A FORMAL FRAMEWORK FOR SINGLE LEVEL
DECOMPOSITION OF MULTILEVEL RELATIONS

Sushil Jajodia® and Ravi Sandhu*

Department of Information Systems and Systems Engineering
George Mason University, Fairfax, VA 22030-4444

Abstract. In this paper, we consider multilevel relations in
which security classifications are assigned at the granularity
of individual data elements. Usually these multilevel rela-
tions exist only at the logical level. In reality, a multilevel
relation is decomposed into a collection of single level base
relations which are then physically stored in a database, and
a recovery algorithm is used to reconstruct the original mul-
tilevel relation. In this paper we formalize the relationship
that exists between the decomposition-independent filtered
relations and the multilevel relations obtained from decom-
posed single level relations using the recovery algorithm. We
state three requirements that must be met by any decompo-
sition and recovery algorithms. In particular our algorithms
in [7] meet these requirements.

1 INTRODUCTION

In recent years, there have been several efforts to build mul-
tilevel secure relational database management systems. A
major issue is how access classes are assigned to data stored
in relations. The proposals have ranged from assigning ac-
cess class to relations, assigning access classes to individual
tuples in a relation, or assigning access classes to individual
attributes of a relation.

Unlike these proposals, in the SeaView (Secure Data
Views) project security classifications are assigned to indi-
vidual data elements of the tuples of a relation. See table 1.
This project began as a joint effort by SRI International and
Gemini Computers with the goal of designing and prototyp-
ing a multilevel secure relational database management sys-
tem that satisfies the Trusted Computer System Evaluation
Criteria for Class Al [5]. SeaView researchers have consid-
erably advanced the state of the art in multilevel database
security and the project itself has moved to a prototype im-
plementation phase using GEMSOS as the underlying TCB

*This research wn lupportcd (pa.rtu.lly) by the Center for Ex-
1l in C C ications, and Intelligence
at George Mason Umvernty The Center’s gencra.l research pro-
gram is sponsored by the Virginia Center fo: Innovative Technology,
MITRE Corporation, the Defe Commu tions Agency, CECOM,
PRC/ATI, ASD (C3I), TRW, AFCEA, and AFCEA NOVA.

TH0315-2/90/0000/0152$01.00 © 1990 IEEE

152

Ay, C |A; CiajAs C3 |TC
mad S [17 S |x S| S

foo S|3 S |w TS|TS
ark TS|{5 TS|y TS|TS

Table 1: A Multilevel Relation R

A, ClA C|A C3|TC

mad S [17 S [x S| S

foo S[{3 S |null S| S
Table 2: A Secret Instance of R

along with the ORACLE relational DBMS [9]. SeaView has
been extensively described [4, 8, 9, 10, for instance].

In SeaView, subjects having different clearances see dif-
ferent versions of the multilevel relation. A user having a
clearance at an access class sees only that data which lies
at that access class or below. Thus, a user with Top Secret
clearance will see the entire relation in table 1, while a user
having Secret clearance will see the filtered relation given in
table 2.

Multilevel relations in SeaView exist only at the logical
level. In reality multilevel relations are decomposed into a
collection of single level base relations which are then phys-
ically stored in the database. Completely transparent to
users, multilevel relations can be reconstructed from these
base relations on user demand. The practical advantages of
being able to decompose and store a multilevel real relation
by a collection of single level base relations are almost obvi-
ous. In particular the TCB can enforce mandatory controls
with respect to the single level base relations which allows
the DBMS to mostly run as an untrusted application on the
TCB.

Although there have been some changes in SeaView def-
initions and concepts it has for the most part remained re-
markably stable indicating that its foundation is a sound

one. Unfortunately there are aspects of SeaView’s decom-
position of a multilevel relation into single level ones which
have not been stated or analyzed with the same rigor de-
voted to its other aspects. As a result there are many subtle
and nontrivial issues which have been overlooked. Some of
these were pointed out by us in [7].

In this paper, we take a closer look at single level decom-
position of multilevel relations. Since a multilevel relation
is stored as single level relations, we need two algorithms.

1. A decomposition algorithm which breaks multilevel re-
lations into single level relations.

2. A recoveryalgorithm to reconstruct original multilevel
relations from single level ones.

How these two functions are related is formalized in our first
requirement in Section 4. The requirement corresponds to
the “lossless join property” in the standard relational theory.

