower bound (glb) L; to the least
upper bound (lub) H, The domain of TC is the set {lub{L;: i = 1, ..., n},
., lub{H;: i=1, ..., n}}.

Definition 2: Relation instances. For each relation scheme, there is

a collection of state-dependent relation instances

R.(Aq, C, Ay, Gy, ..., A, C,, TC)
one for each access class cin the given lattice. Each relation instance is a
set of distinct tuples of the form (a,, ¢;, a,, ¢, ..., a,, c,, tc), where each
a; U D;or a; =null, c2c;, and tc = {lub{c;: i=1, ..., n}. Moreover, if q; is
not null, then ¢; O {L;, ..., H;}. We require that c; be defined even if a, is
null — that is, a classification attribute cannot be null.

The multiple relation instances are, of course, related; each instance is
intended to represent the version of reality appropriate for each access
class. Roughly speaking, each element t[A,] in a tuple t is visible in in-
stances at access class t[C;] or higher; t[A;] is replaced by a null value in

Toward a Multilevel Secure Relational Data Model465

an instance at a lower access class. We give a more formal description
using the filter function in the next section.

Core integrity properties

In this section, we state four core integrity properties that must be
satisfied by all multilevel relations. For each property, we justify why it is
necessary.

Since a multilevel relation has different instances at different access
classes, it is inherently more complex than a standard relation. In a
standard relation, the definition of keys is based on functional dependen-
cies. In a multilevel setting, the concept of functional dependencies is it-
self clouded because a relation instance is now a collection of sets of
tuples rather than a single set of tuples.

We assume that there is a user-specified primary key AK consisting of a
subset of the data attributes A,. This is called the apparent primary key
of the multilevel relation scheme. We will return to the issue of what con-
stitutes the primary key of a multilevel relation after we define the poly-
instantiation integrity property.

In general, AK will consist of multiple attributes. Entity integrity from
the standard relational model prohibits null values for any of the attrib-
utes in AK. This property [DENN87| extends to multilevel relations, as
shown in the following subsections.

Property 1: Entity integrity. Let AK be the apparent key of R. A mul-
tilevel relation R satisfies entity integrity if and only if for all instances R,
of Rand t 0 R,

1. A;0AKO [A}] #nul];

2. A, AjUAK D t[C)] = t[C]], that is, AK is uniformly classified; and

3. A, 0AKDO t[C;] 2 t[C,k] (Where C,k is defined to be the classifica-
tion of the apparent key).

The first requirement is an obvious carryover from the standard rela-
tional model and ensures that no tuple in R, has a null value for any at-
tribute in AK. The second requirement says that all AK attributes have
the same classification in a tuple, that is, they are either all U or all S,
and so on. This will ensure that AK is either entirely visible or entirely
null at a specific access class c. The third requirement states that in any
tuple the class of the non-AK attributes must dominate C,g. This rules
out the possibility of associating nonnull attributes with a null primary
key.

At this point it is important to clarify the semantics of null values.
There are two major issues:

466 Information Security

1. the classification of null values, and
2. the subsumption of null values by nonnull ones.

Our requirements are respectively that null values be classified at the
level of the key in the tuple, and that a null value is subsumed by a non-
null value independent of the latter’s classification. These two require-
ments are formally stated in Property 2.

Property 2: Null integrity. A multilevel relation R satisfies null integ-
rity if and only if for each instance R, of R both of the following conditions
are true:

1. ForalltOR,, t[A;] =null O ¢{[C;] = t[C,k]; that is, nulls are clas-
sified at the level of the key.

2. Let us say that tuple t subsumes tuple s if for every attribute A,,
either (a) t[4;, C;] = s[A;, C;j] or (b) t[{A,] # null and s[A;] = null.
Our second requirement is that R, is subsumption free in the sense
that it does not contain two distinct tuples such that one sub-
sumes the other.

We will henceforth assume that all computed relations are made sub-
sumption free by exhaustive elimination of subsumed tuples. The null
integrity requirement was identified in an earlier work [JAJO90c].

Consider the relation instance for SOD given in Figure 6. The motiva-
tion behind the null integrity property is that if an S-user updates the
destination of Enterprise to be Rigel, he or she will see the instance given
in Figure 7 rather than the one given in Figure 8, since the first tuple in
Figure 8 is subsumed by the second tuple.

The next property is concerned with consistency between the different
relation instances. The need for such a property was identified earlier
[DENN87], but the formulations were incorrect. The correct formulation
[JAJO90c] was adopted by SeaView researchers [LUNT90].

Property 3: Interinstance integrity. R satisfies interinstance integrity
if and only if for all ¢' < ¢ we have R, = 0 (R, ¢'), where the filter function
o produces the ¢'-instance R, from R, as follows:

1. For every tuple t 0 R, such that {[Cy 4] < ', there is a tuple t' 0 R,
with t'[AK, C,g]| = t{AK, C,k] and for A; 0 AK

B t14,,c;1 ift[c;]<c’
@null,t[CAKP otherwise

t'[A;, G =

2. There are no tuples in R, other than those derived by the above
rule.

Toward a Multilevel Secure Relational Data Model46'7

3. The end result is made subsumption free by exhaustive elimination
of subsumed tuples.

The filter function maps a multilevel relation to different instances, one
for each descending access class in the security lattice. Filtering limits
each user to that portion of the multilevel relation for which he or she is
cleared. Thus, for example, an S-user will see the entire relation given in
Figure 7, while a U-user will see the filtered instance given in Figure 6. It
is evident that (R, ¢) = R,, and o(0(R,, ¢'), ¢c") = 0(R,, ¢")forc=2c' 2 ¢",
as one would expect from the intuitive notion of filtering.

Starship Objective Destination TC

Enterprise U | Exploration U | Null U U

Figure 6. SOD,.

