TRANSACTION CONTROL EXPRESSIONS FOR SEPARATION OF DUTIES

Ravi Sandhu

Department of Computer and Information Science
The Ohio State University, Columbus, Ohio 43210

Abstract We describe a model and notation for specifying
and enforcing aspects of integrity policies, particularly sep-
aration of duties. The key idea is to associate a transaction
control ezpression with each information object. This ex-
pression constrains the transactions which can be applied to
that object to occur in the specified pattern. As operations
are actually executed the transaction control expression gets
converted to a history. This history serves to enforce separa-
tion of duties. We distinguish transient objects with a short
lifetime from persistent objects which are long lived. Separa-
tion of duties is achieved by maintaining a complete history
for transient objects but only a partial history for persistent
objects. This is possible because of the system enforced rule
that transactions are executed on persistent objects only as
a side effect of execution on transient objects.

1. INTRODUCTION

The issues raised by Clark and Wilson [2] have stimulated
recent interest in integrity policies. Their objective was to
establish that: “First, there is a distinct set of security poli-
cies, related to integrity rather than disclosure ... Second,
some separate mechanisms are required for enforcement of
these policies, disjoint from those of the Orange Book [5].”
Others have expressed similar opinions [1, 4, 11, 14]. The
conclusions appear almost self evident. Unfortunately the
debate gets clouded and emotional when couched in terms
of differences between commercial and military policies. So
the following comment is worth noting [3]: “It is clear that
the distinction between military and commercial practices
should not be made a central issue ... both the military and
the commercial world have clear and obvious need for both
assurance of integrity and control of disclosure.” We are in
complete agreement with both quotations.

Qur objective is to present some preliminary, but promis-
ing, results in developing a notation and model for the spe-
cific issue of separation of duties. Separation of duties is a
fundamental technique for prevention of fraud and errors,
known and practised long before the existence of computers.
Although it is applied in computerized information systems
(see [15, 17] for instance), perhaps even routinely so, there
is little literature on it.

Our model generalizes access control lists in ways similar
to Minsky’s generalization of capabilities [13]. Our approach

CH2619-5/88/0000/0282$01.00 © 1988 IEEE

has many of the same advantages that access control lists
have over capabilities for file protection. We also acknowl-
edge the influence of {10, 12]. The model goes significantly
beyond this previous work and enables specification of sep-
aration of duties in an intuitive and realistic way. It has
a simple operational interpretation with an efficient imple-
mentation. The model is based on the standard concept of
transaction [6, 8] which is reviewed in section 2 and shown
to be insufficient for integrity control. Section 3 introduces
transaction control expressions and illustrates their power
for enforcing separation of duties. We also indicate why ef-
ficient implementation is feasible. Section 4 discusses corre-
spondence of our model with Clark-Wilson [2].

2. TRANSACTIONS

The notion of a transaction as the atomic unit of activity
in an information system has provided a successful base for
concurrency control and recovery mechanisms. The following
are two critical properties.

1. Serializability. The net effect of the interleaved exe-
cution of multiple transactions must be equivalent to
some serial execution of the transactions.

2. Failure Atomicity. Either all or none of the actions of
a transaction actually take effect.

Transactions also provide a useful building block for integrity;
since it is assumed, perhaps even certified, that each trans-
action by itself preserves consistency of the database. These
properties are critical for hiding temporary inconsistencies.

However, a transaction is too elementary a unit for in-
tegrity purposes. For example, consider a situation in which
payment in the form of a check is prepared and issued by the
following sequence of events.

1. A clerk prepares the check.

2. The check is approved by a supervisor.

3. The check is issued by a clerk, who must be different

from the clerk in step 1.
From a concurrency control and recovery perspective this se-
quence is best viewed as three separate transactions, one for
each step. The activities they represent are separated in time
by unpredictable and possibly large intervals. For instance,
the first two steps may be performed on line while the third
is executed in batch. Moreover different users have respon-
sibility and authorization for these activities. On the other
hand, from an integrity perspective we must view this se-

282




quence as a single unit. The third step, in particular, makes
explicit the constraint that the clerk executing it be different
from the clerk in the first step. So it will take collusion of
two clerks and a supervisor to perpetrate fraud. Since the
check is presumably issued against some account the above
sequence is more properly expressed as follows.
1. A clerk prepares the check and assigns an account.
2. The check and account are approved by a supervisor.
3. The check is issued by a clerk who must be different
from the clerk in step 1. Issuing the check has the side
effect of debiting the account assigned in step 1.
That is the check contains a reference to an account, which is
another information object in the system. Strictly speaking
for double entry accounting the reference should be to two
accounts, one to be debited and the other credited in step 3.
The important point for us is that transactions executed on
the check have side effects on objects such as accounts.

