Essay 27

Integrity Mechanisms in
Database Management
Systems

Ravi S. Sandhu and Sushil Jajodia

Information integrity means different things to different people, and will
probably continue to do so for some time. The 1989 NIST workshop,
which set out to establish a consensus definition, instead arrived at the
following conclusion [NIST89, page 2.6]:

The most important conclusion to be drawn from this compilation
of papers and working group reports: don’t draw too many con-
clusions about the appropriate definition for data integrity just
yet.... In the mean time, papers addressing integrity issues should
present or reference a definition of integrity applicable to that pa-
per.

So the first order of business is to define integrity. Our approach to this
question is pragmatic and utilitarian. The objective is to settle on a defi-
nition within which we can achieve practically useful results, rather than
search for some absolute and airtight formulation.

We define integritylas being concerned with the improper modification
of information (much as confidentiality is concerned with improper dis-
closure). We understand modification to include insertion of new infor-
mation and deletion of existing information, as well as changes to
existing information.

1Our definition of integrity is considerably broader than the traditional use of
this term in the database literature. For instance, Date [DATE86] says, “Security
refers to the protection of data against unauthorized disclosure, alteration, or
destruction; integrity refers to the accuracy or validity of data.” The consensus
view among security researchers is that integrity is one component of security
and accuracy/validity is one component of integrity [FERN81, NIST89].

Integrity Mechanisms in Database Management Systems 617

The reader has probably seen similar definitions using “unauthorized”
instead of “improper.” Our use of the latter term is quite deliberate and
significant. First, it acknowledges that security breaches can and do oc-
cur without authorization violations — that is, authorization is only one
piece of the solution. Second, it adheres to the well-established and use-
ful notion that information security has three components: integrity,
confidentiality, and availability. We see no need to discard this standard
viewpoint in the absence of some compelling demonstration of a superior
one. Finally, our definition brings to the front the very important ques-
tion: What do we mean by improper? It is obvious that this question in-
trinsically cannot have a universal answer. So it is futile to try to answer
it outside of a given context.

We are specifically interested in information systems used to control
and account for an organization’s assets. In such systems, the primary
goal is prevention of fraud and errors. The meaning of improper modifi-
cation in this context has been given by Clark and Wilson [CLAR87]| as
follows:

No user of the system, even if authorized, may be permitted to
modify data items in such a way that assets or accounting rec-
ords of the company are lost or corrupted.

Note their express qualification: “even if authorized.” The word “company”
in this quotation reveals the authors’ commercial bias but, as they have
clarified [CLAR89a], these concepts apply equally well to any information
system that controls assets — be it in the military, government, or com-
mercial sectors.

Our goal in this essay is to answer the following question: What
mechanisms are required in a general-purpose multiuser DBMS to help
achieve the integrity objectives of information systems? There are many
compelling reasons to focus on DBMSs for this purpose. The most im-
portant has been succinctly stated by Burns [BURNS89] as follows:

A database management system (DBMS) provides the appropriate
level of abstraction for the implementation of integrity controls as
presented in the Clark and Wilson paper [CLARS87].... It is clear
that the domain of applicability of the Clark and Wilson model is
not an operating system or a network or even an application sys-
tem, it is fundamentally a DBMS.

This is particularly true when we focus on mechanisms. Moreover,
DBMSs have the wonderful ability to express and manipulate complex
relationships. This comes in very handy when dealing with sophisticated
integrity policies.

618 Information Security

The operating system must clearly provide some core integrity and se-
curity mechanisms. In terms of the Orange Book [DODS85], one would
need at least a B1 system to enforce encapsulation of the DBMS — that
is, to ensure that all manipulation of the database can only be through
the DBMS. The question of what minimal features are required in the op-
erating system is important, but outside the scope of this essay. For now,
let us assume that operating systems with the requisite features are
available.

The bulk of integrity mechanisms belong in the DBMS. Integrity poli-
cies are intrinsically application specific, and the operating system sim-
ply cannot provide the means to state application-specific concerns. One
might then argue: Why not put all the mechanism in the application
code? There are several persuasive reasons not to do this. First, it is not
very conducive to reuse of common mechanisms. Second, any assurance
that integrity mechanisms interspersed within application code will be
correct or even comprehensible is rather dubious. Third, the whole point
of a database is to support multiple applications. A particular application
may well be in a position to handle all its integrity requirements. Yet it is
only the DBMS which can prevent other applications from corrupting the
database.