We need to require more in a multilevel world since a
multilevel relation at an access class induces a family of rela-
tion instances, one at each access class in the security lattice.
Likewise, when a multilevel relation is decomposed into sin-
gle level relations, these single level relations are themselves
partitioned among groups of relations, one group (possibly
empty) corresponding to each descending access class in the
security lattice. Thus a relation instance at an access class
¢ can be obtained in two different ways.

1. Directly from a higher level multilevel relation instance
by filtering out data not dominated by c.

2. Indirectly from a higher level multilevel relation in-
stance by (i) decomposing at the higher level into an
equivalent collection of single level relations, (ii) cast-
ing aside those single level relations not dominated by
¢, and (iii) finally reconstructing the multilevel rela-
tion instance at ¢ from the collection in step (ii).

It is obvious that these two ways of arriving at the ¢ instance
of a multilevel relation must yield identical results, other-
wise our decomposition and recovery is simply incorrect.

There are conversely two different ways of arriving at a
collection of single level relations equivalent to a multilevel
relation instance at access class c.

1. Directly decomposing the c instance of the multilevel
relation.

2. Indirectly from the decomposition of some ¢’ multi-
level relation instance for ¢ > ¢ by (i) decomposing at
the ¢ instance into its equivalent collection of single
level relations, and (ii) casting aside those single level
relations not dominated by c.

From a security perspective these two methods must give us
precisely the same result. Otherwise we will have interfer-
ence from ¢’ to ¢ opening up covert channels for leakage of
information.

153

In this paper, we formalize the relationship that ex-
ists between the decomposition-independent filtered rela-
tions and the multilevel relations obtained from the appro-
priate single level relations. We state two additional require-
ments in Section 6 corresponding to the two requirements
informally outlined above. Our decomposition and recovery
algorithms of [7] are examples of algorithms that meet all
three requirements.

2 BASIC CONCEPTS

The standard relational model [1, 2, 3] is concerned with
data without security classifications. Data are stored in
relations which have well defined mathematical properties.

A relation scheme R is a collection of attributes names
A, As, ..., A, where each A; corresponds to some domain
D; which is a set of values.

A relation over R is a set of distinct tuples of the form
(a1,83,...,an) where each element a; is a value in domain
D;.

Not all possible relations are meaningful in an appli-
cation; only those that satisfy certain integrity constraints
(usually entity and referential integrity constraints defined
below) are considered valid.

Let X and Y denote sets of one or more of the attributes
A; in a relation scheme R. We say Y is functionally depen-
dent on X, written X — Y, if given any relation over R, it
is not possible to have two tuples in the relation with the
same values for X but different values for Y. A candidate
key of a relation scheme (or relation) is a minimal set of
attributes on which all other attributes are functionally de-
pendent. It is minimal in the sense that no attribute can be
discarded without destroying this property. It is guaranteed
that a candidate key always exists, since in the absence of
any functional dependencies it consists of the entire set of
attributes. There can be more than one candidate key for a
relation with a given collection of functional dependencies.

The primary key of a relation is one of its candidate keys
which has been specifically designated as such. The primary
key serves the purpose of selecting a specific tuple from a
relation instance as well as of linking relations together.

The standard relational model incorporates two integrity
rules, called entity integrity and referential integrity. Our
focus is on the former rule since the latter is not relevant
to the topic of this paper. Entity integrity simply requires
that no tuple in a relation instance can have null values for
any of the primary key attributes. This property guarantees
that each tuple will be uniquely identifiable.

Since we wish to introduce nulls in multilevel relations,
we need to define some notions and notations used with
relations whose tuples may contain nulls. It is well known
that null values in relational databases result in tricky prob-
lems. Fortunately, nulls in multilevel relations arise due to
security considerations in a specific manner which allows us
to deal with them cleanly and rigorously for the problems

considered in this paper.