A check and an account are two rather different kinds of
objects. The check is a transient object which comes into ex-
istence, has a finite sequence of operations applied to it and
then disappears (possibly leaving a record in some archive).
The account on the other hand is a persistent object with a
long life in the system with a potentially unbounded sequence
of credit and debit operations performed on it. Of course,
at some point the account may be closed. The key point
is that we cannot prescribe its history as a finite sequence
of actions. Both kinds of objects are essential to the logic
and correct operation of an information system. Transient
objects embody a logically complete history of transactions
corresponding to a unit of service provided to the external
world. Persistent objects embody the internal records re-
quired to keep the organization functioning with accurate
correspondence to its interactions with the external world.

Our fundamental thesis is that integrity can be achieved
by enforcing controls on transient objects, for the most part.
The crucial idea, which makes this possible, is that transac-
tions should be executed on persistent objects only as a side
effect of executing transactions on transient objects.

3. TRANSACTION CONTROL EXPRESSIONS

We propose to represent the potential history of an in-
formation object by a transaction control expression. First
consider transient objects. The history of the check in our
example is described as follows.

prepare e clerk;
approve e supervisor;
issue o clerk;

Each term in this expression has two parts. The first part
names a transaction. The transaction can be executed only
by a user with role specified in the second part. For sim-
plicity in discussion assume each user has only one role. So
‘prepare o clerk’ specifies that the prepare transaction can be
executed on a check object only by a clerk. The semi-colon
signifies sequential application of the terms. That is a su-
pervisor can execute the approve transaction on a check only
after a clerk has executed the preceding prepare transaction.

283

Finally, separation of duties is further enforced by requir-
ing that the users who execute different transactions in the
transaction control expression all be distinct. As individual
transactions are executed the expression gets incrementally
converted to a history, for instance as follows.

prepare @ Tom;
approve e supervisor;
issue o clerk; issue o clerk; issue o Harry;

(a) (b) ()

The identity of the user who executes each transaction is
recorded to enforce the requirement that these users be dis-
tinct. So if Tom attempts to issue that check at point (b) in
this sequence the system rejects the attempt.

prepare @ Tom;
approve e Dick;

prepare @ Tom;
approve e Dick;

A transaction control expression thus contains a history
of transactions executed on the object in the past and a po-
tential history which authorizes transactions which can be
executed in future. The expression begins as a constraint
and ends as a complete history of the object. Transient ob-
jects will generally have a history of the order of a dozen
steps at most, so this approach is viable. Moreover the in-
formation filled out as the history gets executed is an essen-
tial part of the object which should anyway be represented
as part of the object state. In a manual system a transient
object is represented by a form. Different transactions exe-
cuted on the object are recorded by appropriate entries on
the form. Identification of the user executing each transac-
tion is achieved by signatures. In automated systems user
identities must be recorded with guaranteed correctness.

Now suppose the check requires approval by three super-
visors. We might specify this as follows.

prepare o clerk;
approve e supervisor;
approve e supervisor;
approve e supervisor;
issue o clerk;

With this expression the three approve transactions must be
executed sequentially. This is appropriate in a manual sys-
tem where there is one physical representation of the check,
which can be accessed by only one supervisor at a time.
However, in a computerized system it should be possible to
request concurrent approval. We propose the following no-
tation for expressing multiple approval.

prepare o clerk;
3 : approve e supervisor;
issue o clerk;

The colon is a voting constraint specifying 3 votes from 3
different supervisors in this case, without requiring the vot-
ing to be sequential. Further consider the requirement that
either three supervisors approve the check or the department
manager plus one supervisor approve it. The notation is eas-
ily extended to include weights for different roles as follows.



prepare e clerk;
3:approve e manager=2, supervisor=1;
issue o clerk;

Approve transactions with sufficient votes are required before
proceeding to the next term. In this case approve transac-
tions executed by managers have weight 2 whereas those exe-
cuted by supervisors have weight 1. If two managers approve
the check we get 4 votes. It seems reasonable to allow this so
we interpret the number of votes required as a lower bound.
The moment 3 or more votes are obtained the next step is
enabled. Non-weighted terms are special cases of weighted
terms so we can equivalently write the above as follows.