Starship Objective Destination TC

Enterprise U | Exploration U | Rigel S S

Figure 7. SODg.

Starship Objective Destination TC
Enterprise U | Exploration U | Null U U
Enterprise U | Exploration U | Rigel S S

Figure 8. Violation of null integrity.

We are now ready to state our fourth and final property. In a standard
relation there cannot be two tuples with the same primary key. In a mul-
tilevel relation we will similarly expect that there cannot be two tuples
with the same apparent primary key. However, as we observed earlier,
secrecy considerations compel us to allow multiple tuples with the same
apparent primary key. (See, however, Essay 21 on polyinstantiation.) We
have the following property to control the manner in which this can be
done.

468 Information Security

Property 4: Polyinstantiation integrity. R satisfies polyinstantiation
integrity (PI) if and only if for every R, we have for all A;: AK, Cyg, C; - A,

This property stipulates that the user-specified apparent key AK, in
conjunction with the classification attributes C,;x and C, functionally
determines the value of the A; attribute. Thus, PI allows the instance in
Figure 4 while ruling out the S-instance of Figure 5.

Property 4 implicitly defines what is meant by the primary key in a
multilevel relation. The primary key of a multilevel relation is AK O C,x O
Cr (Where AK is the set of data attributes constituting the user-specified
primary key, C,x is the classification attribute for data attributes in AK,
and Cj is the set of classification attributes for data attributes not in
AK). This is because from PI it follows that the functional dependency AK
O Cux 0 Cr — Ap holds (where Ap denotes the set of all attributes that are
not in AK). Note that for single-level relations, Cy, and Cp will be equal to
the same constant value in all tuples. Therefore, in this case, PI amounts
to saying that AK - Ap, which is precisely the definition of the primary
key in relational theory.

When Property 4 was originally proposed [DENN87], it was coupled
with an additional multivalued dependency! (MVD) requirement AK, C,x
- - A, C; to be satisfied by every instance. There are unpleasant conse-
quences of this multivalued dependency [JAJO90c]. Hence, our position
is that polyinstantiation integrity should require only the functional de-
pendency stated in Property 4.

The UPDATE operations

In this section, we discuss in detail the three UPDATE operations
(INSERT, UPDATE, and DELETE). We keep the syntax for these opera-
tions identical to the standard SQL.

Let R(A,, Cy, ..., 4,, C,, TC) be a multilevel relation scheme. To simplify
the notation, we use A; instead of AK to denote the apparent primary
key.

Consider a user logged on at access class c¢. Now a c-user directly sees
and interacts with the c-instance R.. From the viewpoint of this user, the
remaining instances of R can be categorized into three cases: Those
strictly dominated by ¢, those that strictly dominate ¢, and those incom-
parable with c. The following notation is useful for ease of reference to
these three cases:

1. R,..=R,,suchthatc <c
2. R,,.=R,,suchthatc >c
3. R.,..=R., such that ¢’ is incomparable with c.

1See [DATES6] for a definition of multivalued dependency.

Toward a Multilevel Secure Relational Data Model469

Security considerations, and in particular the *-property, dictate that a
c-user cannot insert, update, or delete a tuple, directly or indirectly (as a
side effect) in any R, .. or R, ... Since actions of a c-user cannot have an
impact on any R, .., the effect of insertion, update, or deletion must be
confined to those tuples in R, with tuple class equal to c. Because of the
interinstance property, these changes must be properly reflected in the
instances R, ... The latter effect is only partly determined by the core in-
tegrity properties presented earlier, leaving room for different interpreta-
tions [HAIG9 1a, JAJO90c, JAJO90f, LUNT91, SAND90a].

Strictly speaking, in all cases we should speak of operations being per-
formed by a c-subject (or c-process) rather than a c-user. It is, however,
easier to intuitively consider the semantics by visualizing a human being
interactively carrying out these operations. The semantics do apply
equally well to processes operating on behalf of a user, whether interac-
tive or not.

The INSERT statement. The INSERT statement executed by a c-user
has the following general form, where the c is implicitly determined by
the user’s login class:

INSERT
INTO R.(A; [, Ajl..)]
VALUES (ai , a]] .)

In this notation, the brackets denote optional items and the ellipsis (...)
signifies repetition. If the list of attributes is omitted, it is assumed that
all the data attributes in R, are specified. Only data attributes A, can be
explicitly given values. The classification attributes C; are all implicitly
given the value c.

Let t be the tuple such that t[A,] = q, if A, is included in the attributes
list in the INSERT statement, t[A,] = Null if A, is not in the list, and {[C)]
= cfor 1 <1< n. The insertion is permitted if and only if:

1. t[A,] does not contain any nulls, and
2. forallul R.: u[A;] # t[A].

If so, the tuple t is inserted into R, and by side effect into all R, ... This
is, moreover, the only side effect visible in any R, ..

To illustrate, suppose a U-user wishes to insert a second tuple into the
SOD instance given in Figure 9. He or she does so by executing the fol-
lowing INSERT statement:

INSERT

INTO SOD
VALUES (Voyager’, ‘Exploration’, ‘Mars’)

470 Information Security

As a result of the INSERT statement, the U-instance of SOD will become
as shown in Figure 10. This insertion is straightforward and identical to
what happens in single-level relations.

Starship Objective Destination TC

Enterprise U | Exploration U | Talos U U

Figure 9. SOD = SODg.

Starship Objective Destination TC
Enterprise U | Exploration U | Talos U U
Voyager U | Exploration U | Mars U U

Figure 10. SOD,.

On the other hand, suppose an S-user wishes to insert the following
tuple into the SOD instance of Figure 9:

INSERT
INTO SOD
VALUES (‘Enterprise’, ‘Spying’, ‘Rigel’)

In this case, we can either reject the insert or accept it and allow two tu-
ples with the same apparent key Enterprise to coexist, as shown in Fig-
ure 11. The two tuples in Figure 11 are regarded as pertaining to two
distinct entities. We call such situations optional polyinstantiations. In-
sertion of the secret tuple is not required for closing signaling channels.
It is secure to reject such insertions.

