
GROUP HIERARCHIES WITH DECENTRALIZED

USER ASSIGNMENT IN WINDOWS NT
�

RAVI SANDHU and GAIL-JOON AHN

George Mason University

Abstract

The notion of groups in Windows NT is much like that
in other operating systems. Rather than set user and
�le rights individually for each and every user, the ad-
ministrator can give rights to various groups, then place
users within those groups. In this paper we describe an
experiment to extend the Windows NT group mecha-
nism in two signi�cant ways that are useful in managing
group-based access control in large-scale systems. The
goal of our experiment is to demonstrate how group hi-
erarchies (where groups include other groups) and de-
centralized user-group assignment (where administra-
tors are selectively delegated authority to assign cer-
tain users to certain groups) can be implemented by
means of Microsoft remote procedure call (RPC) pro-
grams. In both respects the experimental goal is to
implement previously published models (RBAC96 for
group hierarchies and URA97 for decentralized user-
group assignment). Our results indicate that Windows
NT has adequate exibility to accommodate sophisti-
cated access control models to some extent.

Keywords: Security, RBAC, Windows NT

1 INTRODUCTION

Groups have been used for access control ever since
the �rst time-sharing systems were implemented in the
early 1970s. A group is a collection of users and serves
as a convenient unit for granting and revoking access.

Every account in NT's user database contains a group
membership list indicating which groups the account
belongs to [4]. Users belonging to a group are explic-

�This work is partially supported by grant CCR-9503560 from
the National Science Foundation and by the University Research
Program of NSA at the Laboratory for Information Security Tech-
nology at George Mason University.
All correspondence should be addressed to Ravi Sandhu, ISE

Department, Mail Stop 4A4, George Mason University, Fairfax,
VA 22030, sandhu@isse.gmu.edu, www.list.gmu.edu.

itly displayed with the User Manager program. Win-
dows NT notably lacks a facility for including one group
in another.1 In practice, it is often desirable that
groups bear some relationship to each other. By al-
lowing membership in a group to automatically im-
ply membership in some other groups we can reduce
the number of explicit access decisions that need to be
made by users and administrators. Many commercial
database management systems, such as Informix, Ora-
cle and Sybase, provide facilities for hierarchical groups
(or roles). Commercial operating systems, however,
provide limited facilities at best for this purpose.

Another limitation of Windows NT groups is that
membership is exclusively controlled by built-in admin-
istrator groups such as Account Operators, Administra-
tors, and Domain Admins [4]. This is a centralized
model which does not scale gracefully to systems with
large numbers of groups and users. More generally, it
is possible to decentralize user-group assignment by al-
lowing administrators to selectively delegate authority
to assign certain users to certain groups.

In this paper we describe an experiment to extend the
Windows NT group mechanism to include group hier-
archies and decentralized user-group assignment can be
implemented by means of Microsoft RPC programs.

Our model for group hierarchies is based on the
RBAC96 model for role-based access control [7].2 The
model for decentralized user-group assignment, called
URA97, is adapted from [5]. Neither model was de-
signed with Microsoft RPC programs in mind. There
are numerous papers in the literature on hierarchical
groups and alternate models for this purpose includ-
ing [2, 3, 6].

The example of �gure 1 is taken from [5]. URA97
distinguishes between regular groups and administra-

1Even though a local group can include global group(s) as a
member, Windows NT doesn't support the hierarchical relation-
ship between global groups or between local groups.

2The notion of a role is similar to that of a group, particularly
when we focus on the issue of user-role or user-group membership.
For our purpose in this paper we can treat the concepts of roles
and groups as essentially identical.



Production

(PE1)
Engineer 1

Production

(PE2)
Engineer 2

Project lead 1 (PL1)

Engineer 1 (E1) Engineer 2 (E2)

Project 1 Project 2

(QE2)

Quality
Engineer 2

Employee (E)

(QE1)
Engineer 1

Quality

Engineering Department (ED)

Project lead 2 (PL2)

Director (DIR)

Figure 1: AN EXAMPLE GROUP HIERARCHY

Department Security Officer (DSO)

Senior Security Officer (SSO)

Project Security Officer 1 (PSO1) Project Security Officer 2 (PSO2)

Figure 2: AN EXAMPLE ADMINISTRATIVE
GROUP HIERARCHY

tive groups. Figure 2 shows a hierarchy of administra-
tive groups. We will use this example throughout this
paper. These administrative groups are authorized to
grant and revoke membership of users in the regular
groups of �gure 1, as we will see shortly.

The rest of the paper is organized as follows. In sec-
tion 2, we discuss how to implement group hierarchies in
Windows NT. In section 3 we review the URA97 model
and discuss its implementation in Windows NT. Imple-
mentation overview is described in section 4. Section 5
concludes the paper.