We use a single type of null value. By a general relation
we mean a relation over one or more attributes that are
allowed to have null values. Henceforth we will understand
relation to mean general relation and will use the latter
term only for added emphasis where appropriate. Let G
be a general relation on attributes 4,,...,A,. Let ¢ and
s be two tuples in an instance of G. We say ¢ subsumes
s if for every attribute A;, either t[A;] = s[4;] or s[4;] =
null. That is ¢ and s agree everywhere except possibly for
some attributes where s has a null value and ¢ a non-null
value. G is said to be subsumption free if it does not contain
two tuples such that one subsumes the other. Finally, the
nature of functional dependencies with null values also needs
clarification. Let X and Y be subsets of 4;,..., A,. A tuple
t is X-total if it has no null value for attributes in X. We
say the null-valued functional dependency (NFD) X — Y
is satisfied by G if for all X-total tuples ¢,t' € G such that
t[X] = ¢[X], we have that ¢[Y] = £[Y]. Note that ¢[Y]
and ¢[Y] may contain nulls, and nulls are equal only to
other nulls. Henceforth we understand the term functional
dependency to mean NFD.

In the sequel, we assume that unless otherwise stated all
relations are made subsumption free by exhaustive elimina-
tion of subsumed tuples.

3 MULTILEVEL RELATIONS

Moving on to a multilevel world, we define multilevel re-
lations by extending the definitions given in the previous
section for the standard relational model. The extension it
turns out is not straight-forward. Unlike the standard rela-
tional model where there is a single relation corresponding
to each relation scheme, a multilevel relation scheme has
different instances at different access classes. Thus, the no-
tion of a key is inherently more complex than for a standard
relation. While in a standard relation the definition of can-
didate keys is based on that of functional dependencies, in a
multilevel setting the concept of functional dependencies is
itself clouded because a relation instance is now a collection
of sets of tuples rather than a single set of tuples. Rather
than trying to resolve this complex issue here, we follow the
lead of SeaView and assume there is a user specified pri-
mary key AK consisting of a subset of the data attributes
A;. This is called the apparent primary key of the multi-
level relation scheme. Henceforth we understand the term
primary key as synonymous with apparent primary key.

In order to simplify the notation, we use A, instead of
AK from now on. It should be understood, however, that in
general A, will consist of multiple attributes. Our definition
now consists of two parts:

Definition 1 [MULTILEVEL RELATION SCHEME]
A state-invariant multilevel relation scheme

R(A1,Cy, A5,C, ..., An,C,, TC)

154

where each A; is as before an attribute over domain D;, each
C; is a classification attribute for A; and TC is the tuple-
class attribute. The domain of C; is specified by a range
[Ls, H;] which defines a sub-lattice of access classes ranging
from L; up to H;. The domain of T'C is [lub{L;},lub{H;}].

o

Definition 2 [RELATION INSTANCES] A collection

of state-dependent relation instances
R(4,,C3, 4,0, ..., A,,Cn, TC)

one for each access class ¢ in the given lattice. Each in-
stance is a subsumption free set of distinct tuples of the form
(a1, ¢1,83,¢3,-..,a,,c, tc) where each a; € D;, ¢ > ¢; and
te = lub{¢;}. Moreover, if a; is not null then ¢; € [L;, Hj].
We require that ¢; be defined even if g; is null, i.e., a clas-
sification attribute cannot be null. Since tc is computed
from the other classification attributes from now on we will
include it or omit it as convenient. o

The multiple relation instances are, of course, related;
each instance is intended to represent the version of reality
appropriate for each access class. Roughly speaking, each
element ¢[4;] in a tuple ¢ is visible in instances at access
class ¢[C;] or higher; ¢[A4;] is replaced by a null value in an
instance at a lower access class. We will give a more formal
description using the filter function in Section 5.

It seems appropriate to consider the semantic of null
values in tuples. A null value has two interpretations: the
first corresponds to the usual semantics in the standard re-
lational theory depending on the context and the second
corresponds to security considerations. Thus, a null value
could be interpreted as an unknown value which exists but
is not recorded (for whatever reason), as a nonexistent value
(such as an unassigned phone number), or as an inapplica-
ble value (such as maiden name of a male employee). In the
security context a null could also mean that a value, if it
exists, cannot be seen at that access class.

Similar to the standard relational model, not all rela-
tion instances R, are valid in an application; only those
that satisfy certain integrity constraints are valid. For now
we assume that there is a set F' which specifies all con-
straints, and we enforce these constraints in all valid in-
stances. Since different models have proposed different sets
of constraints [11], for now we choose to not be explicit
about the contents of the set F. We will state in Section 6
some properties we require of decomposition and recovery
algorithms. The point we wish to emphasize is that these
requirements are sensible, independent of the exact choice of
F or even the exact decomposition and recovery algorithms.

