

 ENGINEERING OF ROLE/PERMISSION ASSIGNMENTS

Pete Epstein
George Mason University Student

Manassas, VA 20111
<mepstein@tidalwave.net>

Ravi Sandhu
Department of ISE

George Mason University, Fairfax, VA 22030
<sandhu@gmu.edu>

Abstract

 In this paper, we develop a model for
engineering role-permission assignment. Our
model builds upon the well-known RBAC96
model [SCFY96]. Assigning permissions to
roles is considered too complex an activity to
accomplish directly. Instead we advocate
breaking down this process into a number of
steps. We specifically introduce the concept of
Jobs, Work-patterns, and Tasks to facilitate role-
permission assignment into a series of smaller
steps. We describe methodologies for using this
model in two different ways. In a top-down
approach, roles are decomposed into
permissions, whereas in a bottom-up approach,
permissions are aggregated into roles.

1. Introduction

With industry’s increased awareness to protect
the confidentiality and integrity of applications
and its data, system administrators’ are
continuing to implement access control
mechanisms. Historically, user access has been
granted by adding the necessary permissions to
each individual application. Administering
accesses to many users for several different
applications quickly becomes tedious and error
prone; this is particularly true when the user
changes positions and requires a different set of
accesses.

An alternative is not to directly assign
users to permissions for each application;
instead, users are assigned to roles and the roles
are mapped to permissions for each application.
If the user’s needs change, the administrator
simply assigns another role containing
appropriate permissions, rather than updating the
authorization on each user application.

The well-known RBAC96 model’s
[SCFY96] Permission Assignment provides the
efficiency of allowing the administrator to assign
users to roles rather than directly to permissions.
The RBAC96 model directly assigns a role to
permissions. Without knowing the details of the
roles, we cannot simply say that an arbitrary role,

such as a doctor, requires access to the patient’s
medical records, patient’s x-rays, and the
research database. Assignment of permissions to
roles can itself be a complex undertaking.

We need an approach to assist us in
determining a role’s permission. One solution is
to further define the details of a role by studying
the work that is being conducted by that role. If
we consider that an individual agent performing
a role is required to perform more than one job
(i.e., multiple responsibilities required by one
role), we can define the tasks that the role must
follow to complete the desired job. If an access
to an object is required, then we must assign the
necessary permissions to the task so we can
complete the job. After identifying all of the
tasks and the required permissions, we can
collect all the permissions and assign them to a
role. This is a collection of all the permissions
that are required for the individual agent to
perform the responsibilities of the role.

Using this approach, we can perform
the role/permission assignment by either
considering the top-down approach of
decomposing roles to permissions or the bottom-
up approach of aggregating permissions to roles.

There has been related work.
Chandramouli [C99] discusses an approach for
identifying roles in a healthcare information
system. Thomsen [TOP99] presents a layered
methodology called Napolean. Roeckle
[RSW00] describes their experience in role-
permission engineering in a large corporate
environment.

The motivation for this paper is to
define a methodology to decompose the
functionality of the roles and to logically assign
their components to permissions without
ignoring any required accesses. We define a
model that contains the layers that will assist us
in designing decomposition of roles to
permissions or aggregation of permissions to
roles. In addition, we define properties to
optimize the assignment of roles to permissions.
As presented in this paper a single model to
decompose roles to permission, aggregate

permissions to roles and optimization properties
enhances the previous role engineering work.

This paper will discuss the
decomposition and aggregation of roles and
permissions by discussing the extension of the
RBAC96 model, the decomposition and
aggregation approaches, the tools that are needed
to perform the approaches, and an example
showing the use of the decomposition approach.

2. RBAC96 Model Review

The model developed in this paper is constructed
by extending the RBAC96 model [SCFY96].
The RBAC96 model is a comprised of four

models: RBAC0, RBAC1, RBAC2, and RBAC3.
RBAC0 is the base model. RBAC1 and RBAC2
added role hierarchies and constraints,
respectively. RBAC3 is the consolidated model.
RBAC96 also makes a distinction between User
and Administrative roles.
 There are three components of RBAC96
that we are interested in using for the extension
of the model: users (U), roles (R), and
permissions (P).