Finally, we illustrate the situation where polyinstantiation is required
to close signaling channels. Consider the SODg instance given in Figure
12. U-users see an empty instance SODy;. Suppose a U-user executes the
following INSERT statement:

INSERT
INTO SOD
VALUES (‘Enterprise’, ‘Exploration’, ‘Talos’)

This insertion cannot be rejected on the grounds that a tuple with appar-
ent key Enterprise has previously been inserted by an S-user. Doing so

Toward a Multilevel Secure Relational Data Model471

would establish a signaling channel from S to U. Therefore, by security
considerations we are compelled to allow insertion of this tuple. In such
cases, we say we have required polyinstantiation. The effect of this inser-
tion by a U-user is to change SODg from Figure 12 to Figure 11.

Starship Objective Destination TC
Enterprise U | Exploration U | Talos U U
Enterprise S | Spying S | Rigel S S

Figure 11. SODg.

Starship Objective Destination TC

Enterprise S | Spying S | Rigel S S

Figure 12. SODg.

The UPDATE statement. Our interpretation of the semantics of an
update command is close to the one in the standard relational model: An
update command is used to change values in tuples that are already pre-
sent in a relation. UPDATE is a set-level operator; that is, all tuples in the
relation which satisfy the predicate in the UPDATE statement are to be
updated (provided the resulting relation satisfies polyinstantiation integ-
rity). Since we are dealing with multilevel relations, we may have to
polyinstantiate some tuples. However, addition of tuples due to polyin-
stantiation is to be minimized to the extent possible.

The UPDATE statement executed by a c-user has the following general
form:

UPDATE R,
SET Ai =8 [, A_] = S_]]
[WHERE p]

Here s, is a scalar expression, and p is a predicate expression which
identifies those tuples in R, that are to be modified. The predicate p may
include conditions involving the classification attributes, in addition to
the usual case of data attributes. The assignments in the SET clause,
however, can involve only the data attributes. The corresponding classifi-
cation attributes are implicitly determined to be c.

472 Information Security

The intent of the UPDATE operation is to modify ¢{[A,] to s, in those tu-
ples tin R, that satisfy the given predicate p. In multilevel relations, how-
ever, we have to implement the intent slightly differently to prevent illegal
information flows.

Examples of UPDATE operations. Consider the SOD instances given in
Figures 13 and 14. Suppose the U-user makes the following update to
SODy, shown in Figure 13:

UPDATE SOD
SET Destination = Talos
WHERE Starship = ‘Enterprise’

Starship Objective Destination TC
Enterprise U | Exploration U | Null U U
Figure 13. SOD,.
Starship Objective Destination TC
Enterprise U | Exploration U | Rigel S S

Figure 14. SODg.

The changes to SODy; in Figure 13 and SODg in Figure 14 are shown in
Figures 15 and 16, respectively. Note that in SODg the Destination at-
tribute for the Enterprise is now polyinstantiated. This is an example of
required polyinstantiation that cannot be completely eliminated without
introducing signaling channels or limiting the expressive capability of the

database.

Starship

Objective

Destination

TC

Enterprise

U

Exploration U

Talos

U

Figure 15. SOD,.

Toward a Multilevel Secure Relational Data Model473

Starship Objective Destination TC
Enterprise U | Exploration U | Talos U U
Enterprise U | Exploration U | Rigel S S

Figure 16. SODg.

Next, suppose starting with the instance SODg of Figure 16 an S-user
invokes the following update:

UPDATE SOD

SET Objective = Spying

WHERE Starship = ‘Enterprise’ AND
Destination = ‘Rigel’

In this case, SODg will change to the instance given in Figure 17, not to
the instance given in Figure 18. That is, the update is interpreted as ap-
plying only to the second tuple in Figure 16, not to the first tuple. The S-
user can go from Figure 16 to Figure 18 by issuing the following update:

UPDATE SOD
SET Objective = Spying
WHERE Starship = ‘Enterprise’

This update is interpreted as applying to both tuples of Figure 16. The
first two tuples of Figure 18 result from polyinstantiation of the first tu-
ple of Figure 16. The third tuple of Figure 18 results from the normal re-
placement update of the second tuple of Figure 16.

Next, suppose a U-user makes the following update to the relation
shown in Figure 15 (assume S-users see the instance given in Figure 16):

UPDATE SOD
SET Objective = Spying
WHERE Starship = ‘Enterprise’

As a consequence of the above update, not only SOD; will change from
the relation in Figure 15 to the one in Figure 19, but SODg will also
change from the relation in Figure 16 to the one in Figure 20. Thus,
polyinstantiation integrity is preserved in instances at different security
levels. Note in particular how the secret tuple in Figure 16 has changed
to the secret tuple in Figure 20 due to an update by a U-user.

474 Information Security

Starship Objective Destination TC
Enterprise Exploration U | Talos U U
Enterprise Spying S | Rigel S S

Figure 17. SODg.

Starship Objective Destination TC
Enterprise Exploration U | Talos U U
Enterprise Spying S | Talos U S
Enterprise Spying S | Rigel S S

Figure 18. SODg.

Starship Objective Destination TC

Enterprise Spying U | Talos 8] U
Figure 19. SODy,.

Starship Objective Destination TC
Enterprise Spying U | Talos U U
Enterprise Spying U | Rigel S S

Effect at the user’s access class. We now formalize and further develop
the ideas sketched out above. First consider the effect of an UPDATE op-

Figure 20. SODg.

eration by a c-user on R.. Let

S ={t0 R,.: tsatisfies the predicate p}

We describe the effect of the UPDATE operation by considering each tuple
t 0 S in turn. The net effect is obtained as the cumulative effect of up-
dating each tuple in turn. The UPDATE operation will succeed if and only
if at every step in this process polyinstantiation integrity is maintained.