4 LOSSLESS DECOMPOSITION

Since we store a multilevel relation R, as a collection of
single level relations, it is reasonable to require that the in-

formation contained in R, must be equivalent to the infor-
mation contents of the single level relations. We formalize
the notion of equivalence as follows.

The Decomposition Function

Let R.(A,,Ch, A;,Cs, ..., Ay, C,) be a multilevel relation.
We assume that there is a decomposition function p which
takes a multilevel relation R. and yields a collection R.
of single level relations {R,;,i :J = j1,...,Jn}, where the
access class of R,;c,. is ¢;. In other words,

p(RG) =R, = {izj,:; :j=jl)~~ ~9jn}

We wish to be as general as possible in developing our frame-
work, so we will not constrain the R relations very much.
These relations are single level in the sense that they should
satisfy all requirements of traditional relational theory. The
attributes of these relations are simply data attributes, and
there is no formal concept of a classification attribute. That
is, when some C; does figure as an attribute of R it is for-
mally treated as a piece of data just as an A; attribute
would be. One would expect the attributes of the R’s to be
subsets of the attributes of R,, but we do not make this a
requirement.

It is reasonable to require that if we start with two differ-
ent multilevel relations R, and S., then p will yield different
collections of single level relations. That is we require that

p be a one-to-one function: if R, # S, , then p(R.) # p(S.).

The Recovery Function

Next, we wish to have each tuple in R, be somehow recov-
erable from the tuples in the collection p(R,) = {Rj,ci 1j=
Jis---»dn}. Thus, we require a recovery function 7 which
takes as input the single level R relations and reconstructs
the multilevel relation R.. In other words, we require that

T({Rje; 15 = J1s--rJn}) = Re

Lossless Requirement

Obviously these two functions p and 7 have to be related;
one is an “inverse” of the other, as defined below. This gives
us the first of our three requirements for decomposition and
recovery functions.

Requirement 1 Let p and 7 denote the decomposition and
recovery functions, respectively. For any multilevel relation

R.,7op(R;)= R.. o

This requirement can be visualized as shown in figure 1.
The proof outlined in [4] for the proposed SeaView decom-
position described there amounts to proving requirement 1.

Requirement 1 corresponds to the “lossless join prop-
erty” in the standard relational theory. If we end up with

155

R. — [Re=p(R)| — Re

R =) — R

Figure 1: Requirement 1

more tuples during reconstruction than what we had origi-
nally in R., then we have lost some information. Our first
requirement guarantees that when we decompose tuples in
a multilevel relation into smaller tuples, only the original
tuples can be recovered; unwanted combinations never oc-
cur.

One might attempt to extend requirement 1 to include
its converse, i.e., poT(R,) = R.. This is however too strong
because the decomposition p may not be onto. So the do-
main of 7 will have elements outside the range of p. The
converse of requirement 1 should hold for those R in the
range of p(R.). This will follow from the requirements we
will be formulating.

Before we can state our other two requirements, we need
to define precisely how various instances of a multilevel re-
lation scheme are related. This is done using the filter func-
tion, defined in the next section.

5 FILTERED INSTANCES

In this section, we formally define a filter function which
maps a multilevel relation to different instances, one for each
descending access class in the security lattice. The filter
function limits each user to that portion of the multilevel
relation for which he or she holds a clearance.

Definition 3 [Filter Function] Given the c-instance R,
of a multilevel relation the filter function o produces the
c-instance Ry = o(R.,c) for ¢ < c. A tuple ¢’ € R if and
only if ¢ can be derived from some ¢ € R, as follows:

V[A,Cl) = t[A,Cl)
_ t[A.', C.] if t[C.‘] <d .
14,0 = { < null,¢; > otherwise forl<i<n
o

The following properties of o are easily verified.

1. o(R.,¢) = R..
2. For ¢ < ¢ < ¢, o(o(R.,?),c") = o(R., ")
The first property states that filtering a relation instance at

its own level has no effect. The second states that filtering
twice successively at descending levels has the same effect

as filtering directly to the second level. Both properties are
natural ones to expect of a filter function.

Now, we can use o to describe how the various instances
R. of a relation scheme are related. Requiring the instances
of a multilevel relation to be related by o gives the inter-
instance property of SeaView.

