
1

Secure Role-Based Workflow Models

Savith Kandala and Ravi Sandhu
Savith Kandala Ravi Sandhu

CygnaCom Solutions. SingleSignOn.Net and George Mason University

(An Entrust Technologies Company) Dept. of Information and Software Engineering, MS 4A4

7927 Jones Branch Drive (100 West) George Mason University, Fairfax, VA 22030

 McLean, VA 22102 e-mail: sandhu@gmu.edu
 e-mail: skandala@cygnacom.com Home page: www.list.gmu.edu

Abstract: In this paper we introduce a series of reference models for Secure Role-Based
Workflow systems. We build our models over the well-known RBAC96 framework.
The RBAC96 model supports the notion of abstract permissions. The nature of
permissions is highly dependent upon the implementation details of the system, so
we interpret the permissions for a Workflow system in terms of its components such
as tasks, instances of the tasks and operations on them like execute, commit, abort
etc. With this interpretation, we show that most of the components of RBAC96 still
remain intact. The only components that change are the nature of permissions and
their assignment to roles. The models are developed using the recently introduced
four-layer OM -AM framework (comprising objective, model, architecture and
mechanism layers). In this paper, we focus on the top two layers of OM-AM. We
systematically describe our security objectives and construct our models to address
these objectives. We also formally describe the models in terms of their
components and their interactions. The main purpose for proposing these models is
to articulate requirements for building Secure Role-Based Workflow Systems.

Key words: Access control, Role-Based workflows, workflow authorizations, and RBAC

1. INTRODUCTION

Workflow Management Systems (WFMS) are used to coordinate and
streamline business process in an enterprise. A workflow defines various

2 Savith Kandala and Ravi Sandhu

activities of an enterprise in terms of certain well-defined tasks. Users
according to organizational rules carry out these tasks. Quite often, roles
represent organizational agents intended to perform certain job functions
within the organization. Users in turn are assigned appropriate roles based
on their qualifications and responsibilities. [2]

RBAC96 [7] is a general model for role -based access control (RBAC). It
treats permissions as un-interpreted symbols. The nature of permissions in
the RBAC96 model is highly dependent upon the implementation details of a
system and the general kind of system that it is. For example, an operating
system protects files, directories, devices, ports, etc., with operations such as
read, write, execute, etc., a relational database management system on the
other hand protects relations, tuples, attributes, views, etc., with operations
such as SELECT, UPDATE, DELETE, INSERT, etc. More generally,
RBAC96 allows for abstract permissions specific to applications such as
CREDIT and DEBIT in an accounting application. The nature of
permissions in a WFMS can also be interpreted similarly, as a WFMS should
control access to the tasks and instances of these tasks in the system with
operations such as execute, commit, abort etc.

Preliminary ideas for Secure Role -Based Workflow models were
presented in Transaction Control Expressions (TCEs) [6]. The TCE model is
very natural and intuitive, and in fact reflects the world of forms and books
in a Computer-Based System. However, TCEs were proposed much before
RBAC96 was conceptualized and as such does not have all the components
and specifications of RBAC96. The Task-Based Authorization Control
(TBAC) [12] model was introduced to provide the notion of just-in-time
permissions. It enables the granting, usage tracking and revoking of
permissions to be automated and coordinated with the progression of various
tasks. From a conceptual standpoint, TBAC focuses on the processing states
and life cycle of authorizations and therefore cannot be directly compared to
RBAC96. Bertino, Ferrari and Atluri (BFA) [2] have recently proposed a
model for specifying and enforcing authorization constraints for WFMS.
The model emphasizes on constraint specification and enforcement and as
such does not encompass all the concepts of RBAC96.

The main contribution of this paper is that it shows, by aptly defining the
nature of permissions RBAC96 can be extended to model Secure Role -
Based Workflows. A consequential contribution is that it shows the OM-
AM framework is a useful tool for modeling secure systems. The main
purpose for proposing these models is to articulate the requirements for
building secure role -based workflow systems.

The rest of the paper is organized as follows. Section 2 of the paper
briefly describes the OM-AM framework, which was used to construct our
Secure Role-Based Workflow models. Section 3 of the paper describes the

Secure Role-Based Workflow Models 3

RBAC96 model. Section 4 of the paper introduces our first model for Secure
Role-Based Workflows with very simple security objectives. Section 5,
Section 6, Section 7 introduce the models for Secure Role -Based Workflows
with progressively complex security objectives. Section 8 of the paper gives
the future work to be done and the conclusion.

