The Expressive Power Of Multi-Parent Creation
In Monotonic Access Control Models

Paul Ammannt

Richard Lipton*

Ravi S. Sandhut

Center for Secure Information Systems, George Mason University, Fairfax, VA
*Department of Computer Science, Princeton University, and MITL, Princeton, NJ

Abstract

Formal demonstration of equivalence or nonequivalence
of different security models helps identify the
fundamental constructs and principles in such models. In
this paper, we demonstrate the nonequivalence of two
monotonic access control models that differ only in the
creation operation for new subjects and/or objects; in
particular, we show that single-parent creation is less
expressive than multi-parent creation in monotonic
models. The paper also demonstrates that in
nonmonotonic models, multi-parent creation can be
reduced to single-parent creation, thereby neutralizing
the difference in expressive power. The nonequivalence
proof is carried out on an abstract access control model,
following which the results are interpreted in standard
formulations. In particular, we apply the results to
demonstrate nonequivalence of the Schematic Protection
Model (SPM - [13]) and the Extended Schematic
Protection Model (ESPM - [1]). We also show how the
results apply to the typed access matrix model (TAM -
[15]), which is an extension of the well known access
matrix model of Harrison, Ruzzo, and Ullman (HRU -
[8]). The results in this paper offer theoretical
justification for regarding single-parent and multi-parent
creation as fundamentally different operations in a
monotonic context.

1. Intreduction

Access control models provide a formal expression for
security policies concerning shared resources in multi-
user computer systems. Access control models are
typically expressed in terms of subjects, objects, and
access rights, concepts with which we assume the reader
is familiar. Access control models must be sufficiently
expressive (o state policies of practical interest.
Balanced against the need for sufficient expressive power
is the safety question, ie. can a given subject ever
acquire a given right to some other subject or object.
Since the safety question is undecidable even for
relatively simple models, it is desirable to find primitive

0-8186-2850-2/92 $3.00 © 1992 IEEE

operations that are minimal in the sense that they are
necessary to allow the expression of certain policies. In
this paper we examine two primitive operations, namely
single-parent creation and multi-parent creation, and
demonstrate that the latter is fundamentally more
expressive than the former.

The safety question for access control was first
formulated in the context of the access matrix model of
Harrison, Ruzzo, and Ullman, denoted here as HRU [8].
Although HRU has broad expressive power, for most
interesting schemes it has undecidable safety analysis.
The search for tractable safety analysis led to proposals
for a number of models [4, 9, 10, 11, 12, 16]. However, a
substantial gap in expressive power exists between these
models and HRU. Sandhu’s Schematic Protection Model,
denoted here as SPM {13], was developed to fill this gap
in expressive power while sustaining efficient safety
analysis. With the exception of HRU, the various models
referenced above are all subsumed by SPM [13, 14].
SPM has remarkably strong safety properties and has
been shown to represent a wide variety of cases of
practical interest.

In SPM the creation operation for new subjects and
objects employs only a single parent. However, multi-
parent creation is a desirable operation many practical
applications. For example, variations on the mutuoal
suspicion problem, such as the protected subsystem and
confinement problems, have solutions that are naturally
implemented with multi-parent creation [1]. ORCON, or
originator control problems, also have natural multi-
parent solutions {15]. Separation of duties, in which the
joint authorization by multiple subjects is commonly
required, also fits naturally into a multi-parent framework
(11.

To accommodate multi-parent creation, the Extended
Schematic Protection Model, denoted here as ESPM (1,
3], was introduced. SPM and ESPM differ only in that
EPSM has multi-parent creation whereas SPM does not;
otherwise the models are identical. The tractability of
safety analysis for SPM extends to ESPM [2].

Many proposed access control models are monotonic,
including SPM, ESPM, and restricted versions of HRU
and Sandhu’s Typed Access Matrix (TAM - [15]), an
extension of HRU that incorporates the notion of
protection types. In monotonic models, subjects, objects,
and access rights may not be destroyed once they have
been created. T The advantage of monotonic models is
that the safety analysis need not use backtracking, in that
any given change to the protection state does not exclude
another change from taking place. Although safety
analysis may dictate treating a model as monotonic, the
implementation need not be strictly monotonic. For
example, the nonmonotonic action of revoking an access
right can be accommodated in a monotonic safety
analysis if the revoked right may be regranted. In such
cases, the revocation can be ignored from the perspective
of safety analysis, but nonetheless implemented in the
actual system.