2 GROUP HIERARCHIES

We show how group hierarchies can be simulated in
Windows NT. The basic idea is that when a user added
to a senior group the assign program automatically adds
the user to all junior groups. Similarly, when a user is
removed from a senior group the revoke program au-
tomatically removes the user from appropriate junior
roles.

To maintain the group hierarchy we use the �le

Group Name Parent Group(s) Child Group(s)

DIR - PL1, PL2
PL1 DIR PE1, QE1
PL2 DIR PE2, QE2
PE1 PL1 E1
QE1 PL1 E1
PE2 PL2 E2
QE2 PL2 E2
E1 PE1, QE1 ED
E2 PE2, QE2 ED
ED E1, E2 E
E ED -

Table 1: THE EXAMPLE GROUP HIERARCHY OF
FIGURE 1

grouphr.txt to store the children and parents of each
group. The group hierarchy of �gure 1 is represented
in grouphr.txt as shown in table 1. The �rst column
gives the group name, the second column gives the (im-
mediate) parent groups of that group, and the third
column gives the (immediate) children. The null sym-
bol \�" means that the group has no parent or child as
the case may be.

Using grouphr.txt, we can �nd all seniors and ju-
niors for a group by respectively chasing the parents
and children.

We say a user is an explicit member of a group if the
user is explicitly designated as a member of the group.
A user is an implicit member of a group if the user is
an explicit member of some senior group. A user can
simultaneously be an explicit and implicit member of
the same group.3 To simulate a group hierarchy we use
information about explicit and implicit membership in
account database. If Alice belongs explicitly or im-
plicitly to a group she will be added to that group's
member list in account database. However, account
database is not su�cient to distinguish the case where
Alice is both an explicit and implicit member of some
group from the case where she is only an implicit mem-
ber of the group. For this purpose we introduce another
�le explicit.txt that keep information about explicit
membership only.

The implementation of group hierarchy by explicitly
assigning a member of a senior group to be a member of
all junior group in account databasemay raise a scal-
ability issue. For example, many Unix implementations

3This is a property of the RBAC96 and URA97 models on
which our experiment is based. There are other models which do
not allow this.



limit the number of groups activated in a process to a
fairly small number such as 32 or 16, so this approach
does not scale for Unix. We conducted a small experi-
ment to ascertain how many group can be activated in
a process on Windows NT. Our experiment indicated
that Windows NT can accommodate up to 993 groups
simultaneously activated in a single process.4 This is
a sizable number so large group hierarchies can be ac-
commodated by means of this approach.

3 DECENTRALIZED GROUPS

Windows NT centralizes user-group assignment and
revocation entirely in hands of built-in administrator
groups. However, this simple approach does not scale
to large systems. Clearly it is desirable to decentralize
user-group assignment to some degree so that expen-
sive system administrators do not need to spend valu-
able time on routine tasks. In particular we can use
administrative groups for this purpose.

Sandhu and Bhamidipati [5] recently introduced the
URA97 model for decentralized administration of user-
role membership (URA97 stands for user-role assign-
ment 1997). This section reviews URA97 and the next
one describes our approach to implementing it in Win-
dows NT. In our review of URA97 we will use the term
group rather than role. Our description of URA97 is
informal and intuitive. A formal statement of URA97
is given in [5]. We emphasize that URA97 was de�ned
in earlier work independent of any consideration of its
implementation in NT.

3.1 User-Group Assignment

There are two issues that need to be addressed in decen-
tralized management of group membership. Firstly we
would like to control the groups that an administrative
group has authority over. Recall �gures 1 and 2 which
respectively show the regular and administrative groups
of our example. We would like to say, for example, that
the PSO1 administrative group controls membership in
project 1 groups, i.e., E1, PE1, QE1 and PL1. Sec-
ondly, it is also important to control which users are
eligible for membership in these groups.

URA97 addresses these two issues respectively by

4It is actually possible to assign a user upto 1000 global groups
but this causes logon failure due to too many SIDs. As we reduced
the number of groups, we found that the Windows NT system
works successfully with 993 groups simultaneously assigned to a
user. This result must depend on the internal data structure of
account database in the NT kernel.

Administrative Group Group Range

PSO1: [E1,PL1):
PSO2: [E2,PL2):
DSO: (ED,DIR):
SSO: [ED,DIR]:

Table 2: EXAMPLE OF can revoke.txt

means of a group range5 and a prerequisite group

or more generally a prerequisite condition. URA97
has a can assign relation which we store in the �le
can assign.txt.

Assignment of a user to a group in URA97 means ex-
plicit assignment. Implicit assignment to junior groups
happens as a consequence and side-e�ect of explicit as-
signment. In other words can assign.txt applies only
to explicit membership.

3.2 User-Group Revocation

URA97 authorizes revocation by the can revoke rela-
tion which we store in the can revoke.txt �le. An
example is shown in table 2. The meaning of each row
in can revoke.txt is that a member of the adminis-
trative group can revoke membership of a user from
any regular group in group range. We would typically
expect some correlation between the range authorized
for an administrative group in can assign.txt and in
can revoke.txt, but this is not required by the model.