1: prepare o clerk=1;
3:approve  manager=2, supervisor=1;
1:issue e clerk=1;

It is tempting to introduce additional notation. For ex-
ample, the votes required for approval might depend on the
value of the check, say 3 votes for less than $1000 and 5 for

more. Although some degree of value dependent voting may
turn out to be necessary, for the moment we forgo the temp-
tation to include it. Instead we would prefer to identify two
different kinds of checks, say small checks and big checks, and
have the system enforce the integrity constraint that small
checks must have value less than $1000. We could then have
two different transaction control expressions for these two
types of checks, as follows.

prepare e clerk;
3: approve e manager=2, supervisor=1;
issue o clerk;

(a) Small-Checks

prepare o clerk;
5:approve @ manager=2, supervisor=1;
issue o clerk;

(b) Big-Checks

Sometimes different transactions in an object history must
be executed by the same user. Consider a purchase order
with the following transaction control expression.

requisition e project-leader;
prepare e clerk;

approve e purchasing-manager;
agree # project-leader;

issue o clerk;

The idea is that a project leader initiates a requisition, a pur-
chase order is prepared from the requisition, approved by a
purchasing manager and then needs agreement of the project
leader before finally being issued by a clerk. Our rule of dis-
tinct identity implies different project leaders be involved in
requisitioning and agreeing, contrary to the desired policy.

284

We propose the following syntax to identify steps must be
executed by the same user.

requisition e project-leader | x;
prepare e clerk;

approve e purchasing-manager;
agree e project-leader | x;

issue o clerk;

The anchor symbol ‘|’ identifies steps which must be exe-
cuted by the same individual. The x following it is merely a
token for relating multiple anchors. For instance in

requisition e project-leader | x;
prepare e clerk;

approve e purchasing-manager | y;
agree o project-leader | x;

reapprove  purchasing-manager | y;
issue o clerk;

there are two steps to be executed by the same project leader
and two to be executed by the same purchasing manager.

We now turn our attention to persistent objects. We
propose the following transaction control expression for rep-
resenting the potential history of an account.

create o supervisor;
{debit e clerk + credit o clerk};

close e supervisor;

The curly parenthesis denote repetition while ‘+’ gives a

choice on each repetition. The idea is that a account gets cre-
ated and is thereafter debited or credited. At some point it
may be closed. Any object whose transaction control expres-
sion contains repetition is by definition a persistent object.
Similarly any object whose transaction control expression
does not contain repetition is by definition transient.

The history of a persistent object is likely to be lengthy.
It is clearly impractical to convert the transaction control ex-
pression incrementally into an history, as done for transient
objects. We can realistically have only some abbreviated
history for persistent objects available to the access control
system. Fortunately it is improper to require that all trans-
actions executed on a persistent object be performed by dis-
tinct users. After all an account may have hundreds of debit
and credit operations while the organization employs only a
few dozen clerks. Separation of duties carried to this extreme
will paralyze the organization. Our fundamental principle is
that transactions are executed on persistent objects only as
the side effect of executing them on transient objects. Then
separation of duties can be enforced by keeping the following
history information.

1. The entire history of transient objects.

2. A partial fixed length history of persistent objects for
non-repetitive portions of the transaction control ex-
pression.

For the account example assume that Dick is the supervi-




sor who creates the account, as a side effect of executing a
transaction on some transient object. The transaction con-
trol expression of the account is modified to record this fact
as follows.

create o Dick;
{debit e clerk + credit e clerk};
close e supervisor;

Thereafter as debit and credit transactions are executed on
the account, again as a side effect, the expression remains
unmodified. Finally when the account is closed by some
supervisor other than Dick, say Jerry, this fact is recorded
to give us the following.

create o Dick;
{debit e clerk + credit o clerk};
close o Jerry;

So there is a separation of duty involved in creating and
closing the account. But separation of duty in debiting and
crediting it is enforced only to the extent specified in the
transaction control expressions on the transient objects re-
lated to this account.