Monotonic HRU and ESPM were shown to have
equivalent expressive power in [3]. The expressive
power of SPM was not formally addressed by the proof,
but the demonstration of HRU-ESPM equivalence
strongly suggested that single-parent creation is
theoretically less powerful than multi-parent creation in
monotonic models. In this paper we formally
demonstrate that in monotonic access control models,
multi-parent creation is stricdly more powerful than
single-parent creation. An immediate corollary is that
SPM is less expressive than ESPM, and hence monotonic
HRU and monotonic TAM.

The organization of the paper is as follows. In section 2
we define an abstract, graph-oriented access control
model. The model allows the description of schemes that
comrespond to single and multi-parent creation. In
section 3 we define the notion of simulation, and we
derive comparative results for single and multi-parent
schemes. We show that single-parent creation is less
expressive than multi-parent creation in monotonic
models, but that the two operations are equivalent in
nonmonotonic models. In section 4 we relate the results
from the abstract model to standard security models.
Section 5 summarizes the paper.

t An additional constraint is that preconditions for operations by
which the state evolves may not be expressed with the negation
operator. The constraint on negation applies not only to monotonic
models, but also to some nonmonotonic ones as well, such as
nonmonotonic HRU. Although negation can express useful security
policies, such as mutually exclusive access rights, its introduction
complicates the analysis process severely.

149

2. Graph Model For Access Control

In this section we present an abstract formalization of the
notion of an access control model. Consideration of
specific models is postponed until section 4; the intent
here is to provide a formalism free of unnecessary detail
as a basis for the theorems in the next section. We
formalize an access control model as an abstract data
type. As usual, the abstract data type has two major
components, namely a set of allowable states and a set of
operations to transit between states.

We begin with a description of allowable states. The
state for the abstract data type is a directed graph, which
we call a protection graph. Nodes in a protection graph
correspond to either subjects or objects; no distinction
between the two is made here. Edges in a protection
graph correspond to access rights. If there is an edge
from node A to node B, then the subject corresponding to
node A has some abstract right to the subject or object
corresponding to node B.

In realistic access control models, it is useful to
distinguish between different classes of subjects and/or
objects. We accommodate this distinction, which
corresponds to the notion of protection type, by allowing
nodes to be typed. The type of a node is determined
when the node is first created, and cannot be changed
afterwards, i.e. none of the operations defined for the
abstract data type are allowed to change a node’s type.
Similarly, we accommodate the need to distinguish
between different access rights by allowing edges to be
typed as well. ¥ Several edges may exist between the
same pair of nodes as long as the edges are all of different
types. Types on edges are also static and cannot be
altered. Formal notation for denoting node and arc types
is introduced later in this section.

The static graph model described so far is equivalent to
the common access matrix, minus any commands to
change state, and thus is sufficiently general to represent
any given protection state of an access control model.

To complete the description of the abstract data type, we
need to consider operations to change the state.
Operations which merely observe the state are not
important to our analysis, and so are ignored. Our

¥ 1n the literature, access rights are usually not described as
being typed. In particular, the notion of protection type is quite uscful
for analyzing subjects and objects, but no such role has been identified
for treating access rights as typed objects. For our purposes here,
however, it is simpler to treat edges and nodes in the same way, and so
we consider both to be typed.

primary goal is to show that multi-parent creation cannot
be simulated with single-parent creation in monotonic
access control models, and so we impose the restriction
in our model that no operation can alter or delete an
existing node or edge in a protection graph. At the end of
the mext section we show the secondary result that
nonmonotonic models can simulate multi-parent creation
with single-parent creation. Accordingly, a limited form
of nonmonotonicity will be introduced at that point.

We allow for three types of operations:

(1) Initial state operations.
(2) Node creation operations.
(3) Edge adding operations.

Initial state operations provide initial states for the
protection graph. We allow one or more such operations,
which require no prior state and produce a statically
specified initial state.