The rest of the essay is organized as follows. First we discuss principles
for achieving integrity in information systems. Then we describe the
mechanisms required in a DBMS to support these high-level principles.
In some of the more detailed considerations, we will limit ourselves spe-
cifically to relational DBMSs. As we will see, traditional DBMS mecha-
nisms provide the foundations for this purpose, but by themselves do not
go far enough.

Integrity principles

We begin by describing basic principles for achieving information integ-
rity. These can be viewed as high-level objectives that are made more
concrete when specific mechanisms are proposed to support them. In
other words, these principles lay down broad goals without specifying
how to achieve them. We will subsequently map these principles to
DBMS mechanisms. We emphasize that the principles themselves are
independent of the DBMS context. They apply equally well to any infor-
mation system, be it a manual paper-based system, a centralized batch
system, an interactive and highly distributed system, and so on.

The nine integrity principles enumerated below are abstracted from the
Clark and Wilson papers [CLAR87, CLAR89a, CLAR89D], the NIST work-
shops [NIST87, NIST89], and the broader security and database litera-

Integrity Mechanisms in Database Management Systems 619

ture.2These principles express what needs to be done rather than how it
is going to be accomplished (the latter question is addressed in the next
section):

1. Well-formed transactions. Clark and Wilson [CLAR87] have defined
this principle as follows: “The concept of the well-formed transac-
tion is that a user should not manipulate data arbitrarily, but only
in constrained ways that preserve or ensure the integrity of the
data.” This principle has also been called constrained change
[CLAR89b] — that is, data can be modified only by well-formed
transactions rather than by arbitrary procedures. Moreover, the
well-formed transactions are known (“certified”) to be individually
correct with some (mostly qualitative) degree of assurance.

2. Authenticated users. This principle stipulates that modifications
should be carried out only by users whose identities have been
authenticated to be appropriate for the task.

3. Least privilege. The notion of least privilege was one of the earliest
to emerge in security research. It has classically been stated in
terms of processes (executing programs) [SALT75]: A process
should have exactly those privileges needed to accomplish its as-
signed task, and none extra. The principle applies equally well to
users, except that it is more difficult to precisely delimit the scope
of a user’s “task.” A process is typically created to accomplish some
very specific task and terminates on completion. A user, on the
other hand, is a relatively long-lived entity and will be involved in
varied activities during his life span. His authorized privileges will
therefore exceed those strictly required at any given instant. In the
realm of confidentiality, least privilege is often called need-to-know.
In the integrity context, it is appropriately called need-to-do. An-
other appropriate term for this principle is least temptation — that
is, do not tempt people to commit fraud by giving them greater
power than they need.

4. Separation of duties. Separation of duties is a time-honored princi-
ple for prevention of fraud and errors, going back to the very be-
ginning of commerce. Simply stated, no single individual should be
in a position to misappropriate assets on his own. Operationally,
this means that a chain of events that affects the balance of assets
must require different individuals to be involved at key points, so
that without their collusion the overall chain cannot take effect.

5. Reconstruction of events. This principle seeks to deter improper be-
havior by threatening its discovery. It is a necessary adjunct to

2The literature is too numerous to cite works individually. For those unfamiliar
with the “older” literature, there are some useful starting points [DENN79,
FERN81, GRAY78, LIND76, SALT75].

620 Information Security

least privilege for two reasons. First, least privilege, even taken to
its theoretical limit, will leave some scope for fraud. Second, a zeal-
ous application of least privilege is not a terribly efficient way to
run an organization. It conveys an impression of an enterprise en-
meshed in red tape.3 So practically, users must be granted more
privileges than are strictly required. We therefore should be able to
accurately reconstruct essential elements of a system’s history, so
as to detect misuse of privileges.

6. Delegation of authority. This principle fills in a piece missing from
the Clark and Wilson papers and much of the discussion they have
generated.*It concerns the critical question of how privileges are
acquired and distributed in an organization. Clearly, the proce-
dures to do so must reflect the structure of the organization and
allow for effective devolution of authority. Individual managers
should have maximum flexibility regarding information resources
within their domains, tempered by constraints imposed by their
superiors. Without this flexibility at the end-user level, the authori-
zation will most likely be inappropriate to the actual needs. This
can only result in security being perceived as a drag on productiv-
ity and something to be bypassed whenever possible.