Definition 4 [Inter-Instance Property] Let R be a re-
lation scheme, and let R. and R, be two relation instances
of R such that ¢ < c. Then we have that o(R.,¢) = Ry. O

6 FORMAL FRAMEWORK

As we have seen, we can view a multilevel relation R, in
two different ways: One way to view R, is as a collection
of instances at different access classes by application of the
filter function. The other way to view R, is as a family R,
of single level relations obtained using the decomposition
algorithm. In this section, we show how these different views
fit together in our formal framework. First we require one
more definition.

Definition 5 [Projection Function] Let R, = {R,,e, :
J=1J1,--3Jn} bea collection of single level relations such
that the access class of R; j«; 18 ¢j. Given an access class ¢/,
we define the projection of R, at access class ¢’ as follows:

= I(Rtrc,) = {jzk,c. : Rh,e. € R—: Acg S c'} [m]

Note that the projection function is a given. Its definition
captures the mandatory access control for reads as applied
to the storage objects containing the R relations. Note that
Ry C R, and R may possibly be empty.

Now we can state our remaining two requirements.

Requirement 2 Let R, be a multilevel relation, and let ¢
be an access class such that ¢ < c. As before, let o denote
the filter function, and p and 7 denote the decomposmon
and recovery functions, respectively. Let R, = {R,e, i=
J1,++ 5y Jn} where each Rc is a single level relation at access
cla.ss ¢;.

We can derive the ¢-view of R, in one of the following
two ways:

1. Directly from R, by applying the filter function ¢ to
R, to obtain the ¢-instance: Ry = o(R,,).

2. From decomposed single level relations R, = {R, PP
J =71 da} by

(a) first selecting those relations which are at or be-
low access class ¢’ by means of #(R., ¢’), and then

(b) applying the recovery function 7 to this latter
collection of single level relations.

Our requirement is that both ways produce identical results.
That is,

”(Rﬂc’) =To T(F(Rc)sd) o

156

R, — [Re=p(R)] — R,
! !
! !
>

Figure 2: Requirement 2

R — [ReAR)] - R

1 1)
l 1
R. — |Ro=p(Ry)| — Ry

Figure 3: Requirement 3

We can describe the above situation in terms of the dia-
gram given in figure 1. Our second requirement is that this
diagram must be commutative. Requirement 2 is a general-
ization of requirement 1, which is necessary in the context
of multilevel relations. Figure 1 is a special case of figure 2
when ¢ = ¢, in which event both o and « are trivially the
identity transformation.

We regard requirement 2 as stating the correctness cri-
teria for the decomposition and recovery algorithms. Our
next requirement, illustrated in figure 3, states the secu-
rity criteria. It is based on the supposition that R,/ will be
visible to ¢’ subjects. Therefore it must appear as though
R was created directly at ¢ rather than being derived by
projection from R.. Otherwise we have interference from
higher to lower security classes.

Requirement 3 Let R be a multilevel relation such that
Ry = o(R,,), and let p denote the decomposition function.
We can decompose R. into a set of single level relations in
two different ways:

1. Apply the decomposition function p to R. directly
to obtain a collection of single level relations S, =
{S,,,,. k = ky,...,k,} where each 5',,,¢. is a single
level relation at access class c;.

[A1 Cl Az C: R
[z U]z S 18
A GlA G IO A4 G,
Rs [2 Uy U] T T Ry
z Ujz S z y

Al C1 Az Cz A
z Uflnull U ’

a) A Hypothetical Decomposition
P

Rau
A ClAhG) » =Vl T
R U U] —
ud y 4 G[A4 G,
z Ujinull U U
(b) Requirement 2 is Satisfied
Al 01 A: Cz R
r A Cild G] » z Uly U]
Iz U y U —
emply Ryy

(c) Requirement 3 is Violated

Table 1:

157

Ry

2. First decompose R, into single level relations {R,,,, :
J = J1,---,Jn} by applying the decomposition func-
tion p to R.‘, and then select those relations from p(R,)
which are at or below access class ¢’ to get R,

Our second requirement is that both ways produce identical
results. That is

p o o(Re,d) = x(p(R.),) o

In other words our third requirement is that the diagram of
figure 3 must be commutative.