A node-creation operation adds a single new node, and
possibly one or more edges that terminate at the new
node, to the protection graph. Creation operations are
classified by the number of parent nodes that participate.
Typically, a creation operation ties each parent node to
child node with one or more edges, which we refer to
here as parent edges. t The presence of a single parent
edge is sufficient for edge adding operations to install
additional parent edges and/or edges from the child to the
parent. To simplify our discussion, we hereafter assume,
unless otherwise indicated, that node creation operations
install a single parent edge from each parent to the child.

For example, a single-parent creation operation produces
a single new node in the protection graph and creates a
parent edge from the specified parent node to the new
node. Similarly a double-parent creation operation
produces a single new node in the protection graph and
creates two parent edges, one from each specified parent
to the new node.

Depending on the number of node and edge types, there
may be many permutations of these operations, such that
the types of the parent nodes, the child nodes, and the
parent edges, are all taken into account. For example, a
double-parent creation operation may statc that one
parent be of type ¢;, the other parent be of type ¢,, that
the resulting child be of type ¢3, and that both parent
edges be of type t,.

T While the inclusion of parent edges in node creation
operations is optional, it is noted that if such edges are omitted, then
the parent plays no special role with respect to the child.

150

It turns out that multi-parent creation can be simulated
with double-parent creation, a result shown in the context
of the ESPM model in [3]. ¥ We invoke this result to
avoid direct consideration of node creation with more
than two parents. Accordingly, the theorems in the next
section are all proved in terms of single-parent vs.
double-parent creation. By the theorem in [3], however,
the results generalize to single-parent vs. multi-parent
creation.

Operations that add edges are subject to two constraints.
Such operations:

(1) may not create new nodes.

(2) must be monotonic.

The first constraint specifies that all nodes must be
created cither by the initial state operation or by node
creation operations. The second constraint specifies that
if an operation ever becomes applicable, then it must
remain applicable. In the abstract data type view, if the
precondition for an operation is ever satisfied for a given
set of inputs, then it is forever satisfied for that set of
inputs.

Definition: A scheme is a complete abstract type
definition. Specifically, a scheme defines finite sets of
node types, edge types, initial states operations, node
creation operations, and edge adding operations.

Aside: Since the structure we have described is an
abstract data type, schemes are -easily
captured with formal specification notations
for abstract data types. For example,
abstract model specifications such as Z [17]

can be used to represent schemes directly.

In the discussion below, it is useful to be able to identify
the various parts of a scheme for reference purposes.
Thus we proceed as follows for a scheme S. We
designate the set of node types by NT(S) and the set of
edge types by ET(S). We designate the state at some
specified time ¢ by G(S, t). At ¢, the initial time in a
scheme, the state G(S,?,) corresponds to the result of one
of the initial state operations.

Schemes are classified according to the largest number of
parents that can participate in a creation operation. Thus
all creation operations in a single-parent scheme have
exactly one parent. Creation operations in a double-

* The simulation of multi-parent creation with double-parent
creation requires the assumption that a single node may redundantly
function as more than one parent in a multi-parent creation operation.
Motivation for this assumption may be found in [3}.

parent scheme may have either one or two parents, and so
on.

We discuss common properties of schemes properties by
introducing the notion of a model.

Definition: A model is a set of schemes.

Models are classified according to the schemes that make
up the model. Thus a single-parent model contains
single-parent schemes, a double-parent model contains
single-parent and double-parent schemes, and so on. In
addition, models whose schemes include only monotonic
operations are called monotonic models.

This completes the definition of a family of abstract
access control models. We now turn to examining the
differences between models with different number of
parents.

3. Non Equivalence Results

In this section we first define the notion of simulation,
and then derive comparative results about single-parent
models and double-parent models.

3.1. Definition Of Simulation

We eventually wish to decide if one model is as
expressive as another. To do this, we need to formalize
the notion that one scheme simulates another. In the
discussion that follows, the scheme that is being
simulated, denoted as the original scheme is represented
by scheme A. The scheme implementing the simulation,
denoted as the simulation scheme, is represented by
scheme B.

We adopt a strong notion of correspondence between
schemes. We require the simulating scheme, B, to
maintain as part of its state a subgraph that corresponds
exactly to the entire state for scheme A. We implement
this requirement as follows. First, the set of node (edge)
types in the simulation scheme must be a superset of the
set of node (edge) types in the original scheme, i.e.
NT(A) c NT(B) and ET(A) c ET(B). Second, any node
(edge) in the simulation that is of the same type as a node
(edge) in the original must actually correspond to a node
(edge) in the original. Thus scheme B cannot contain
extraneous nodes (edges) of the types defined for scheme
A. In general, however, scheme B can contain nodes and
edges of other types for use as auxiliary structures for the
simulation.