7. Reality checks. This principle has been well motivated by Clark and
Wilson [CLARS89D] as follows: “A cross-check with the external re-
ality is a central part of integrity control. ...integrity is meaningful
only in terms of the relation of the data to the external world.” Or
in more concrete terms: “If an internal inventory record does not
correctly reflect the number of items in stock, it makes little differ-
ence if the value of the recorded inventory has been reflected cor-
rectly in the company balance sheet.”

8. Continuity of operation. This principle states that system operations
should be maintained to some appropriate degree in the face of
potentially devastating events beyond the organization’s control.
This catchall description is intended to include natural disasters,
power outages, disk crashes, and the like.®

3This comment is made in the context of users rather than processes (transac-
tions). Least privilege with respect to processes is more of an internal issue within
the computer system, and its zealous application is most desirable (modulo the
performance and cost penalties it imposes).

4The closest concept that Clark and Wilson have to this principle is their Rule
E4, which they summarize as follows [CLARS87, Figure 1]: “Authorization lists
changed only by the security officer.” This notion of a central security officer as
an authorization czar is inappropriate and unworkable. Rational security policies
can be put in place only if appropriate authority is vested in end users.

SOne might argue that we are stepping into the scope of availability here. If so,
so be it.

Integrity Mechanisms in Database Management Systems 621

9. Ease of safe use.® In a nutshell, this principle requires that the
easiest way to operate a system should also be the safest. There is
ample evidence that security measures are all too often incorrectly
applied or simply bypassed by the system managers. This happens
due to one or a combination of the following: (1) poorly designed
defaults (such as indefinite retention of vendor-supplied passwords
for privileged accounts), (2) awkward and cumbersome interfaces
(such as requiring many keystrokes to effect simple changes in
authorization), (3) lack of tools for authorization review, and (4)
mismatched policy and mechanism (“...to the extent that the user’s
mental image of his protection goals matches the mechanism he
must use, mistakes will be minimized” [SALT75]).

It is inevitable that these principles are fuzzy, abstract, and high level.
In developing an organization’s security policy, one would elaborate on
each of these principles and make precise the meaning of terms such as
“appropriate” and “proper.” How to do so systematically is perhaps the
most important question in successful application of these principles. In
other words, how does one articulate a comprehensive policy based on
these high-level objectives? This question is beyond the scope of this es-
say. Our present focus is on this question: How do these principles
translate into concrete mechanisms in a DBMS?

The goals encompassed by these principles may appear overwhelming.
After all, in the extreme these principles amount to solving the total sys-
tem correctness problem, which we know is well beyond the state of the
art. Fortunately, in our context, the degree to which one would seek to
enforce these objectives and the assurance of this enforcement are mat-
ters of risk management and cost-benefit analysis. Laying out these prin-
ciples explicitly does give us the following major benefits:

e The overall problem is partitioned into smaller components for
which solutions can be developed independently of each other (that
is, divide and conquer).

e The principles suggest common mechanisms that belong in the
DBMS and can be reused across multiple applications.

e The principles provide a set against which the mechanisms of spe-
cific DBMSs can be evaluated (in an informal sense).

¢ The principles similarly provide a set on the basis of which the re-
quirements of specific information systems can be articulated.

¢ Last, but not least, the principles invite criticism from the security
community, particularly regarding what may have been left out.

6Thanks to Stanley Kurzban and William Murray for coining this term.

622 Information Security

Integrity mechanisms

In this section, we consider DBMS mechanisms to facilitate application
of the principles defined in the previous section. The principles have been
applied in practice [MURR87a, WIMB71], but with most of the mecha-
nisms built into application code. Providing these mechanisms in the
DBMS is a prerequisite for their widespread use.

Our mapping of principles to mechanisms is summarized in Table 1.
Some of these mechanisms are available in commercial products. Others
are well established in the database literature. There are also some
newer, recently proposed mechanisms, for example, transaction controls
for separation of duties [SAND88b], the temporal model for audit data
[JAJO90g], and propagation constraints for dynamic authorization
[SAND88a, SANDS89]. Finally, there are places where existing mecha-
nisms and proposals need to be extended in novel ways. Overall, the re-
quired mechanisms are quite practical and well within the reach of
today’s technology.

Table 1. Summary.