To make requirement 3 more concrete consider the hypo-
thetical decomposition shown in table 3(a), where the mul-
tilevel relation Rg is mapped by p to the collection Rg of
single level relations R, S Rzu and R,u Each of these R’s
consists of a single tuple. Projecting Rs to get Ry leaves
us with R,u and R,u as shown in table 3(b). Say that
our hypothetical recovery algorithm gives us Ry as shown
there. This postulated recovery is very plausible since the
tuple in R;u is simply subsumed by that in R, u. Yet it is
difficult to think of a decomposition which will yield Ry of
table 3(b) from Ry. The decomposition of table 3(c) is far
more plausible. But then tables 3(b) and 3(c) collectively
violate requirement 3.

The decomposition and recovery algorithms of [7] are
examples of algorithms that satisfy all three requirements.
An outline for the proof of requirement 2 is given in 7]
and requirement 3 can be similarly proved. Requirement
1 is of course a special case of requirement 2. The proof
outlined in [4] for the proposed SeaView decomposition de-
scribed there amounts to proving requirement 1. Since the
SeaView algorithms are based on the outer join operation it
will require greater effort to prove requirements 2 and 3 as
compared with proving these for the algorithms of [7].

7 CONCLUSION

In this paper we have provided a conceptual framework for
dealing with multilevel real relations as a collection of sin-
gle level base relations. We have formalized the relationship
that exists between the decomposition-independent filtered
relations and the multilevel relations obtained from decom-
posed single level relations using the recovery algorithm. We
state three requirements that must be met by any decom-
position and recovery algorithms. Our decomposition and
recovery algorithms in [7] meet these requirements.

In terms of future work much remains to be done. The
efficiency of the recovery algorithm is clearly crucial to the
query response time. It is therefore important to consider
further optimizations to our recovery algorithm of [7]. Since
we decompose a multilevel real relation as a collection of
single-level base relations, it remains to show that an up-
date to a multilevel relation can be correctly translated into
equivalent updates to base relations, and conversely. This
will provide a formal basis for the updatability of multilevel
relations vis-a-vis base relations. A formal consideration of

158

updates is also necessary to show that the data model does
not contain covert channels.

Acknowledgement

We are indebted to John Campbell, Joe Giordano, and
Howard Stainer for their support and encouragement, mak-
ing this work possible.

References

[1] Codd, E.F. “A Relational Model of Data for Large
Shared Data Banks.” Communications of ACM 13(6):
(1970).

[2] Codd, E.F. “Extending the Relational Database Model
to Capture More Meaning.” ACM Transactions on
Database Systems 4(4): (1979).

[3] Date, C.J. An Introduction to Database Systems. Vol-
ume I, Addison-Wesley, fourth edition (1986).

[4] Denning, D.E., Lunt, T.F., Schell, R.R., Shock-
ley, W.R. and Heckman, M. “The SeaView Security
Model.” IEEE Symposium on Security and Privacy,
218-233 (1988).

(5] Department of Defense National Computer Security
Center. Department of Defense Trusted Computer Sys-

tems Evaluation Criteria. DoD 5200.28-STD, (1985).

Gajnak, G.E. “Some Results from the Entity-
Relationship Multilevel Secure DBMS Project.”

Aerospace Computer Security Applications Conference,
66-71 (1988).

(6]

[7

Jajodia, S. and Sandhu, R.S. “Polyinstantiation In-
tegrity in Multilevel Relations.” IEEE Symposium on
Security and Privacy, Oakland, California, May 1990,
to appear.

Lunt, T.F., Denning, D.E., Schell, R.R. Heckman, M
and Shockley, W.R. “Element-Level Classification with
A1l Assurance.” Computers & Security, Feb. 1988.

Lunt, T.F., Schell, R.R., Shockley, W.R., Heckman, M.
and Warren, D. “A Near-Term Design for the SeaView
Multilevel Database System.” IEEE Symposium on Se-
curity and Privacy, 234-244 (1988).

Lunt, T.F., Denning, D.E., Schell, R.R. Heckman,
M. and Shockley, W.R. “Secure Distributed Data
Views. Volume 2: The SeaView Formal Security Policy
Model.” SRI-CSL-88-15 (1989).

Sandhu, R. S., Jajodia, S. and Lunt, T. “A New Polyin-
stantiation Integrity Constraint for Multilevel Rela-
tions.” IEEE Workshop on Computer Security Foun-
dations, Franconia, New Hampshire, June 1990, to ap-
pear.

(8

10

[11]