Toward a Multilevel Secure Relational Data Model475

Otherwise, the entire UPDATE operation is rejected and no tuples are
changed. In other words, UPDATE has an all-or-nothing integrity failure
semantics.

It remains to consider the effect of UPDATE on each tuple t O S. There
are two components to this effect. First, tuple t is replaced by tuple t',
which is identical to t except for those data attributes that are assigned
new values in the SET clause. This is the familiar replacement semantics
of UPDATE in a single-level world. In terms of our earlier examples, the
update of SOD, from Figure 13 to Figure 15 and then to Figure 19 illus-
trates this semantics. The formal definition of the tuple t' obtained by
replacement semantics is straightforward, as follows:

BlA,,C,] A, OSET clause
t'[Ak, ck] -0 k k k
H<s,,c> A, OSETclause

Second, to avoid signaling channels, we may need to introduce an ad-
ditional tuple t" to hide the effects of the replacement of t by t' from us-
ers at levels below c (c is the level of the user executing the UPDATE).
This will occur whenever there is some attribute A, in the SET clause
with t[C,] < c. The idea is that the original value of t[A,] with classifica-
tion t[C,] is preserved in t". At the same time, the core integrity proper-
ties presented earlier must be preserved.

To be concrete, consider our earlier example of the update of SODg
from Figure 16 to Figure 17. The WHERE clause of the UPDATE state-
ment picks up the second tuple in Figure 16, which by replacement se-
mantics gives us the second tuple in Figure 17. In this case, the
unclassified Exploration value of the Objective attribute continues to be
available in the first tuple of Figure 17, and we need not introduce an
additional tuple to hide the effect of this update from U-users. On the
other hand, suppose the same UPDATE statement, that is,

UPDATE SOD

SET Objective = Spying

WHERE Starship = ‘Enterprise’ AND
Destination = ‘Rigel’

was executed by an S-user in the context of Figure 14. Prior to the up-
date, U-users see the instance in Figure 13 and therefore must continue
to do so after the update. To achieve this, SODg changes from Figure 14
to Figure 21. The first tuple in Figure 21 is the tuple t' dictated by the
usual replacement semantics. The second tuple is the t" tuple introduced
to hide the effect of the update from U-users and maintain interinstance
integrity. It should be noted that Figure 22 also achieves these two goals.

476 Information Security

However, it does so at the cost of a spurious association between Rigel

and Exploration, which is avoided in Figure 21.

Starship Objective Destination TC
Enterprise U | Spying S | Rigel S
Enterprise U | Exploration U | Null U

Figure 21. SODg.

Starship Objective Destination TC
Enterprise U | Spying S | Rigel S
Enterprise U | Exploration U | Rigel S

Figure 22. SODg.

We now give a formal definition of the t" tuple introduced to close the
signaling channel:

B t[4.,C] tIC I<c
" -0
t"[Ak Gkl EKNULL ¢[4,]> t[C,]=c

To summarize, each tuple t O S is replaced by t' and possibly in addi-
tion by t" (if t" exists). The update is successful if the resulting relation
satisfies polyinstantiation integrity. Otherwise, the update is rejected,
and the original relation is left unchanged.

Effect above the user’s access class. Next, consider the effect of the
UPDATE operation on R, ... This, of course, assumes that the UPDATE
operation on R, was successful. Unfortunately, the core integrity proper-
ties do not uniquely determine how an update by a c-user to R, should be
reflected in updates to R, .. Several different options have been proposed
[HAIG91a, JAJO90f, LUNT90, LUNT91]. In this section, we will adopt the
minimal propagation rule [JAJO90f]. This rule introduces exactly those
tuples in R, ., needed to preserve the interinstance property — that is,
put t' and t" (if t" exists and survives subsumption) in each R, ,, and
nothing else.?

2The minimal propagation rule needs to be slightly extended to achieve com-
pleteness (that is, every multilevel relation can be constructed by some sequence
of update operations).

Toward a Multilevel Secure Relational Data Modeld77

Formally, the effect of the UPDATE operation is again best explained by
focusing on a particular tuple t in S. Let A, be an attribute in the SET
clause such that:

1. t[C,] =cand
2. t[A,] = x, where x is nonnull.

That is, the c-user is actually changing a nonnull value of {[A,] at his
own level to s;,. Now consider R. ... Due to polyinstantiation, there may
be several tuples u in R, .. which have the same apparent primary key as
t (that is, u[4;, C;] = t[A,, C;]) and match t in the A, and C, attributes
(that is, u[A; Ci] = t[A, Ci]). To maintain polyinstantiation integrity
(that is, Property 4 presented earlier), we must therefore change the value
of u[A;] from x to s;. This requirement is formally stated as follows:

1. For every A, O SET clause with t[A,] # Null, let
U= {u U Rc’>c: u[Ala Cl] = t[Ala Cl] D u[Aka Ck] = t[Ak’ Ck]}

Polyinstantiation integrity dictates that we replace every u O U by
u' identical to u, except for

u'[Ay, Gyl = <8y, >

This rule applies cumulatively for different A;’s in the SET clause.
This requirement is absolute and must be rigidly enforced by the
DBMS.

2. The second requirement is imposed by the interinstance integrity
property. To maintain interinstance integrity, we insert t' and t" (if
it exists and survives subsumption) in R, , .

The second requirement is weaker than the first, in that interinstance
integrity only stipulates what minimum action is required. We can insert
a number of additional tuples v in R, . with v[4;, C;] = t'[A;, C,], so long
as the core integrity properties are not violated. In particular, if ¢' sub-
sumes the tuple in o({v}, c), interinstance integrity is still maintained.
Minimal propagation makes the simplest assumption in this case; that is,
only t' and t" are inserted in R, ., and nothing else is done.