Integrity Principle DBMS Mechanisms

Well-formed transactions Encapsulated updates
Atomic transactions
Consistency constraints

Continuity of operation Redundancy
Recovery
Authenticated users Authentication
Least privilege Fine-grained access control
Separation of duties Transaction controls
Layered updates
Reconstruction of events Audit trail
Delegation of authority Dynamic authorization
Propagation constraints
Reality checks Consistent snapshots
Ease of safe use Fail-safe defaults

Human factors

Integrity Mechanisms in Database Management Systems 623

Well-formed transactions. The concept of a well-formed transaction
corresponds very well to the standard DBMS concept of a transaction
[GRAY78, GRAY86]. A transaction is defined as a sequence of primitive
actions that satisfies the following properties:

1. Failure atomicity. Either all or none of the updates of a transaction
take effect. We understand update to mean modification; that is, it
includes insertion of new data, deletion of existing data, and
changes to existing data.

2. Serializability. The net effect of executing a set of transactions is
equivalent to executing them in some sequential order, even
though they may actually be executed concurrently (that is, their
actions are interleaved or simultaneous).

3. Progress. Every transaction will eventually complete; that is, there
is no indefinite blocking due to deadlock and no indefinite restarts
due to livelock.

4. Correct state transform. Each transaction if run by itself in isolation
and given a consistent state to begin with will leave the database in
a consistent state.

We will elaborate on these properties in a moment. First let us note the
basic requirement that the DBMS must ensure that updates are re-
stricted to transactions. Clearly, if users are allowed to bypass transac-
tions and directly manipulate relations in a database, we have no
foundation to build upon. We represent this requirement with the dia-
gram in Figure 1 — updates are encapsulated within transactions. At
this point it is worth recalling that the database itself must be encapsu-
lated within the DBMS by the operating system.

Users

Transactions

Database

Figure 1. Encapsulated updates.

It is clear that the set of database transactions is itself going to change
during the system life cycle. Now the same nine principles of the previous
section apply with respect to maintaining the integrity of the transac-
tions. In particular, transactions should be installed, modified, and sup-
planted only by the use of well-formed “transaction-maintenance
transactions.” One can apply this argument once again to say that the

624 Information Security

transaction-maintenance transactions themselves need to be maintained
by another set of transactions, and so on indefinitely. We believe there is
little to be gained by having more than two steps in this potentially un-
bounded sequence of transaction-maintenance transactions. The rate of
change in the transaction set will be significantly slower than the rate of
change in the database proper. Going one step further, the rate of change
in the transaction-maintenance transactions will be yet slower to the
point where, for all practical purposes, these can be viewed as static over
the life span of typical systems. With this perspective, the database ad-
ministrator is responsible for installing and maintaining transaction-
maintenance transactions, which in turn maintain actual database
transactions.

We now return to considering the four properties of DBMS transactions
enumerated earlier. The first three properties — failure atomicity, seri-
alizability, and progress — can be achieved in a purely “syntactic” man-
ner — that is, completely independent of the application. These three
requirements for a transaction are recognized in the database literature
as appropriate for the DBMS to implement. Mechanisms to achieve these
objectives have been extensively researched in the last 15 years or so,
and our understanding of this area can certainly be described as mature.
The basic mechanisms — two-phase locking, time stamps, multiversion
databases, two-phase commit, undo-redo logs, shadow pages, deadlock
detection and prevention — have been known for a long time and have
made their way into numerous products. In developing integrity guide-
lines and/or evaluation criteria, one might consider some progressive
measure of the extent to which a particular DBMS meets these objec-
tives. For instance, with failure atomicity, is there a guarantee that we
will know which of the two possibilities occurred? Similarly, with seri-
alizability, does the DBMS enforce the concurrency control protocol or
does it rely on transactions to execute explicit commands for this pur-
pose? And, with the issue of progress, do we have a probabilistic or ab-
solute guarantee? Such questions must be systematically addressed.

The fourth property, correct state transforms, is the ultimate bottleneck
in realizing well-formed transactions. It is also an objective that cannot
be achieved without considering the semantics of the application. The
correctness issue is, of course, undecidable in general. In practice, we
can assure correctness only to some limited degree of confidence by a
mix of software engineering techniques such as formal verification, test-
ing, quality assurance, and so on. Responsibility for implementing trans-
actions as correct state transforms has traditionally been assigned to the
application programmer. Even in theory, DBMS mechanisms can never
fully take over this responsibility.