At any time ¢t when B is successfully simulating A,
G(A, t) c G(B, t) and, if we only consider nodes (edges)
in NT(A) (ET(A)), then the two graphs are the same. We
formalize the notion as follows:

Definition: A state in scheme A, an original scheme, and
a state in scheme B, a simulation scheme, correspond iff
the graph defining state in scheme A is identical to the
subgraph obtained by taking the state in scheme B and
discarding all nodes (edges) not in NT(A) (ET(A)).

As an aside, we discuss briefly the decision to require
that the graphs in question be identical rather than simply
isomorphic. The use of the more general construct, i.e.
isomorphism, does not add to the generality of the
simulation, but it does complicate the discussion.
Specifically, we disallow mappings in which the
correspondence of a node (edge) in the simulation to a
node (edge) in the original changes from one state to the
next. The correspondence is set when a node (edge) in
the simulation is created and does not change thereafter.

We have discussed part of the simulation, namely the
notion of correspondence. Two other properties are
required. The complete definition is as follows:

Definition: Under the definition of correspondence
above, scheme B simulates scheme A iff the following
conditions hold:

(1) If scheme A can reach a given state, scheme B
can reach a corresponding state.

(2) If scheme B can reach a given state, scheme A
can reach a corresponding state.

Finally, we formalize the notion of expressive power.

Definition: Model Y is as expressive as model X iff the
following holds: For every scheme A in model X, there
exists a scheme B in model Y such that scheme B can
simulate scheme A.

Definition: Model X is equivalent to model Y iff model
X is as expressive as model Y and model Y is as
expressive as model X.

Definition: Model X is more expressive than model Y iff
model X is as expressive as model Y and there exists at
least one scheme A in model X that cannot be simulated
by any scheme B in model Y.

3.2. A Nonequivalence Theorem

Before we state and prove the various results below, we
describe the scheme A that is used in the proofs. Scheme
A has exactly one type of node and one type of edge.
There is a single initial state operation that produces an
initial state for scheme A with 3 nodes: X, X,, and X3,
and no edges. Scheme A has a double-parent creation
operation. The double-parent creation operation creates
a child node and introduces an edge from each parent to
the child. Scheme A is illustrated in fig. 1.

OBNONNO

Initial State Operation

Double-Parent Creation Operation

Fig. 1. Operations In Scheme A.

Eventally we wish to show that monotonic multi-parent
models are more expressive than monotonic single-parent
models. Let us begin, however, with a simpler result to
illustrate the technique used in the proof.

Lemma 1

Proof

There is no single-parent scheme B that can
simulate scheme A if the initial state for B is
identical to the initial state for A.

The restriction that the initial states be
identical means that scheme B cannot
encode any information in extra nodes or
edges in the initial state. Scheme B cannot
simulate the following creation operation in
scheme A: scheme A creates a new node,
Y), using the double-parent creation
operation with X, and X, as parents. The
l'esult.ing graph has nodes XI’ X2, X3, Yl’
and parent edges X, —Y,, X,—Y,, as shown
in fig. 2.

Let us examine the possible actions of
scheme B to see why the simulation fails.
Scheme B must use a single-parent creation
to create Y;. Without loss of generality,
suppose X is the parent and suppose that the
operation adds a single parent edge X, —Y,.
Scheme B must evenwally use some
monotonic edge adding operation to

New State For Scheme A

Noncorresponding B State Via Single-Parent Creation

Fig. 2. Identical Initial States: Simulation By B Fails

introduce the edge X,—Y,. Since X, and
X have no distinguishing characteristics, we
can mimic the operations used to introduce
the edge X,—Y,; to similarly introduce the
edge X3—Y,. But since scheme A has no
edge adding operations, it is clear that Y,
cannot have an in degree of 3 in any state of
scheme A. Therefore, the simulation is
broken. In summary, scheme B cannot
introduce node Y, and edges X;—Y, and
X,—Y, without also allowing edge X;—Y,,
which corresponds to an unreachable state in
scheme A. The argument is summarized in
fig.2. O