The DELETE statement. The DELETE statement has the following
general form:

DELETE

FROM R,
[WHERE p |

478 Information Security

Here, p is a predicate expression which helps identify those tuples in R,
that are to be deleted. The intent of the DELETE operation is to delete
those tuples t in R, that satisfy the given predicate. But in view of the
*-property, only those tuples t that additionally satisfy ¢{[TC] = c are de-
leted from R, To maintain interinstance integrity, polyinstantiated tuples
are also deleted from R, .

In particular, if t{C;] = ¢, then any polyinstantiated tuples in R, . will
be deleted from R, ... Hence, the entity that t represents will completely
disappear from the multilevel relation. On the other hand, with t[C|] < ¢,
the entity will continue to exist in Ry, and in Ry, ¢,

Decomposition and recovery

In this section, we give the decomposition and recovery algorithms
[JAJO91Db] formulated in terms of UPDATE operations defined in the pre-
vious section. We give an abstract description and complete formal
statement first and defer consideration of examples until later.

Background. In multilevel relational DBMSs, a major issue is how ac-
cess classes are assigned to data stored in relations. The proposals have
included assigning access classes to relations [GROH76], assigning ac-
cess classes to individual tuples in a relation [GARV86], and assigning
access classes to individual attributes of a relation [HINK75]. Unlike
these proposals, in the Secure Data Views (SeaView) project, security
classifications are assigned to individual data elements of the tuples of a
relation [DENN87, DENN88a, LUNT90] (for example, see Figure 23).

SHIP OBJ DEST TC
Ent U | Exp U | Talos U U
Ent U | Mine C | Sirius C C
Ent U | Spy S | Rigel S S
Ent U | Coup TS | Orion TS TS

Figure 23. A multilevel relation SOD.

Multilevel relations in SeaView exist only at the logical level. In reality,
multilevel relations are decomposed into a collection of single-level base
relations that are then physically stored in the database. Completely
transparent to users, multilevel relations are reconstructed from these
base relations on user demand. There are several practical advantages of

Toward a Multilevel Secure Relational Data Model4'79

being able to decompose and store a multilevel relation as a collection of
single-level base relations. In particular, the underlying trusted comput-
ing base (TCB) can enforce mandatory controls with respect to the single-
level base relations. This allows the DBMS to run mostly as an untrusted
application with respect to the underlying TCB.

In SeaView, the decomposition of multilevel relations into single-level
ones is performed by applying two different types of fragmentation: hori-
zontal and vertical. Thus the multilevel relation in Figure 23 will be
stored as nine single-level fragments (one primary key group relation and
eight attribute group relations), shown in Figure 24. This leads to many
problems with the SeaView decomposition and recovery algorithms:

1. Repeated joins. The vertical fragmentation used in SeaView results
in single-level relations that consist of the key attribute, a single
nonkey attribute, and their classification attributes. This means
that nearly all queries involving multiple attributes necessitate re-
peated (left outer) joins of several single-level relations. It is well
known that join is an expensive operation and should be avoided
whenever possible [SCHK82].

2. Spurious tuples. Whenever a relation is stored as one or more frag-
ments, it must be possible to reconstruct the original relation ex-
actly from the fragments. This, however, is not the case with the
SeaView decomposition. When the SeaView recovery algorithm is
applied to the single-level relations in Figure 24, a Top Secret user
will be shown the relation given in Figure 25. While the original
Top Secret instance in Figure 23 describes four missions for the
Enterprise, a Top Secret user will see the 16 missions of Figure 25
using the SeaView approach.

3. Incompleteness. The SeaView decomposition puts severe limitations
on the expressive capability of the database. Several instances that
have realistic and useful interpretations cannot be realized in
SeaView [JAJO90c, JAJO91a].

4. Left outer joins. The SeaView recovery algorithm is based on the left
outer join of relations. Many theoretical complications and pitfalls
arise with outer joins [DATES80].

Elsewhere [JAJO90c| we have given a modified version of the SeaView
decomposition and recovery algorithms. Our principal motivation was to
give a lossless decomposition that avoids the spurious tuples introduced
by SeaView. To achieve this, we store the relation in Figure 23 as a col-
lection of 12 single-level relations. Figure 26 shows the four primary key
group relations; the eight attribute group relations are identical to those
given in Figure 24b. The recovery algorithm, when applied to these sin-
gle-level base relations, yields exactly the original-instance SOD in Figure
23. While these algorithms eliminate the last three problems, the first

480 Information Security

problem remains: Satisfying queries involving multiple attributes re-
quires taking repeated natural joins of several single-level relations.

D,y SHIP
Ent U
(@)
Dyu SHIP OBJ SHIP DEST D3y
Ent U | Exp U Ent U | Talos U
D, c SHIP OBJ SHIP DEST D3¢
Ent U | Mine C Ent U | Sirius C
Dys SHIP OBJ SHIP DEST D3
Ent U | Spy S Ent U | Rigel S
Dj 1s SHIP OBJ SHIP DEST D31
Ent U | Coup TS Ent U | Orion TS

(b)

Figure 24. SeaView decomposition of Figure 23 into nine single-level base rela-
tions: (a) primary key group relation, (b) attribute group relations.

In this section, we give a decomposition algorithm and a recovery algo-
rithm that have several advantages over the SeaView algorithms and our
earlier algorithms discussed above [LUNT90, JAJO9Oc]:

1. The decomposition and recovery algorithms given below are based
on operational semantics for the UPDATE operations on multilevel
relations. The semantics of multilevel relations are defined here by
generalizing the usual UPDATE operations of SQL.