The model defines the components of
role/permission assignment by PA. It also
defines the role hierarchy RH. It does not,
however, state how to engineer the
role/permission assignments (See Figure 1).

.

Figure 1: RBAC96 Model

R
Roles

AR
Admin.
Roles

P
Perm.

AP
Admin.
Perm.

U
User .

.
Constraints

UA

User
Assignment

RH

Role
Hierarchy

PA

Permission
Assignment

S

Session

APA

Administrative
Permission
Assignment

ARH

Administrative
Role

Hierarchy

AUA

Administrative
User

Assignment

user roles

Specifically, we will be studying PA, P,

and R. This subset of the model is displayed in
Figure 2.

Figure 2: RBAC96 Model’s Permission/Role
Assignment

3. RBAC Extension

We extended the RBAC96 model by
including three additional layers between the
roles and permissions.

Figure 3: Role/Permission Assignment Model

As shown in Figure 3, we add three
additional sets: Jobs, Workpatterns, and Tasks.

• J is a set of Jobs;
• T is a set of Tasks; and
• W is a set of Workpatterns, W ⊆ 2T.

We consider that a role may perform more than
one type of work. A role is responsible for all
the activities that are required to perform the
work. We define each type of work as a job. The
jobs need not be in any sequence; but for
organizational purpose, we group activities into a
set we call a workpattern. Each workpattern is
composed of a set of steps that are required by a
single agent to complete the work of the job.
These workpatterns can be part of a workflow
that is being completed by more than one distinct
agent. Each step of the workpattern is assigned
to a task. Later, we show that the tasks requiring
access to applications will be mapped to the
permissions granted the desired access.

An example of the decomposition of roles
can be a professor role that will perform the jobs
of teaching and researching. For simplicity, the
teaching role has a workpattern that requires the
steps to creating a presentation, creating exams,
recording results, and e-mailing results; whereas
the researching job has the workpattern of
creating a theory, testing the theory,
documenting the results, and e-mailing results.
These steps are assigned to a task. The tasks are
“presentation, exam, record, e-mail, theorize,
test, and document.” We do not need to list the
second e-mail task for research because we can
“re-use” the e-mail task identified by the
teaching job. The tasks are mapped to
permissions that grant access to perform the
work required by each task.

In Figure 4, we show the relationships
between each set. The double-headed line means
“many.” A single headed line represents “one.”
If we have a double-headed arrow pointing to
two separate sets, we will have a many-to-many
relation. In the case of jobs-to-workpatterns, we
have a double-headed arrow pointing to Jobs and
a single-headed arrow pointing to workpatterns,
so we have a many-to-one relation. Many Jobs
can map to the same workpattern, but we can
only have one workpattern map to a Job.

R
Roles

P
Perm.

PA

Permission
Assignment

RH

Workpatterns

Roles

Jobs

Tasks

Permissions

Figure 4: RBAC 96 Extended

4. The approaches

We have defined the layers and the relationship
between the layers. The next step is to define the
process of using these layers to engineer role-
permission relationships. The complete
description of this process is beyond the scope of
this paper. Instead we will identify the major
challenges for the approaches, decomposition
and aggregation, and state how they can be
overcome.

4.1 Decomposition Challenges
.

As seen from the layer mapping in Figure 5,
decomposing roles to permissions can be
complex. To aid us in this challenge we
addressed the following issues:

1. Focus the decision based on a criteria;
2. Define the work required by the role;
3. Define the logical order of the work; and
4. Define properties to optimize this approach.

Figure 5: Role-Permission Mapping

R1

J1

J2

J3

WA

WB

T2

 T4

T8

T1

T7

T8

P1

P5

P5

P5

P3

P2

P1

P12

RJ
PT

TW

R
Roles

P
Permissions PA

Permission
Assignment

Users

J
Jobs

T
Tasks

UA

User
Assignment

JW

W
Work

Patterns

4.2 Additional Aggregation Challenges

Aggregation requires the use of the four issues
identified under the decomposition approach. In
addition, the aggregation approach requires the
grouping of a discrete set of permissions based
on some type of organization into larger sets that
will be eventually be assigned to roles. This
additional challenge has been resolved by using
the concept of “bucketing.”