DBMS mechanisms can help in assuring the correctness of a state by
enforcing consistency constraints on the data. Consistency constraints
are also often called integrity constraints or integrity rules in the data-

Integrity Mechanisms in Database Management Systems 625

base literature. Since we are using integrity in a wider sense, we prefer
the term consistency constraint.

The relational data model in particular imposes two consistency con-
straints [CODD79, DATES86]:

e Entity integrity stipulates that attributes in the primary key of a
base relation cannot have null values. This amounts to requiring
that each entity represented in the database must be uniquely
identifiable.

e Referential integrity is concerned with references from one entity to
another. A foreign key is a set of attributes in one relation whose
values are required to match those of the primary key of some spe-
cific relation. Referential integrity requires that either a foreign key
be all null’or a matching tuple exist in the latter relation. This
amounts to ruling out dangling references to nonexistent entities.

Entity integrity is easily enforced. Referential integrity, on the other
hand, requires more effort and has seen limited support in commercial
products. The precise manner in which to achieve it is also very depend-
ent on the semantics of the application. This is particularly so when the
referenced tuple is deleted. There are several choices:

1. prohibit this delete operation,

2. delete the referencing tuple (with a possibility of further cascading
deletes), or

3. set the foreign key attributes in the referencing tuple to null.

There are proposals for extending SQL so that these choices can be
specified for each foreign key.

The relational model in addition encourages the use of domain con-
straints, whereby the values in a particular attribute (column) are con-
strained to come from some given set. These constraints are particularly
easy to state and enforce, at least so long as the domains are defined in
terms of primitive types such as integers, decimal numbers, and charac-
ter strings. A variety of dependency constraints [DATE86] that constrain
the tuples in a given relation have been extensively studied in the data-
base literature.

In the limit, a consistency constraint can be viewed as an arbitrary
predicate that all correct states of the database must satisfy. The predi-
cate may involve any number of relations. Although this concept is theo-
retically appealing and flexible in its expressive power, in practice the
overhead in checking the predicates for every transaction has been pro-

70ften the notion of a null foreign key is semantically incorrect. In such cases,
an additional consistency constraint can disallow null values.

626 Information Security

hibitive. As a result, relational DBMSs typically confine their enforcement
of consistency constraints to domain constraints and entity integrity.

Continuity of operation. The problem of maintaining continuity of op-
eration in the face of natural disasters, hardware failures, and other dis-
ruptive events has received considerable attention in both theory and
practice [GRAY78]. The basic technique to deal with such situations is
redundancy in various forms. Recovery mechanisms in DBMSs must also
ensure that we arrive at a consistent state. In many respects, these
mechanisms are “syntactic” in the sense of being application independ-
ent, much as mechanisms for the first three properties presented in the
section “Well-formed transactions” were.

Authenticated users. Authentication is primarily the responsibility of
the operating system. If the operating system is lacking in its authenti-
cation mechanism, it would be very difficult to ensure the integrity of the
DBMS itself. The integrity of the database would thereby be that much
more suspect. It therefore makes sense not to duplicate authentication
mechanisms in the DBMS.

Authentication underlies some of the other principles, particularly least
privilege, separation of duties, reconstruction of events, and delegation of
authority. In all of these, the end objective can be achieved to the fullest
extent only if authentication is possible at the level of individual users.

Least privilege. The principle of least privilege translates into a re-
quirement for fine-grained access control. Earlier we noted that least
privilege must be tempered with practicality in avoiding excessive red
tape. Nevertheless, a high-end DBMS should provide for access control at
very fine granularity, leaving it to the database designers to apply these
controls as they see fit.

It is clear from the Clark and Wilson papers, if not evident from earlier
work, that modification of data must be controlled in terms of transac-
tions rather than blanket permission to write. We have already put forth
the concept of encapsulated updates for this purpose. In terms of the re-
lational model, it is not immediately obvious at what granularity of data
this should be enforced.

To control read access, DBMSs have used mechanisms based on views
(as in System R) or query modification (as in INGRES). These mecha-
nisms are extremely flexible and can be as fine grained as desired. How-
ever, neither one provides the same potential for flexible control of
updates. The fundamental reason for this is our theoretical inability to
translate updates on views unambiguously into updates of base rela-
tions. As a result, authorization to control updates is often less sophisti-
cated than authorization for read access.