Toward a Multilevel Secure Relational Data Model481

482

SHIP OBJ DEST TC
Ent U | Exp U | Talos U U
Ent U | Exp U | Sirius C C
Ent U | Mine C | Talos U C
Ent U | Mine C | Sirius C C
Ent U | Exp U | Rigel S S
Ent U | Mine C | Rigel S S
Ent U | Spy S | Talos U S
Ent U | Spy S | Sirius C S
Ent U | Spy S | Rigel S S
Ent U | Exp U | Orion TS TS
Ent U | Mine C | Orion TS TS
Ent U | Spy S | Orion TS TS
Ent U | Coup TS | Talos U TS
Ent U | Coup TS | Sirius C TS
Ent U | Coup TS | Rigel S TS
Ent U | Coup TS | Orion TS TS

Figure 25. SeaView recovery algorithm applied to Figure 24.

These algorithms, with minor modifications, can easily accommo-
date alternative update semantics that have been proposed in the
literature. It is even possible to keep the decomposition fixed and
vary the recovery algorithms to realize these alternate semantics.
These algorithms are computationally efficient because the decom-
position uses only horizontal fragmentation to break multilevel re-
lations into single-level ones. The decomposition for the relation in
Figure 23 is shown in Figure 27. Since the decomposition does not
require any vertical fragmentation, it is possible to reconstruct a
multilevel relation from the underlying single-level base relations
without having to perform any (left or natural) joins; only unions
are required.

The recovery and decompositions are simple to state and prove cor-
rect.

Information Security

Ent 8) 8) U

Ent 8) C C

Ent 8) S S

D 15 SHIP C, G,
Ent U [TS TS

Figure 26. Primary key group relations after Jajodia-Sandhu decomposition of Fig-
ure 23 into 12 single-level base relations. The eight attribute group relations are
identical to those in Figure 24b.

This section is organized as follows. First we give the decomposition
and recovery algorithms that preserve the update semantics proposed
earlier. Then we give several examples to illustrate the behavior of the
update semantics, as well as the decomposition and recovery algorithms.
We also show how these algorithms, with minor modifications, can easily
accommodate alternative update semantics proposed in the literature.

Decomposition. The decomposition has for each multilevel relation
scheme

R(A,, Cy, ..., A, C,, TC)
a collection of single-level base relations
D.Ay, Cy, ..., A, C,)

one for each access class c in the security class lattice. This is in contrast
to the SeaView decomposition [LUNT90] and the Jajodia-Sandhu decom-
position [JAJO90c], both of which require several single-level relations at
each access class (compare Figures 24 and 26 with Figure 27).

A c-user always sees and interacts with the c-instance R, Whenever a
c-user issues an insert, update, or delete command against R,, tuples are

Toward a Multilevel Secure Relational Data Model483

added, modified, or removed from the underlying base relation D, Any
change in R, must be properly reflected in R, . (and in D, ,.), but this is
accomplished during the recovery of a R, .. Thus, when D, is modified as
the result of an update by a c-user, there are no changes made to any
other D., c¢'# c. Changes in R.,., due to updates by c-users are ac-

counted for by the recovery algorithm, which uses U, ..D,

an R, .

to reconstruct

Dy SHIP OBJ DEST
Ent U Exp U | Talos U
D¢ SHIP OBJ DEST
Ent U | Mine C | Sirius C
Dg SHIP OBJ DEST
Ent U Spy S | Rigel S
Dig SHIP OBJ DEST
Ent U [Coup TS |Orion TS

Figure 27. New decomposition of Figure 23 into four single-level base relations.

The INSERT statement. Suppose as a result of the INSERT statement, a
c-user successfully inserts the following tuple t in R, t[A] = a; if A, is
included in the attributes list in the INSERT statement, t{[A,] = Null if A,
is not in the list, and t[C;] = c for 1 <1< n. In this case, the decomposi-
tion will also insert the tuple tinto D,.

There are no other insertions. The recovery algorithm will use U, ..D.
to reconstruct an R, ., and since tis in D, it will be in R,., . as well.

The UPDATE statement. We next consider the effect of an UPDATE op-
eration by a c-user on R,. As we indicated earlier, only D, will be modified
by the decomposition algorithm.

Suppose that a c-user successfully executes the UPDATE statement
presented earlier. Once again, let

S={t0 R,: tsatisfies the predicate p}

484 Information Security

For each t [0 S, there are two cases to consider:

1.

t[A;, C;] = c. In this case, there can be no polyinstantiation of tuple
t at the c level. There is exactly one tuple u O D, with u[A4,, C;] =
t[A;, Ci]. We replace u by the following tuple u': u'[4;, C,] = u[4,,
Cy], and for k# 1,

H<s ,c> A, OSET clause
W[A,, Cl=0"F ¢
BuA,,C.1 A, OSETclause

Note that in this case u'[C;] = cfor 1 <1< n.

t[A;, C] < c. In this case, tuple t will be polyinstantiated at the ¢
level. There are two separate subcases, depending on whether or
not t has been polyinstantiated at level c prior to the update. These
subcases are as follows:

(@) t is not polyinstantiated at level ¢ prior to the update. In this
case, there does not exist a tuple u O D, with u[A,, C;] = t[4;, C].
(Note that the tuple class of t must be strictly less than c.)