4.3 Focus Concept

Within each layer there can be more than one
approach (i.e., engineering based on a design
criterion). We consider the following
approaches: 1) Role -focus, 2) Application-focus,
and 3) Permission-focus.

Permission-focus requires decomposing
the permissions based on attributes of the target
permissions; application-focus uses the target
application’s attributes; and role-focus uses the
attributes of the source roles. From these
approaches, we use the attributes as the criteria
to decide how to decompose or aggregate the
current values to the next layer.

The focus challenge is to determine the
decomposing approach (e.g., role-focus,
application-focus, or permission-focus) and the
subsequent criterion that will be used to engineer
the role to permission assignments. The
following concept can be used to engineer
decomposition as well as aggregation. For
simplicity, we do not consider hybrid
approaches.
 For each approach, we need to list the
criterion. These criteria are used to assist in the
engineering of the layers. For example, we can
use:

§ Role Attributes based on: Skill sets,

Educational Level, Location, Experience;
§ Application Attributes based on:

Functionality, Manageability,
Interoperability; and

§ Permission Attributes based on: Platform,
Access type, Type of target Application, and
Capability.

4.4 Defining Role’s Responsibilities

Next, we identify the role’s responsibilities. For
our research, we categorize the roles into the
following groups:

1. The role responsibilities that have been
documented,

2. The role responsibilities that have not been
documented but where the role has been
defined, and,

3. Neither the role nor the responsibilities have
been defined.

By using our knowledge of the chosen

approach and its attributes for the first group, we
will divide the role’s responsibilities into
categories. Related responsibilities that can be
part of the same job set will be merged into “like
job” categories, J1, … Jn. For simplicity, jobs
will be reused and each Ji will be unique. For
example, the duties of the Office Administrator
are: 1) Maintain the records for all Ph.D.
students, 2) Maintain the Calendar for the Dean,
and 3) Schedule meetings with the professor.

In the second group, each role exists but
has not been documented. An extra step is
required to glean the responsibilities from the
undocumented roles. This is accomplished by
monitoring and then by documenting the
activities performed when a user has activated
the role. From the documentation and our
knowledge of the chosen approach and its
attributes, we analyze the responsibilities
required to perform the role’s activities. Similar
to the earlier option, related responsibilities that
can be part of the same job set will be merged
into like job categories, J1, … Jn.

For example, the role may be a
professor. The Computer Administrator has not
had time to create her list of responsibilities;
however, a role-engineer can follow the
administrator while she performs her role. The
approach is application-focused and the
attributes are functionality and manageability.
We know that the jobs are based on the attributes
of application functionality and manageability.
Through observation, we determine that the
administrator performs archiving, software
maintenance, and password access control of
application servers. Subsequently, we map the
Computer Administrator role to the jobs of:
Application Server Archiving, Application
Server Software Maintenance, and Application
Server Password Access Control. (Note: A job
that already exists does not have to be redefined
but can be reused.)

The final group is for a role that has
been identified, but has not yet been defined nor
documented. The responsibility of the role is
only conceptual and cannot be verified against

existing activities. We need to deduce the role’s
expected responsibilities by interviewing the
designer of the organization. We then document
each role’s responsibility within the framework
of the approach and it’s associated values.
Related responsibilities that can be part of the
same job set will be merged into like job
categories, J1, … Jn. For example, if the
government agency ABC.com has a new
position of Chief Information Officer (CIO) that
is required by a new government law, we need to
provide the role with the needed access to
perform the work of the role. Although the role
exists in industry, it is a new role for this
government agency. Thus, we need to determine
from management what the responsibilities of
the role are. The approach is role-focused and
the attributes are skill sets and experience. After
talking with the Chief Financial Officer, Chief of
the Agency, and the Chief of Operations, we
determine that the job skill sets are Program
Oversight, Technical Management, and Budget
Reviewer. Although the role has the skill set to
understand technological information, it does not
have the experience to perform in-depth
technical reviews. Fortunately, the CIO can hire
a person to perform the role that contains the job
of in-depth technical reviewer.