Integrity Mechanisms in Database Management Systems 627

In relational systems, it is natural for obvious reasons to represent the
access matrix by one or more relations [SELI80]. At a coarse level, we
might control access by tuples of the following form:

user, transaction, relation

This means that the specified user can execute the specified transaction
on the specified relation. Tuples of the form shown below would give
greater selectivity:

user, transaction, relation, attribute

This would allow us to control the execution of transactions such as “give
everyone a 5 percent raise,” without giving the same transaction permis-
sion to change employee addresses. The following authorization tuple ac-
complishes this:

Joe, Give-5%-raise, Employees, Salary

A transaction that gives a raise to a specific employee needs a further
dimension of authorization to specify which employee it pertains to.
Thus, if Joe is authorized to give a 5 percent raise to John, the authori-
zation tuple would look as follows:

Joe, Give-5%-raise, John, Employees, Salary

We are assuming here that John uniquely identifies the employee re-
ceiving the raise. The update is restricted to the Salary attribute of a spe-
cific tuple with key equal to “John” in the Employees relation. So it takes
a key, relation, and attribute to specify the actual parameter of such a
transaction.

Now consider a transaction which moves money from account A to ac-
count B; that is, there are two actual parameters of the transaction. In
terms of least privilege, we need the ability to bind this transaction to
updating the two specific accounts A and B. More generally, we will have
transactions with N parameters identified in an actual parameter list. So
we need authorization tuples of the following form:

user, transaction, actual parameter list

Here each parameter in the actual parameter list specifies the item
authorized for update by specifying one of the following identifiers:

e relation,
e relation, attribute,

628 Information Security

¢ key, relation, attribute.

These three cases respectively give us relation-level, “column”-level, and
element-level granularity of update control.

It is also important to realize that element-level update authorizations
should properly be treated as consumable items. For example, once
money has been moved from account A to account B, the user should not
be able to move it again, without fresh authorization to do so.

Separation of duties. Separation of duties finds little support in ex-
isting products. Although it is possible to use existing mechanisms for
this purpose, these mechanisms have not been designed with this end in
mind. As a result, their use is awkward at best. This fact was noted by
the DBMS group at the 1989 NIST data integrity workshop, who con-
cluded their report with the following recommendation [NIST89, section
4.3]:

While the group was able to use existing DBMS features to im-
plement separation of roles controls, we were, however, unable to
use existing features in a way that would support easy mainte-
nance and certification. We recommend that data definition
and/or consistency check features be enhanced to provide op-
erators that lend themselves to the expression of integrity controls
and to allow separation of integrity controls and traditional data.

Separation of duties is inherently concerned with sequences of trans-
actions, rather than individual transactions in isolation. For example,
consider a situation in which payment in the form of a check is prepared
and issued by the following sequence of events:

1. A clerk prepares a voucher and assigns an account.

2. The voucher and account are approved by a supervisor.

3. The check is issued by a clerk who must be different from the clerk
in step 1. Issuing the check also debits the assigned account.
(Strictly speaking, we should debit one account and credit another
in equal amounts. The important point for our purpose is that is-
suing a check modifies account balances.)

This sequence embodies separation of duties since the three steps must
be executed by different people. The policy, moreover, has a dynamic fla-
vor in that a particular clerk can prepare vouchers as well as, on differ-
ent occasions, issue checks. However, he cannot issue a check for a
voucher prepared by himself.

Implementation of this policy in a paper-based system follows quite di-
rectly from its statement:

Integrity Mechanisms in Database Management Systems 629

¢ The voucher is realized as a form with blanks for the amount and
account, as well as for signatures of the people involved. As the
above sequence gets executed, these blanks are filled in. On its
completion, copies of the voucher are filed in various archives for
audit purposes.

¢ The account is represented by, say, a ledger card, where debit and
credit entries are posted, along with references to the forms that
authorized these entries.

By their very nature, paper-based controls rely on employee vigilance and
internal/external audits for their effectiveness. Computerization brings
with it the potential to enforce the required controls by means of an in-
fallible, ever-vigilant, and omniscient automaton — the computer itself.

The crucial question is, how do we specify and implement similar con-
trols for separation of duties in a computerized environment? A mecha-
nism for this purpose called transaction-control expressions [SAND88b] is
based on the following difference between vouchers and accounts:

¢ The voucher is transient in that it comes into existence, has a rela-
tively small sequence of steps applied to it, and then disappears
from the system (possibly leaving a record in some archive). The
history of a voucher can be prescribed as a finite sequence of steps
with an a priori maximum length.