We add a tuple u to D,, where u is defined as follows: u[A4,, C;] =
t[A;, C], and for k# 1,

B <s.,c> A, OSETclause

ulAg, Cyl = &?,t[ckp A, O SET clause

The symbol “?” is a special symbol that can never be an actual
value for an attribute. It plays an important role during recovery,
as we will see in a moment. Informally, a “?” means that this value
is to be obtained from the corresponding tuple in

Dyie, 1

(b) t is polyinstantiated at level c prior to the update. In this case,
there will be one or more tuples u O D, that satisfy the condition
ulA,, C;] = t[{A;, C;], and for k # 1, (i) if t{C;] = ¢, then u[4,; C] =
t[A,, C] and (ii) if t{C]] < ¢, then u[A;, C] = <?, t{[C]>. For each tu-
ple u that satisfies this condition, we replace u by the following tu-
ple u': u'[A;, C] = u[A,, Ci], and for k# 1,

H<s ,c> A, OSET clause
W[A,, Cl=0"F ¢
A, C.1 A, OSETclause

Toward a Multilevel Secure Relational Data Model485

The DELETE statement. Finally, suppose a c-user executes the DELETE
statement given earlier, and as a result all tuples t that satisfy the predi-
cate p and t[TC] = c are deleted from R, In terms of the decomposition,
for each such t, we delete from D, the tuple u that satisfies the following
condition: u[4,;, C;] = t[A,, C,], and for k # 1, (i) if t{C;] = ¢, then u[A;, C}]
= t[A,, C] and (i) if t{{C}] < ¢, then u[4;, C] = <?, t[C]>.

Summary. To summarize, whenever a c-user updates the instance R,,
all changes are confined to the underlying base relation D,. These
changes leave ripple marks on R, .., but this is accomplished when an
R, .. is constructed using the recovery algorithm described next.

Recovery algorithm. We are now prepared to give the recovery algo-
rithm. To recover the instance R, at an access class ¢, the following steps

are taken:

1. Form the union U,..D,. Extend each tuple t in the result by append-
ing to it its tuple class computed as {[{TC] = lub{t{[C]]: i= 1, ..., n}. Call
the end result R..

2. Next, apply the following key deletion rule to R,:

Let t; O R, be such that ¢,[C,] < cand R, does not contain a t, such
that t,[A,, C|] = {,[A;, Ci] and t,[TC] = t[C;]. Then we delete t;
from R,. If t,[TC] = ¢, then we delete t; from D, as well.

(Comment: The motivation for the key deletion rule is that a low
user has deleted the tuple key. We therefore delete all higher tuples
with that low key as well. Clearly t; is no longer needed, and its
elimination amounts to garbage collection. We could alternately
place tuples such as t; in a separate relation and have them ex-
amined by a suitably cleared subject before physically purging
them from the database.)

3. Apply the following P-replacement rule to R,:
Let t be a tuple in R, with t[A,] = “?.” There are two cases:
(@) There is a tuple u O R, with u[A;, C;] = t[A;, C;] and TClu] =
t[Cy]. In this case, we replace “?” in t[A;] by u[AL].

(b) There does not exist a tuple u 0 R, with t[4;, C;] = u[4,, C;] and
TClu] = t[C]. In this case, we replace “?” by “Null” in t[A].

4. Finally, make R, subsumption free by removing all tuples s such
that for some t 0 R, and for all i = 1, ..., n either (i) t[4,, s;] = s[4,
s;] or (ii) t[4;] # Null and s[A;] = Null.

486 Information Security

Examples. In this section, we give several examples to illustrate the
update semantics as well as the decomposition and recovery algorithms.

The INSERT statement. To illustrate how the INSERT statement works,
consider SOD; and Dy, as shown in Figure 28. Suppose a U-user wishes

to insert a second tuple into SOD;. He does so by executing the following
INSERT statement:

INSERT
INTO SOD
VALUES (Voy’, ‘Exp’, ‘Mars’)

As a result of the above INSERT statement, SOD; and D will change to
the relations shown in Figure 29. If we wish to recover SODy;, after step 1
of the recovery algorithm, SODy, is identical to Dy of Figure 29. Since
steps 2, 3, and 4 of the recovery algorithm make no changes to SOD, we
have the desired result.

SHIP OBJ DEST TC SHIP OBJ DEST
Ent U|[Exp U |Talos U | U Ent U | Exp U |Talos U
Figure 28. SOD and Dy;.

SHIP OBJ DEST TC SHIP OBJ DEST
Ent Exp U |Talos U | U Ent U | Exp U |Talos U
Voy Exp U|Mars U | U Voy U| Exp U |[Mars U

Figure 29. SOD and D, after INSERT.

The UPDATE statement. To illustrate the effect of an UPDATE state-
ment, consider the instance SODy and the corresponding base relation
Dy, given in Figure 30. Let the instance SODg be identical to SODy, in
which case Dg is empty, as shown in Figure 31. Suppose an S-user
makes the following update to SODg:

UPDATE SOD

SET DEST = ‘Rigel’
WHERE SHIP = ‘Ent’

Toward a Multilevel Secure Relational Data Model48'7

Using the update semantics, SODg will have one tuple, as shown in
Figure 32, and by step 1 of the decomposition algorithm, Dg, which was
empty prior to this update, will have a single tuple, call it u, as shown in
Figure 32. Notice that u contains the pair <?, U>, which indicates that
during the recovery “?” is to be replaced by the attribute value in the cor-
responding U-tuple. Specifically, let us use the recovery algorithm to re-
construct SODg. The first step of the algorithm forms the union of
relations Dy and Dg in Figures 30 and 32. Since the key deletion rule
does not apply, we move to step 3 (?-replacement rule) of the recovery
algorithm, which will replace <?, U> in u by <Exp, U> (that is, the cor-
responding attribute values for ‘Ent’ in the lower level relation Dy in Fig-
ure 30). After the union is made subsumption free (step 4), we end up
with the instance SODg in Figure 32, as desired.

SHIP OBJ DEST TC SHIP OBJ DEST
Ent Exp U |Null U| U Ent U| Exp U| Null U
Figure 30. SOD and Dy;.

SHIP OBJ DEST TC SHIP OBJ DEST

Ent Exp U|Null U| U
Figure 31. SODg and Dg.
SHIP OBJ DEST TC SHIP OBJ DEST
Ent Exp U |Rigel S| S Ent U ? U | Rigel S

Figure 32. SODg and Dg after UPDATE by S-user.