4.5 Workpattern Order

We need to identify all of the steps that the
workpattern requires to perform the work of each
job. These steps do not have to be followed
sequentially, but each step is required to define
the work of the job. Ambiguity of jobs increases
the difficulty of defining all of the steps;
however, if we can identify the steps logical
ordering as a process, we will have an
engineering aid to reduce the complexity of step
definition. We begin by categorizing the job in
one of three groups:

1. The steps are part of a single process that is

entirely defined within one workpattern.
All of the steps can finish without waiting
for another step outside of the workpattern
to finish.

2. The steps are part of at least one process that
is outside of the workpattern. At least one
step must wait for another step that is
outside of the workpattern to finish.

3. The steps cannot be defined as a process.

Group 1 is a set of steps that must be
derived from the job. We know that the steps are

formulated as a process, so that there will be
some semblance of order. The order need not be
sequential; but there is a series of steps that need
to be performed to satisfy the work of the role.
We define the process within the criteria of the
focus approaches. For example if there is a role-
focus approach for the role of Professor for the
job of Teaching within the criteria of Educational
Level and Skill Sets, we determine the process
steps that are required to satisfy the work of the
role are:

§ Investigate Information,
§ Prepare Lectures,
§ Lecture,
§ Prepare Exam,
§ Administer Exam,
§ Grade Exam, and
§ Record Exam.

All of these steps are defined and

controlled within a workpattern. For each step
Sij, where i is the process and j is the step
number, a workpattern W in group 1 will contain
a set of Sij, where all i’s are equal, and for all j’s,
Sij is contained in W.

Within the second group, we need to
identify the steps within the external process that
the workpattern will satisfy. Ideally, the master
process has been created and the steps have been
defined. Thus, we determine the job that
performs the work, and then include the steps as
part of the workpattern. If the steps of the master
process are not known, but we are aware that a
job is part of the external process, then we need
to define the steps. As with group 1, we know
that the steps are formulated as a process, so
there will be some semblance of order, but it
does not have to be sequential, although there is
a series of steps that will be done to satisfy the
work of the role. We define the process within
the guides of the focus approaches discussed
earlier.

For example, if the job is for a mortgage
collection-clearing house, we need to understand
that the role is part of a larger process that
includes other roles such as: the mortgagee (the
person paying the mortgage) and the mortgagor
(the company receiving the money). We
determine from the information that we obtained
when we defined the role that the steps are: Send
out list of mortgagee (mortgagor), send out
notice (clearing house), send out payment
(mortgagee), post payment (clearing house), pay
bank (clearing house), and send out notice of
payment receipt (mortgagor).

All of these steps are defined and
controlled within a workpattern. Thus, for each
step Sij, where i is the process and j is the step
number, a workpattern W in group 1 will contain
a set of Sij, where all i’s are not equal and for at
least one j, Sij is not contained in W.

The last suggested method is an ad-hoc
set of steps that may not be related. We cannot
use the aid of a process to logically define the
steps. All that is known is that there is a job that
has been created as part of the approaches
defined earlier. We must deduce from the present
information what steps are required by the
workpattern. For example, we may glean from
the documented role of an administrator that a
set of responsibilities did not fit into another job.
They were combined into a job of an office
manager and require the steps: 1) update
employee payroll, 2) add employees to the
company gym, and 3) obtain parking permits.

Thus, for each step Sij, where i is the
process and j is the step number, a workpattern
W in group 1 will contain a set of Sij, where all
i’s may be equal, and for some j’s, Sij is
contained in W.

4.6 Concept of Buckets

When we aggregate from one layer to the next,
we need the ability to combine like elements into
the same group. A bucket is a grouping of like
elements into the same group. We group
elements into a bucket according to like
capabilities that are based on the focus attributes.
To ensure completeness (see properties), each
permission has to be a member of at least one
bucket; however, each permission can be a
member of more than one bucket. Large groups
may need to be further categorized into smaller
groups. A large bucket that will represent
multiple groups must be subdivided into
additional buckets. For example, all the data file
updates are defined into one group. The group
contains over 200 permissions. We further
categorize the group by data type (e.g., database
files, network configurations, word files,...).
Now we have a more definitive set of buckets
that group more specific-like elements.