¢ The account, on the other hand, is persistent in the sense that it
has a long-lived — and essentially unbounded — existence in the
system. During its life there may be a very large number of credit
and debit entries for it. Of course, at some point the account may
be closed and archived. The key point is that we can only prescribe
its history as a variable-length sequence of steps with no a priori
maximum length.

Both kinds of objects are essential to the logic and correct operation of
an information system. Transient objects embody a logically complete
history of transactions corresponding to units of service provided to the
external world by the organization. Persistent objects embody the inter-
nal records required to keep the organization functioning with an accu-
rate correspondence to its interactions with the external world.

Separation of duties is achieved by enforcing controls on transient ob-
jects, for the most part. The crucial idea that makes this possible is that
transactions can be executed on persistent objects only as side effects of
executing transactions on transient objects. This thesis is actually simply
borrowed from the paper-based world, where it has been routinely ap-
plied ever since bookkeeping became an integral part of business opera-
tions.

630 Information Security

With this perspective, we arrive at the diagram shown in Figure 2. The
idea is that a sequence of transactions is viewed as transient data in the
database. In this picture, there is a double encapsulation of the data-
base, first by transactions on persistent data and then by transactions
on transient data. Users can directly execute only the latter. The former
are triggered indirectly as a result, when the transient data is in the
proper state for doing so. In other words, transient data is singly encap-
sulated and has direct application of separation of duties. Persistent data
is doubly encapsulated and has indirect application of separation of du-
ties by means of transient data.

Users

Transactions on transient data

Transactions on Database of
persistent data transient data

Database of persistent data

Figure 2. Layered updates.

Reconstruction of events. The ability to reconstruct events in a system
serves as a deterrent to improper behavior. In the DBMS context, the
mechanism to record the history of the system is traditionally called an
audit trail. As with the principle of least privilege, a high-end DBMS
should be capable of reconstructing events to the finest detail. It should
also structure the audit trail logically so that it is easy to query. For in-
stance, logging every keystroke does give us the ability to reconstruct the
system history accurately. However, with this primitive logical structure,
it takes substantial effort to reconstruct a particular transaction. In ad-
dition to actually recording all events that take place in the database, an
audit trail must also provide support for auditing. In other words, an
audit trail must allow “an authorized and competent agent to access and
evaluate accountability information by a secure means, within a reason-
able amount of time and without undue difficulty” [DODS85]. In this re-
spect, DBMSs have a significant advantage, since their powerful querying
abilities can be used.

The ability to reconstruct events means different things to different
people. At one end of the spectrum, we have the requirements of Clark
and Wilson [CLAR89b]. They require only two things:

Integrity Mechanisms in Database Management Systems 631

1. A complete history of each and every modification made to the
value of an item.

2. With each change in value of an item, storage of the identity of the
person making the change.

Of course, the system must be reliable in that it makes exactly those
changes that are requested by users and the binding of a value with its
author is also exact. Clark and Wilson call this “attribution of change.”

This can be easily accomplished if we are willing to extend slightly the
standard logging techniques for recovery purposes. For each transaction,
a recovery log contains the transaction identifier, some before-images,
and the corresponding after-images. If we augment this by recording the
user for each transaction, we have the desired binding of each value to
its author. There is one other change that needs to be made. To support
recovery, there is a need to keep a log only up to a point from which a
complete database backup is available. Of course, now there is a need to
archive the logs so they remain available.

Others have argued that this simple “attribution of change” is not suffi-
cient. We need an audit trail, a mechanism for a complete reconstruction
of every action taken against the database: who has been accessing what
data, when, and in what order. Thus, it has three basic objects of inter-
est:

1. The user. Who initiated a transaction, from what terminal, when,
and in what order?

2. The transaction. What was the exact transaction that was initiated?

3. The data. What was the result of the transaction? What were the
database states before and after the transaction initiation?

For this purpose, a database activity model has been recently proposed
[JAJO90g] that imposes a uniform logical structure upon the past, pres-
ent, and future data. There is never any loss of historical or current in-
formation in this model; thus the model provides a mechanism for
complete reconstruction of every action taken on the database. It also
logically structures the audit data to facilitate its querying.

Delegation of authority. The capability to delegate authority and re-
sponsibility within an organization is essential to its smooth functioning.
It appears in its most developed form with respect to monetary budgets.
However, the concept applies equally well to the control of other assets
and resources of the organization.