Next, suppose a U-user executes the following command against SODy,
shown in Figure 30:

UPDATE SOD
SET DEST = ‘Talos’
WHERE SHIP = ‘Ent’

488 Information Security

As a result of this update, the decomposition algorithm only modifies Dy,
from the instance in Figure 30 to the one in Figure 33. Readers should
verify that if we use the recovery to obtain SODg, we obtain the instance
given in Figure 34, although no changes were made to the underlying Dgq
as a result of the above update. Of course, SOD; will change to the rela-
tion shown in Figure 33.

SHIP OBJ DEST TC SHIP OBJ DEST
Ent U|lExp U |Talos U | U Ent U | Exp U |Talos U
Figure 33. SOD, and D, after UPDATE by U-user.

SHIP OBJ DEST TC SHIP OBJ DEST
Ent U|Exp U |Talos U | U Ent U ? U | Rigel S

Ent U |Exp U |Rigel S| S
Figure 34. SODg and Dg after UPDATE by U-user.

SHIP OBJ DEST TC SHIP OBJ DEST
Ent U |Exp Talos U | U Ent U| Spy S |Rigel S
Ent U |Spy S [Rigel S| S

Figure 35. SODg and Dg after UPDATE by S-user.

Finally, suppose starting with the instance SODg shown in Figure 34,
an S-user invokes the following update:

UPDATE SOD

SET OBJ = ‘Spy’

WHERE SHIP = ‘Ent’ AND
DEST = ‘Rigel’

Using the update semantics, the SODg will change to the instance given
in Figure 35, not to the instance given in Figure 36.

This follows from our underlying philosophy: We need to polyinstantiate
either to close a signaling channel or to provide a cover story. In terms of

Toward a Multilevel Secure Relational Data Model489

the decomposition, Dg will change from the instance in Figure 34 to the
one in Figure 35. We leave it to the reader to verify that the recovery al-
gorithm operates correctly.

SHIP OBJ DEST TC
Ent U | Exp Talos U U
Ent U | Exp Rigel S S
Ent U | Spy Rigel S S

Figure 36. A multilevel relation different from the one in Figure 35.

The DELETE statement. To illustrate how the DELETE statement works,
suppose a U-user executes the following DELETE statement against the
relation SODy shown in Figure 33 (assume S-users see the instance
given in Figure 34, Dy, is as in Figure 33, and Dy is as in Figure 34):

DELETE
FROM SOD
WHERE SHIP = ‘Ent’

Following the delete semantics, not only will SOD{; become empty, but
SODg will become empty as well. As a consequence of the above DELETE,
the decomposition algorithm will make Dy; in Figure 33 empty. The reader
should verify that although Dg (shown in Figure 34) does not change, if
we were to recover SODg at this point, the key deletion rule in the recov-
ery algorithm will delete the tuple for the starship ‘Ent.’

Options and extensions. As we indicated earlier, the core integrity
properties do not uniquely determine how an update by a c-user to R,
should be propagated to R,.., and several different options have been
proposed. This section discusses the relationship between the algorithms
and these options.

The algorithms can accommodate the SeaView MVD requirement
[DENN87, DENN88a, LUNT90] most easily. No changes are required in
the decomposition algorithm; only the recovery algorithm needs to be
modified. Steps 1 and 2 of the recovery algorithm remain the same as
before. Steps 3 and 4 are changed as follows:

3'. For each i, 2 < i< n, repeat the following:

490 Information Security

Whenever t, and t, are two tuples in R, such that t,[4;, C;] = t5[A;,
Cy], add to R, tuples t; and t,, defined as follows:

t3[Ay, Ci] = 4[A, C]

t:[A;n Gl = 4lA;, G
t3[AJ-, Cj] = tQ[AJ-, Cj], l<jsn j%i
t4[A1, Gl = 4lA;, G
t4[Ai Gl = t,[A;, C
t4[AJ-, Cj] = tl[AJ-, Cj], l<j<n,j#i

4'. Delete from R, any tuple that has a “?” as a value.
S'. Step S' is the same as step 4 of the original algorithm.

The decomposition and recovery algorithms will have to be modified to
accommodate the single tuple per tuple class approach [SAND90a] or the
closely related single maintenance level attribute approach adopted by
the LDV model [HAIG91a, STAC90]. These modifications are straightfor-
ward.

This brings us to the dynamic MVD requirement [LUNT91]. It too will
require modifications to both the decomposition and recovery algorithms
along the lines discussed elsewhere [JAJO91a]. The major difference is
that in the single-level relations D,, we will sometimes require “?” for
classification attributes (rather than just for data attributes, as shown
earlier).

It is also possible to have a single decomposition algorithm for updates
and realize the several alternate semantics discussed above (and others
from the literature) by varying only the recovery algorithm.

Conclusion

In this essay, we have examined the entity integrity requirement and
the semantics of various update operations in the context of multilevel
relations. These concepts were suitably generalized to deal with polyin-
stantiation. We have also described a decomposition algorithm that
breaks a multilevel relation into single-level relations and a recovery algo-
rithm that reconstructs the original multilevel relation from the decom-
posed single-level relations.

We believe much interesting work remains to be done in this area
[JAJO90e]. In particular, we would like to give a complete and formal set
of principles that can help with design and implementation of multilevel
secure relational DBMSs. Initial steps have been taken in this direction
in the present essay, but more remains to be done.

Toward a Multilevel Secure Relational Data Model491

Acknowledgments

This work was partially supported by the US Air Force, Rome Air Devel-
opment, through subcontract #C/UB-49; D.O. No. 0042 of prime con-
tract #F-30602-88-D-0026, Task B-0-3610, with CALSPAN-UB Research
Center. We are indebted to Joe Giordano and RADC for making this work
possible.

492 Information Security