There is a subtlety concerning the actions of a supervisor
in approving a check, which as a side effect debits an account,
and the supervisor’s action in creating a account. That is
Dick might approve checks issued against an account which
he himself created. There are two approaches we might take.
One alternative is that when Dick attempts to approve a
check for an account that he created, the system forbids it.
Note the transaction control expression of an account con-
tains the information necessary for this purpose, i,e., whether
or not Dick created the account. This does complicate the
enforcement mechanism somewhat. The second alternative
is to recognize the potential for conflict by noting that a su-
pervisor can create an account as well as act on transient
objects referring to that account. Creation and closing of
accounts can then be delegated to a separate role.

create @ account-manager;
{debit e clerk + credit » clerk};
close @ account-manager;

In this case we can certify there is no possibility of conflict, so
approval of a check by a supervisor need not involve consid-
eration of the transaction control expression for the related
account. We can either insist we always create new roles
in this manner to avoid conflicts or otherwise use this infor-
mation for optimization in our enforcement mechanism. At
any rate there is a clear need for formalizing these issues and
developing analysis tools for detecting such cases.
4. CLARK-WILSON MODEL

We now consider the relationship between our model and
the Clark and Wilson model [2]. Clark and Wilson iden-
tify constrained data items and transformation procedures
as basic components of their model. We have the following
correspondence.

285

Our Model Clark and Wilson Model
Information Object | Constrained Data Item (CDI)
Transaction Transformation Procedure (TP)

We assume the system enforces the rule that information
objects can be modified only by authorized transactions. We
also assume that execution of a transaction takes a valid
state into another valid state. Clark and Wilson have similar
requirements.

Authorization in eur model is different in significant ways
from the Clark and Wilson model. Clark and Wilson formu-
late the following rule.

E2: The system must maintain a list of rela-
tions of the form: (User ID, TP;, (CDI,, CDIy,
CDIL,, ...)) which relates a user, a TP, and the
data objects that TP may reference on behalf of
that user. It must ensure that only executions
described in one of the relations are performed.

Clark and Wilson seem to imply these relations be explicitly
maintained. In our formulation these relations exist in an im-
plicit form. Authorization is explicitly stated in terms of user
roles and transaction control expressions. Our viewpoint is
more natural in that the power of a user is typically de-
rived from his position in an organization rather than being
a function of his individual self. If a user’s position changes
so does his authority. Since such changes are inevitable, per-
haps even periodically mandated for separation of duties,

it is appropriate to explicitly relate authority and responsi-
bility to positions rather than to the individuals occupying
them at a given moment.

We are assuming each user has a unique identifier and
no user is permitted to have more than one identity. This
assumption is necessary since the system can only enforce
separation in terms of distinct user identifiers. As pointed
out by Clark and Wilson [3] this itself is something that
can be enforced by separation of duties regarding who is
authorized to register users.

In our presentation we do not consider all the rules of the
Clark and Wilson model. For instance the rule that each TP
writes to an append only audit log is not explicitly stated. As
a transaction control expression is converted to a history we
are maintaining a mini-audit log on a per object basis. We
would need additional rules to require a global and complete
log. More importantly we have ignored the problem of who
gets to set or change the transaction control expression of
an object. Our general attitude here is that the transaction
control expression of an object is derived from the type of
that object. However, in a complete model we would need
to make such issues explicit. We have also ignored how one
selects a particular supervisor to approve a check.

We present our model as an approach in trying to fulfill
the goals laid out by Clark and Wilson. Lot more work needs
to be done on different aspects of the integrity problem. One
thing that makes the integrity problem very different from



the disclosure problem as dealt with in the Orange Book [5]
is that it has a lot more dynamism in that new roles get cre-
ated, existing roles are reorganized, new users and transac-
tions get created, etc. Dealing with such dynamics is known
to be difficult [9]. Recent results provide the basis for a
good solution [16]. We also need to consider availability is-
sues. These can arise in subtle ways. For example, suppose
all the clerks go on strike. Does it become impossible to is-
sue checks? Or do we allow supervisors to act as clerks in
an emergency mode of operation? These issues need to be
formalized in a clean, coherent and usable manner.

5. CONCLUSION

We have presented a notation and model based on trans-
action control expressions for specifying and enforcing sepa-
ration of duties. Our exposition has been informal, reflect-
ing the current state of the model. We do believe the model
is intuitively sound and permits efficient implementation. A
key idea is to distinguish transient objects with a fixed length
history from persistent ones with potentially unbounded his-
tories. Transactions are executed on persistent objects only
as the side effect of executing transactions on transient ob-
jects. This allows us to enforce separation of duties by main-
taining a complete history for each transient object and an
abbreviated history for persistent objects, consisting of the
non-repetitive part.