4.7 Defining Properties

As part of the role-permission extension, there
are properties that can be applied to the layer and
the mapping between the layers. These
properties are: Uniqueness, Equivalence,
Minimization, Reuse, and Completeness. The

formal definitions follow and use the following
symbols, along with the previous definitions of
permissions.

We strive to minimize the number of
elements that will be used to perform the
role/permissions assignments. Ideally, each
element is unique and therefore, each set will not
contain duplicate entries. We can determine if
an element is unique if there is not another
element that is equivalent to that element. Our
real interest in equivalence is that, when we
finish mapping the layers to permissions, we
want to know if the layered elements map to the
same set of permissions. If the elements are
equivalent, then the element will grant the same
accesses to the functions of the application and
there may be no benefit to have more than one
element that maps to the same set of
permissions. To continue with this line of
thought, we may not need to define another
element if we can reuse an existing element that
can provide the same set of accesses. Once we
finish with the approach, we verify that all the
pre-defined elements (i.e., roles and permissions)
have been mapped. We check the completeness
of the assignments by mapping each role to at
least one permission and each permission to at
least one role. As we stated earlier, we strive to
minimize the number of elements; however,
there may be a benefit not to eliminate duplicate
unique elements. We will discuss these potential
benefits later in this dissertation.
 One of the goals of this dissertation is to
detail an optimized approach to increase
efficiency when performing the Role/Permission
assignments. The key phrase is “an optimized
approach.” This means the optimization of each
phase of the approach. Each phase has two
major portions: the definitions of the elements
within a layer, and the mapping of the elements
from one layer to the next. Hence, we can
increase efficiency by either reducing the
number of elements within a layer, or reducing
the number of mappings from one layer to the
next.
 We can reduce the number of elements
by either eliminating duplicate elements or not
defining new elements by reusing existing
elements. To work towards these goals, we
introduce properties that can be applied to the
layer and the mapping between layers. These
properties are: Uniqueness, Equivalence,
Minimization, Reuse, and Completeness. They
will be defined in greater detail below.

Uniqueness ensures that there are no
two elements that contain the exact same values

within a layer. For example, the Information
Technology and Psychology Departments
require the same set of accesses to logon into the
University registration applications. Both
departments do not need to create their own
version of a logon task; one unique task can be
used for both departments. We work towards
uniqueness when we: 1) eliminate or merge
duplicates by minimizing elements or 2) reuse a
unique element rather than define another
element. We need to be careful that we do not
eliminate an element that is needed for
permission completeness. Permission
completeness will be defined later in this paper.

Two sets, within the same layer, are
equivalent if they contain the exact same
elements. Permission equivalence is a special
case of equivalence and is defined as two sets
that permit access to the same applications but
may not contain the same elements. Permission
equivalent sets need not be identical, but
equivalent sets are permission equivalent. For
example, workpattern A may require three tasks:
a task to logon to the computer, another to make
a phone call, and a third to check e-mail.
Workpattern B will perform the same tasks as
accessing a computer and checking e-mail, and
require a third task of faxing documents. The
two tasks making a phone call and faxing
documents do not require special permissions.
Workpatterns A and B map to the same
permissions, even though they contain slightly
different tasks; consequently, workpatterns A
and B are permission equivalent workpatterns.

The minimization property eliminates
equivalent elements within a layer. Minimization
can be performed on jobs, workpatterns, and
tasks. As stated earlier, minimization is a goal
but not a requirement. Equivalent elements can
be merged into one element to eliminate the need
to maintain multiple copies that contain the same
accesses and information. In the previous
paragraph, minimization was performed on the
workpattern layer that contained equivalent
workpatterns A & B by eliminating workpattern
B.