In most organizations, the ability to grant authorization is never com-
pletely unconstrained. For example, a department manager may be able
to delegate substantial authority over departmental resources to project
managers within his department and yet be prohibited to delegate this

632 Information Security

authority to project managers outside the department. These situations
cloud the classic distinction between discretionary and mandatory poli-
cies [MURR87b, SANDO9Q]. The traditional concept of ownership as the
basis for delegating authority also becomes less applicable in this context
[MOFF88]. Finally, we need the ability to delegate privileges without
having the ability to exercise these privileges. Some mechanisms for this
purpose have been recently proposed [MOFF88, SANDS&9].

The complexity introduced by dynamic authorization has been recog-
nized ever since researchers considered this problem, for example, as
stated by Saltzer and Schroeder [SALT75]:

...it is relatively easy to envision (and design) systems that stati-
cally express a particular protection intent. But the need to
change access authorizations dynamically...introduces much
complexity into protection systems.

This continues to be true, despite substantial theoretical advances in the
interim [SANDS88a]. Existing products provide few facilities in this re-
spect, and their mechanisms tend to have an ad hoc flavor.

Reality checks. This principle inherently requires activity outside of the
DBMS. The DBMS does have the obligation to provide an internally con-
sistent view of that portion of the database which is being externally
verified. This is particularly so if the external inspection is conducted on
an ad hoc on-demand basis.

Ease of safe use. Ease of safe use is more an evaluation of the DBMS
mechanisms than something to be enforced by the mechanisms them-
selves. The mechanisms should, of course, have fail-safe defaults
[SALT75] — for example, access is not available unless explicitly granted
or this default rule is explicitly changed to grant it automatically. DBMSs
do offer a significant advantage in providing user-friendly interfaces in-
trinsically, for their main objective of data manipulation. These interface
mechanisms can be leveraged to make the authorization mechanisms
easy to use. For instance, having the power of SQL queries to review the
current authorizations is a tangible benefit.

Conclusion

In a nutshell, our conclusion is that realistic DBMS mechanisms do
exist to support the integrity objective of information systems. Some are
well established in the literature, while others have been proposed more
recently and are not so well known.

In terms of what DBMS mechanisms can do for us, we can group the
nine principles enumerated in this essay as follows:

Integrity Mechanisms in Database Management Systems 633

Group I Group II Group III

Well-formed transactions Least privilege Authenticated users
Continuity of operation Separation of duties Reality checks
Reconstruction of events Ease of safe use

Delegation of authority

Group [principles are adequately treated by current DBMS mecha-
nisms and have been extensively studied by database researchers. With
the single exception of assuring correctness of state transformations,
these principles can be achieved by DBMS mechanisms. Techniques for
implementing well-formed transactions and maintaining continuity of
operation across failures have been studied extensively. Their practical
feasibility has been amply demonstrated in actual systems. Assuring that
well-formed transactions are correct state transformations remains a
formidable problem, but there is little that the DBMS can do to alleviate
it. As such, it is a problem outside the scope of DBMS mechanisms. The
DBMS can

1. enforce encapsulation of updates by restricting their occurrence to
be within transactions, and
2. provide controls for installing and maintaining these transactions.

Group II principles need newer mechanisms and conceptual founda-
tions. Several promising approaches have emerged in the literature.
Practical demonstration of their feasibility remains to be done, but in
concept they do not present prohibitive implementation problems. They
do require that current DBMSs be extended in significant ways. Group II
principles are the ones for which additional DBMS mechanisms hold the
promise of greatest benefit.

Group III principles are important, but there is little that DBMS
mechanisms can do to achieve them. Authentication is principally an op-
erating system problem. Reality checks necessarily involve external pro-
cedures. Ease of safe use is more an evaluation of the DBMS
mechanisms than something to be enforced by the mechanisms them-
selves. It is facilitated in the DBMS context by the intrinsic DBMS re-
quirement of user-friendly query languages.

In conclusion, for group I principles we need little more than has cur-
rently been demonstrated in actual products. For group II principles,
current systems do something for each one but do not go far enough.
There are several promising proposals but no “worked examples.” Group
III principles are important but are not fully achievable by DBMS mecha-
nisms alone.

634 Information Security

Integrity Mechanisms in Database Management Systems 617