Transaction control expressions constrain the pattern in
which transactions can be executed on an object. Separation
of duties is enforced by the rule that for transient objects
different transactions must be executed by distinct users.
As an exception we do allow that certain transactions in
a sequence be executed by the same user. By expressing
transaction control expressions in terms of user roles, we
specify separation of duties in a compact and natural way
without reference to individual users.

Our model addresses only a small part of the overall in-
tegrity problem. We believe that progress will be made only
by attacking the overall problem in small pieces. The WIP-
CIS report [18] at some places expresses the sentiment that
we should seek a single model to cover non-disclosure, in-
tegrity and availability. While this is a commendable ob-
jective in the long term, for the short term we recommend
the opposite view that even in isolation the integrity issue is
sufficiently complex to require different models dealing with
different aspects. Unification of these models into a coher-
ent whole is best postponed till we have understood different
aspects of the overall problem.

Finally consider the following claim where security is
meant as non-disclosure [7]: “In general, security policies
are very simple, and should be easy to state in an appro-
priate formalism.” We tend to agree but offer the following
counterpoint: “In general, integrity policies are quite com-
plicated and specific to individual organizations. However,
they should be “easy” to state and analyze in an appropriate
formalism.” The challenge is to develop such a formalism.
Our viewpoint is that this will require us to first understand
pieces of the problem, coming up with different formalisms

286

for different pieces before we can hope to arrive at a sin-
gle unified formalism for all integrity concerns. Much work
remains to be done.

REFERENCES

[1] Chalmers, L.S. “An Analysis of the Differences be-
tween the Computer Security Practices of the Military
and Private Sectors.”

IEEE Symp. on Security and Priv., 71-74 (1986).

[2] Clark, D.D. and Wilson, D.R. “A Comparison of Com-
mercial and Military Computer Security Policies.”
IEEE Symp. on Security and Priv., 184-194 (1987).

[3] Clark, D.D. and Wilson, D.R. “Comments on the In-
tegrity Model.” In [18].

[4] Courtney, R.J. “An Industry View of the DoD Com-

puter Security Center Program.” 6th Sem. on DoD

Computer Security Initiative, 11-13 (1983).

Department of Defense Trusted Computer Systems Eval-

uation Criteria. DoD 5200.28-STD, (1985).

Eswaran, K.P., Gray, J.N., Lorie, R.A. and Traiger,

LL. “The Notions of Consistency and Predicate Locks

in a Relational Database System.”

CACM 8(11):624-633 (1976).

Gougen, J.A. and Meseguer, J. “Security Policies and

Security Models.”

IEEE Symp. on Security and Priv., 11-20 (1982).

[8] Gray, J.N. “Notes on Database Operating Systems.”

In Bayer et al (editors) Operating Systems: An Ad-

vanced Course, Springer Verlag (1978).

Harrison, M.H., Ruzzo, W.L. and Ullman, J.D. “Pro-

tection in Operating Systems.”

CACM 19(8):461-471 (1976).

Karger, P.A. “Implementing Commercial Data Integrity

with Secure Capabilities.”

IEEE Symp. on Security and Priv., 130-139 (1988).

Katzke, S. (Moderator). “Panel Session — Base Spec-

trum of Computer Security Requirements.” 6th Sem.

on DoD Computer Security Initiative, 14-21 (1983).

Kieburtz, R.B. and Silberschatz, A. “Access-Right Ex-

pressions.” ACM TOPLAS 5(1):78-96 (1983).

[13] Minsky, N. “An Operation-Control Scheme for Autho-

rization in Computer Systems.”
Int. J. of Comp. and Info. Sci. 7(2):157-191 (1978).
[14] Moffett, J.D. and Sloman, M.S. “The Source of Au-
thority for Commercial Access Control.”
Computer 21(2):59-69 (1988).

[15] Murray, W. H. “Data Integrity in a Business Data Pro-
cessing System.” In [18].

5

(6]

7

[9

[10]

11

(12]

[16] Sandhu, R.S. “The Schematic Protection Model: Its
Definition and Analysis for Acyclic Attenuating Schemes.”
JACM 35(2):404-432 (1988).

[17] Wimbrow, J.H. “A Large-Scale Interactive Adminis-
trative System.” IBM Sys. J. 10(4):260-282 (1971).

(18] Preliminary report of the Invitational Workshop on In-
tegrity Policy in Computer Information Systems
(WIPCIS), Bentley College, MA, October 1987.