The argument captured by Lemma 1 is insufficient to
show in general that a single-parent scheme B cannot

simulate scheme A, because scheme B may anticipate the
creation of ¥, with an encoding in its initial state. To see
one possible way in which this encoding might be done,
suppose that there is a node, ¥, and edges X, >Y", and
X,—Y" that arises from an initial state operation in
scheme B. The simulation is free to use such nodes and
edges as long as they are of separate types from the types
in scheme A. Scheme B can use single-parent creation
with parent Y, to create child ¥;. Scheme B can further
use monotonic edge-adding operations to create edges
X,—Y, and X,—Y, by referring to the existing edges
X,—Y7 and X,—Y7. By exploiting the structure
encoded in the initial state of the simulation, scheme B
avoids adding the edge X;—Y |, and thus the simulation
is correct on this step.

There are many possible encodings that can anticipate
the double-parent creation operations by nodes in the
original scheme. However, the trick of encoding these
possibilities into the initial state cannot always be
applied, as is shown in the proof of the main theorem
below.

Theorem 1 Monotonic multi-parent models are more
expressive than monotonic single-parent
models.

We prove Theorem 1, using the definition of
more expressive than given earlier, by
showing that the two-parent scheme A
cannot be simulated by any monotonic,
single-parent scheme B.

The proof again proceeds by contradiction,
but the details are more involved than in
Lemma 1. We first show that if a single-
parent scheme B can simulate the double-
parent scheme A, then scheme B must have
certain properties. We use these properties
to show that scheme B can reach a state that
corresponds to an unreachable state in
scheme A.

Consider a candidate scheme B that is
claimed to be.able to simulate scheme A.
Let scheme A perform the following
creation: X; and X, produce child ¥; and
edges X,—Y, and X,—Y, with double-
parent creation. In scheme B, there must be
some node in the simulation, call it W, that
performs a single-parent creation of Y. It
does not matter whether W is X;, X,, or
some other node. Further, the simulation
must arrange the introduction of the edges
Xl_)Yl and X, Y.

Proof

153

The key observation in the proof is that the
single-parent creation operation in scheme B
may be invoked repeatedly with W as the
parent, and that the results must correspond
to reachable states in scheme A. Thus a
reachable state in scheme B is for W to
create two more children, Y, and Y;. The
monotonic edge adding operations used to
produce edges X; —Y; and X,—Y; can also
be mimicked to produce edges X;—Y,,
X,-Y,, X,—>Y;, and X,—Y;5. So far,
scheme B is in good shape, in that scheme A
can certainly reach the state in which X; and
X, have produced three children, Y, , Y, ,
and Y; with double-parent creation. The
difficulty is that Y,, Y,, and Y; are
indistinguishable in scheme B. Any edge
adding operation in scheme B that can add
an edge terminating at Y, can also be
duplicated to add a similar edge that
terminates at Y, or Y;. Also, any edge
adding operation in scheme B that can add
an edge originating at Y; can also be
duplicated to add a similar edge originating
at Y, or Y5. We exploit this fact to break the
simulation. In scheme A, let Y, and Y,
produce child Z with double-parent creation.
In the simulation, Z must be produced with
single-parent creation. No matter which
node in the simulation is the single-parent of
Z, an edge adding operation must be invoked
to add at least one of the edges Y;—Z or
Y,—Z. This edge adding operation can also
be duplicated to introduce the edge Y3—Z.
But then the simulation has reached a state
that does not correspond to a reachable state
in scheme A. The construction is illustrated
infig.3. O

3.3. Non Monotonic Operations

We now illustrate that the nonequivalence of single-
parent and double-parent creation schemes shown in
Theorem 1 does not hold in the presence of
nonmonotonic operations.

We define a limited form of nonmonotonicity for edge
adding operations by allowing the destruction of edges in
a graph.

Definition: An edge adding operation is nonmonotonic if
it destroys an existing edge.

Definition: A scheme is nonmonotonic if it includes any
nonmonotonic operation.

Scheme B Reaches Acceptable Corresponding State

Scheme B Reaches Noncorresponding State

Fig. 3. Arbitrary Initial State: Simulation By B Fails

Definition: A model is nonmonotonic if it includes a
nonmonotonic scheme.