Instead of inefficiently creating a new
element every time the domain element maps to
the same range value, we can reuse the range
element in the target layer. The reuse property
permits two elements from one layer to reuse the
same element from an adjacent layer. Using the
previous example the Information Technology
Department has already defined its workpatterns
to administer student records. When the
Psychology Departments wants to create a

workpattern, they find that a pre-existing task
has been defined to access student records.
Instead of creating a new task, they reuse the
task that has been defined by the Information
Technology Department. Reuse of elements
occurs for workpatterns, tasks, permissions, and
jobs, except for the aggregation of workpatterns
to jobs. (Note: recall that the mapping from
workpatterns to jobs is a many-to-one relation.)

A final term to define is completeness.
This concept is important when we validate that
all the elements of the domain are mapped to an
element in the range. If an element is not
mapped to the range, then it will not be part of
the aggregation or decomposition approaches. In
that case, either all permissions will not be
assigned or the element is not required to assign
all of the permissions to a role (e.g., a
permission-free task or equivalent jobs). There
is completeness of roles, jobs, workpatterns, and
jobs; but they are all subservient to completeness
of permissions. If a permission is not mapped to
at least one role, then a portion of the application
cannot be accessed; and, thus, it cannot be
executed. For example, the human resource
application has an access to backup its data; if
that the backup access is not granted to a role, a
backup can not be performed on the resource
application. Analogously, if there exists a role
that is not assigned to a permission, the role will
not perform any work because it will not have
any accesses to any applications.

In summary, there are equivalence,
uniqueness, minimization, reuse, and
completeness properties that apply to the
permission-assignment model. Uniqueness,
equivalence, and minimization apply to the
elements within a layer; whereas, reuse and
completeness apply to elements that are mapped
between layers. Not all of the properties apply to
each layer. Table 1 depicts the applicable
property by an “X” in the relevant layer for the
decomposition approach, and Table 2 for the
aggregation approach. The completeness
verification starts from the reverse direction; in
the case of decomposition, the verification starts
at permissions while for aggregation it begins at
roles.

The only difference between the two
tables is that the aggregation table does not show
that a workpattern cannot reuse jobs. Recall that
the workpattern to jobs is a many-to-one relation.
If one workpattern can reuse more than one job,
than there can be many workpatterns mapping to
the same job, which is a violation of the initial
definition of the job to workpattern mapping.

 Uniqueness Equivalence Minimization Reuse Completeness

 Permission

Role X X
Job X X X X X

Workpattern X X X X X X
Task X X X X X X

Permission X X X

Table 1: Decomposition Table of Properties

 Uniqueness Equivalence Minimization Reuse Completeness

 Permission

Role X X
Job X X X X

Workpattern X X X X X X
Task X X X X X X

Permission X X X

Table 2: Aggregation Table of Properties

Let us consider the following design example:
Mary, in the role of a doctor, is caring for her
patient at the hospital. She needs to be able to
perform the jobs: 1) Gathering information about
her patients, 2) Operating medical equipment, 3)
Researching nationally to diagnose ailments, and
4) Annotating the patient’s hospital record. To
perform the first job of gathering patient
information, Mary needs to review hospital
records, her own office records, the referring
doctor’s records, and the patient’s long-term
history.

The role “R” is a Doctor. The doctor
role can perform four jobs: Job J1 - Gathers
information about her patients; Job J2 - Operates
medical equipment; Job J3 – Researches
nationally to diagnose ailments; and Job J4 -
Annotates the patient’s hospital record.

For Job J1, the Workpattern WA is the
following sequence of tasks: Task T1 is to review
hospital records; Task T2 is to review the
doctor’s (Mary’s) office records; Task T3 is to
refer doctor’s records; and Task T4 is to review
the patient’s long-term history.

Task T1 requires a permission to review
the hospitals database (Application A1). Task T2
requires a permission to review the doctor’s
office record (Application A2). Task T3 requires
permissions to the three referring doctors’
records (Applications A3, A4, and A5); and Task

T4 requires a permission to review the patient’s
own record from the general practitioner
(Application A6). Task T4 also requires two
permissions: the doctor’s and the patient’s.