URA97 de�nes two notions of revocation called weak

and strong. Weak revocation is straightforward and has
impact only on explicit membership in the group in
question. Strong revocation requires revocation of both
explicit and implicit membership.

4 IMPLEMENTATION OVERVIEW

We use Microsoft RPC to enforce desired behavior of
URA97 with respect to di�erent administrative groups.
The RPC mechanism is the simplest way to implement
client-server applications, because it keeps the details of
network communications out of the application code.
The security of RPC is part of the operating system
that uses it. Therefore, Microsoft RPC on Windows
NT can use the Windows NT security built in as part
of the operating system. The Windows NT security

5In our actual implementation, we use group set which is iden-
tical to group range. i.e., group set for group range [E1,PL1] is
E1, PE1, QE1, PL1.



FILENAME OWNER PERMISSION

RPCserver.exe rbac Everyone: X
RPCclient.exe rbac Everyone: X
assign.exe rbac rbac : X
weak revoke.exe rbac rbac : X
strong revoke.exe rbac rbac : X
explicit.txt rbac rbac : RW
can assign.txt rbac rbac : RW
can revoke.txt rbac rbac : RW
grouphr.txt rbac rbac : RW

Table 3: THE PERMISSION OF REFERENCE FILES
AND PROCEDURES

model is designed for C2-level security, as de�ned by
the U.S. Department of Defense [1]. One of the most
important requirements of C2-level security is that the
owner of a resource (such as a �le) must be able to con-
trol access to the resource. In order to use this aspect,
we use named pipes as RPC's transport mechanism,
and since pipes are part of the �le system, we can use
NT security mechanisms using Microsoft RPC. We reit-
erate, the security is implemented by the OS (Windows
NT) and not by the RPC mechanism.6

To implement URA97 in Windows NT we also use
several reference �les introduced in the previous sec-
tions and set their permission bits as shown in ta-
ble 3.7 These procedures can read and write the four
reference �les. We previously described the structure
of �les explicit.txt and grouphr.txt in section 2,
and can assign.txt and can revoke.txt in section 3.
For simplicity all these �les in our implementation are
owned by user rbac.

Three procedures (assign, weak revoke, and

strong revoke) are called at the Windows NT com-
mand line prompt(which is actually DOS prompt). An
alternate GUI interface for these procedures is also pro-
vided.

5 CONCLUSION

In this paper we have described our experiment to pro-
vide two useful extensions to the Windows NT group
mechanism by means of Microsoft RPC programs. First

6Usually, a protocol sequence in RPC contains options for net-
work communications protocols. Named pipes (ncacn np) is one
option of transport protocols for communications.

7Each entry has the name of either a user account or a
group, and a set of permissions that apply to that account or ac-
counts in that group. R W X stand for READ, WRITE, and EXECUTE

respectively.

we have added hierarchical groups by means of explicit
assignment to junior groups. When a user is assigned to
a senior group the system automatically adds the user to
all junior groups. Similarly, when a user's membership
is revoked from a group, revocation from appropriate
junior groups is automatically carried out. This be-
havior is adapted from the RBAC96 model. Secondly
we have adapted the URA97 model for decentralized
user-group assignment and implemented it in Windows
NT. Our implementations use Microsoft RPC programs
to enforce authorization to add and remove users from
groups. Our results indicate that Windows NT has
adequate exibility to accommodate sophisticated ac-
cess control models to some extent. We also indicated
that the Windows NT has better scalability in simulat-
ing group hierarchies by explicit assignment to junior
groups, as compared with Unix.

References

[1] Microsoft Press. Microsoft Windows NT Server

Networking Guide. Microsoft Press, 1997.

[2] Matunda Nyanchama and Sylvia Osborn. Ac-
cess rights administration in role-based security
systems. In J. Biskup, M. Morgernstern, and
C. Landwehr, editors, Database Security VIII: Sta-

tus and Prospects. North-Holland, 1995.

[3] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A
model of authorization for next-generation database
systems. ACM Transactions on Database Systems,
16(1), 1991.

[4] Charles B. Rutstein. Windows NT Security.
McGraw-Hill, 1997.

[5] Ravi Sandhu and Venkata Bhamidipati. The
URA97 model for role-based administration of user-
role assignment. In T. Y. Lin and Xiaolei Qian, ed-
itors, Database Security XI: Status and Prospects.
North-Holland, 1997.

[6] Ravi S. Sandhu. The NTree: A two dimension par-
tial order for protection groups. ACM Transactions

on Computer Systems, 6(2):197{222, May 1988.

[7] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein,
and Charles E. Youman. Role-based access con-
trol models. IEEE Computer, 29(2):38{47, February
1996.