Theorem 2 Nonmonotonic single-parent models are as

Proof

expressive as monotonic multi-parent
models.

We prove theorem 2 by construction. We
exhibit a single-parent creation operation
and nonmonotonic edge-adding operation
that achieves the same state as a monotonic

154

——> Pre-Parent Edge
- --> Parent Edge

Fig. 4. Nonmonotonic Simulation X,, X, Create Y.

double-parent creation operation.

Again we denote scheme A as the original
and scheme B as the simulation. Consider a
double-parent creation operation in scheme
A. Scheme B simulates the operation by
performing single parent creation of the new
node with a special type of edge called a
pre-parent edge. Scheme B then invokes a
nonmonotonic edge adding operation that
has as inputs the original parent, the second
parent, and the child. The edge adding
operation deletes the pre-parent edge and
replaces it with a parent edge. The operation
also adds a parent edge between the second
parent and the child. Since the operation
destroys the pre-parent edge, there is no
possibility of a third node acquiring a parent
edge to the child. Fig. 4 illustrates the
construction. O

3.4. Discussion

The two theorems given above outline the extent to
which single-parent creation and multi-parent creation
differ. In monotonic schemes, the two operations have
different expressive power. In non-monotonic schemes,
other nonmonotonic operations can simulate multi-parent

creation. Nonetheless, the results offer a compelling case
for considering multi-parent creation as a fundamental
operation in access control models.

4. Applying The Results To Standard Models

It is observed in [1, 15] that multi-parent creation is a
natural and obvious choice to implement a variety of
access control policies, such as mutual suspicion,
originator control, and separation of duties. Such
observations lend only informal support to the conjecture
that multi-parent creation is more expressive than
single-parent creation. To date, formal support of such a
position has been lacking.

In the previous section it was formally demonstrated that
multi-parent creation is more expressive than single-
parent creation in the context of a monotonic, abstract
graph model. In this section we carry out the direct but
necessary task of extending the results to standard access
control models.

4.1. Application To SPM and ESPM

SPM and ESPM are monotonic access control models
whose only difference is that SPM has single-parent
creation whereas ESPM has multi-parent creation. Other
operations in either model can be directly mapped to
edge-adding operations in the abstract graph model.
Thus this paper gives a formal demonstration that SPM
and ESPM have different expressive power.

4.2. Application to Access Matrix Models

In the monotonic HRU access matrix model there is no
explicit separation between creation operations and
operations that add rights to cells in the matrix. A given
HRU command may create any number of new subjects
and objects and enter arbitrary values into new and
existing cells.

However, it is not difficult to classify certain HRU
operations as either single-parent or multi-parent. Define
a single-parent HRU creation operation to be an
operation that has two arguments and creates a single
new subject or object. One argument is the parent and
the other is the new child. Define a multi-parent HRU
creation operation to be an operation that has N>2
arguments and creates a single new subject or object.

f If desired, the addition of parent rights to cells in the matrix
can be restricted so as to adhere to the mode creation operations
described for the abstract graph model. In addition, other varieties of
operations can also be included in the classification, but we do not
consider such operations here.

155

N-1 arguments are the parents and the remaining
argument is the child.

No loss of expressive power is incurred by restricting
attention to HRU schemes where all subject and object
creation occurs in operations that can be classified as
described above. One verification of this assertion is in
the proof that ESPM is equivalent to monotonic HRU [3].
In [3], the creation operations used in simulating ESPM
with HRU were either multi-parent or single-parent.

Thus the abstract graph model can be mapped to a subset
of HRU that is equivalent in expressive power to full
HRU. Generalizations of HRU, such as TAM, Sandhu’s
Typed Access Matrix Model [15], are also covered by our
analysis. Operations in TAM can also be classified to to
distinguish single and multi-parent creation. Finally,
both HRU and TAM can accommodate nonmonotonic
formulations.

In summary, the results of the previous section apply to
HRU and TAM as follows. Multi-parent creation can be
defined easily in monotonic HRU and TAM and is more
expressive than single-parent creation. In nonmonotonic
HRU and TAM, multi-parent creation can be simulated
by nonmonotonic operations.