5. Summary

In this paper, we have introduced the layering of
roles, jobs, workpatterns, tasks, and permissions
to logically show an approach to decompose or
aggregate roles and permissions. This led to the
need for concepts that could be used to engineer
the model’s layer and define the relationship
between each of these layers.
 To strategically guide the role engineer
in consistently defining the model, we presented
a concept of “Focus.” Focus provides
information about a foundation component (i.e.,
roles, applications, or permissions) that we use to
engineer the approach.
 Another concept to aid in engineering is
the ability to define the jobs of a role. We began
by categorizing the roles into: Documented,
Existing, or Undefined. We use a process flow to
decompose the job into a set of steps. We
realized that not all accesses that are required by
a job might be part of a process, so we added an
ad-hoc category for disjoint steps.

 We also found that we needed a concept
to aid in the aggregation of permissions. We
combined aggregated permissions from one layer
to the next layer by using buckets. Buckets were
used to group permissions into tasks and tasks
into workpatterns.
 Finally, we considered the economy of
re-using terms, efficiency of eliminating
redundancy, and the ability to perform all
necessary work. We found that we could
enhance mapping of elements between layers.
These properties were accomplished by:
1. Reusing previous work;
2. Minimizing the number of elements by

determining if there was a need for
uniqueness ; and

3. Performing all the necessary work to ensure
that there is a complete mapping of elements
between layers.

References

[C99] Ramaswamy Chandramouli
(NIST), “A Framework for
defining an Access Control
Service for Healthcare
Information System Using
Roles”, A Presentations for 4th
ACM Workshop on Role-Based
Access Control, Fairfax VA,
October 28-29, 1999

[TOP99] D. Thomsen, R. O’Brien, and C.
Payne, “Napoleon Network
Application Policy
Environment”, In Proceedings
of 4th ACM Workshop on Role-
Based Access Control, pages
145-152, Fairfax VA, October
28-29, 1999

[HA99] Wei-Kuang Huang,
Vijayalakshmi Alturi,
“Secureflow: A Secure Web-
enabled Workflow Management
System”, In Proceedings of 4th
ACM Workshop on Role-Based
Access Control, pages 83-94,
Fairfax, VA October 28-29,
1999

[TOB98] Dan Thomsen, Dick O’Brien,
Jessica Bogle. Role Based
Access Control Framework for
Network Enterprises, In
Proceedings of 14th Annual

Computer Security Application
Conference, pages 50-58,
Phoenix, AZ, December 7-11,
1998

[C95] Edward Coyne. Role
Engineering, In Proceedings of
First ACM Workshop on Role-
Based Access Control, pages I-
15 – I-16, Gaithersburg, MD,
November 30-December 1,
1995.

[SCFY96] Ravi Sandhu, Edward Coyne,
Hal Feinstein, CharlesYouman,
Role -Based Access Control
Models, In IEEE Computer,
Volume 29, Number 2,
February 1996, pages 38-47.

[BRJ99] Grady Booch, James
Rumbaugh, Ivar Jacobson, The
Unified Modeling Language
User Guide. Addison Wesley
Longman, Massachusetts, 1999

[S98] Ravi Sandhu, Role-Based
Access Control, In Advances in
Computers, Vol. 46, Academic
Press , 1998.

[B95] John Barkley. Implementing
Role -Based Access Control
Using Object Technology, In
Proceedings of First ACM
Workshop on Role-Based
Access Control, pages II-93 –
II-98, Gaithersburg, MD,
November 30-December 1,
1995.

[ES99] Pete Epstein, Ravi Sandhu,
Towards a UML Based
Approach to Role Engineering,
In Proceedings of Fourth ACM
Workshop on Role-Based
Access Control, pages 145-152,
October 28-29, 1999

[RSW00] Haio Roeckle, Gerhard
Schimpf, Rupert Weidinger,
Process-Oriented Approach for
Role -Finding to Implement
Role -Based Security
Administration in a Large
Industrial Organization, In
Proceedings of Fifth ACM
Workshop on Role-Based
Access Control, pages 103-116,
July 26-27, 2000.