5. Conclusion

In this paper we have presented an abstract framework
for comparing different access control models. We have
used the framework to demonstrate that single-parent
creation is less expressive than multi-parent creation in
monotonic access control models. Although
nonmonotonic models can simulate multi-parent creation,
the results from monotonic models argue for considering
multi-parent creation as a fundamental primitive
operation.

The results from the abstract framework are incorporated
into access control models from the literature. We have
applied the results in this paper to show that the
Schematic Protection Model (SPM), which has single-
parent creation, is less expressive than the Extended
Schematic Protection Model (ESPM), which has multi-
parent creation. We have also applied the results to the
access matrix model of Harrison, Ruzzo and Ullman
(HRU) and to Sandhu’s Typed Access Matrix Model
(TAM), a generalization of HRU that incorporates the
notion of protection types. Without loss of expressive
power, HRU and TAM may be formulated so as to
classify operations as multi-parent or single-parent. In
monotonic HRU and TAM, multi-parent creation is
strictly more expressive than single-parent creation. In
nonmonotonic HRU and TAM, multi-parent creation can

be simulated with nonmonotonic operations.

References

1]

[2]

[31

(51

4]

(6]

mn

(8]

9

(10

{11

[12]

Ammann, PE. and Sandhu, R.S., ‘‘Extending the
Creation Operation in the Schematic Protection
Model’", Proceedings Sixth Annual Computer
Security Application Conference, Tucson, AZ
(1990).

Ammann, P.E. and Sandhu, R.S., ‘‘Safety Analysis
For The Extended Schematic Protection Model’’,
Proceedings of the 1991 IEEE Symposium
Research in Security and Privacy, Oakland, CA,
May, 1991.

Ammann, PE. and Sandhu, R.S., ‘“The Extended

Schematic Protection Model’’, The Journal Of
Computer Security, to appear.

Bell, D.E. and LaPadula, L.J., “‘Secure Computer
Systems: Unified Exposition and Multics
Interpretation’’, Mitre Technical Report MTR-
2997, Bedford, MA (1975).

Bishop, M. and Snyder, L., ‘“‘The Transfer of
Information and Authority in a Protection System’’,
7th ACM Symposium on Operating Systems
Principles, 45-54 (1979).

Department of Defense National Computer
Security Center, Department of Defense Trusted
Computer Systems Evaluation Criteria, DoD
5200.28-STD, (1985).

Graham, G.S. and Denning, PJ., ‘‘Protection -
Principles and Practice’’, AFIPS Spring Joint
Computer Conference, 40:417-429 (1972).
Harrison, M.H., Ruzzo, WL. and Ullman, J.D,,
‘“‘Protection in Operating Systems”, CACM,
19(8):461-471 (1976).

Jones, AK,, Lipton, R.J. and Snyder, L., ‘‘A Linear
Time Algorithm for Deciding Security”’, 17th IEEE
Symposium on the Foundations of Computer
Science, 337-366 (1976).

Lipton, RJ. and Budd, T.A,, ‘On Classes of
Protection Systems’’, In Foundations of Secure
Computations, DeMillo, R.A., Dobkin, D.P., Jones,
AK. and Lipton, RJ. (Editors), Academic Press
(1978).

Lipton, RJ. and Snyder, L., ‘“A Linear Time
Algorithm for Deciding Subject Security’’, JACM,
24(3):455-464 (1977).

Lockman, A. and Minsky, N., ‘‘Unidirectional
Transport of Rights and Take-Grant Control’’,
IEEE Transactions on Sofiware Engineering, SE-
8(6):597-604 (1982).

156

(13]

[14]

(15]

(16)

{17

Sandhu, R.S., ‘“The Schematic Protection Model:
Its Definition and Analysis for Acyclic Attenuating
Schemes’’, JACM, 35(2):404-432 (1988).

Sandhu, R.S., ‘‘Expressive Power of the Schematic
Protection Model’’, The Journal Of Computer
Security, to appear.

Sandhu, R.S., ““The Typed Access Matrix Model”’,
to appear in Proceedings of the 1992 IEEE
Symposium Research in Security and Privacy,
Oakland, CA, May, 1992.

Snyder, L. “‘Formal Models of Capability-Based
Protection Systems’’, [EEE Transactions on
Computers, C-30(3):172-181 (1981).

Spivey .M., The Z Notation: A Reference Manual,
Prentice Hall, 1989.