2. THE OM-AM FRAMEWORK FOR SECUIRTY
ENGINEERING

In this section we briefly describe the four-layer OM-AM framework for
security engineering, a detailed description can be found in [9]. The four
layers are objective, model, architecture and mechanism surrounded by a sea
of assurance, which permeates all layers (as shown in Figure 1). Objective
and model are concerned with articulating what the security objectives and
attendant trade-offs are, while architecture and mechanism address how to
meet these requirements. In this paper we use the top two layers of this
framework to formulate the security objectives and build our models.

Security Objective

 Assurance

Model

Architecture

Mechanism

Figure 1 The OM-AM Framework for Security Engineering

3. THE RBAC96 MODEL

In this section we give a brief description of the RBAC96 model. This
model has become a widely cited authoritative reference and is the basis of a
standard currently under development by the National Institute of Standards

4 Savith Kandala and Ravi Sandhu

and Technology. The main components of the RBAC96 model are users,
sessions1, roles, role hierarchy, permissions, user-assignment relationship,
permission-assignment relationship and constraints. Figure 2 illustrates the
RBAC96 model.

Users

Roles

Permissions

User
Assignment

Permission
Assignment

Role
Hierarchy

Constraints

Figure 2 The RBAC96 Model

We now describe the RBAC96 model in terms of the OM-AM
framework as described in section 2 of this paper.
Security Objective: The basic objective of RBAC is to simplify access
control administration. It also provides ease of support for important
security principles, particularly (1) least privilege, (2) separation of duties,
(3) abstract permissions and (4) separation of administration and access.
Model
The RBAC96 model has the following components:
U – set of users, R – set of roles, P – set of permissions
UA ⊆ U × R (User Assignment)
RH ⊆ R × R is a partial order on R also called the role hierarchy or
Role dominance relation written as ≤
PA ⊆ R × P (Permission Assignment)
permissions: R → 2P , a function mapping each role r to a set of permissions.
permissions*: R → 2P extends permissions in presence of a role -hierarchy.
permissions(ri) = { p ∈ P | (p, ri) ∈ PA}
permissions*(ri) = { p ∈ P | (∃ r ≤ ri)[(p, r) ∈ PA]}
Constraints are predicates, which applied to various components, determine
if its value is acceptable or not.

1 To simply our discussion we omit this component since it does not impact the results of this

paper.

Secure Role-Based Workflow Models 5

4. SECURE ROLE-BASED WORKFLOW MODEL0

In this section we describe our first model for Secure Role -Based
Workflows. We start by describing the various components of a Workflow
System. A task in this model can be a program, a process or a procedure that
is stored in the schema of the Workflow System. A task instance2 is an
instance of the task, or in other words it is a copy of the task that is made to
run an instance of it. We also define an Instance Mapping that maps each
task to its instances and is defined as follows.

Definition 1: Instance Mapping
Let TT be a set of tasks and TI a set of task instances, the Instance
Mapping ℑ: TT → 2TI is a mapping that maps each task to its various
instances, such that ℑ (a) ∩ ℑ (b) = φ if a ≠ b and a, b ∈ TT
We interpret permission in this model to be an authorization to execute a

task. We further refine our interpretation by specifying that the permission to
execute a task implies the permission to execute any instance of the task.

In order to model our interpretation of permissions, we define Explicit
Permissions (EP) to be a cross product between the set of operations and the
set of tasks. These Explicit Permissions are assigned to roles. We call this
permission assignment relation as Explicit Permission Assignment (EPA).

We call permissions on task instances as Implicit Permissions (IP), and
define them as a cross product between the set of operations and the set of
task instances. For the moment we introduce a single operation on a task
instance, called execute which authorizes execution of the task. Subsequent
models will introduce additional operations. The permissions on task
instances (IP) are assigned to roles based on EPA. If a task is assigned to a
role then all instances of the task are also assigned to the same role. We call
this assignment relation as Implicit Permission Assignment (IPA).

The crux of our Secure Role -Based Workflow models lies in these two
relations EPA and IPA. Figure 3 below illustrates the model completely.

We now describe our model in terms of the OM-AM framework as
described in section 2 of this paper.
Security Objective: Permissions in a Workflow System are interpreted as
the authorization to execute tasks. Permission to execute a task implies
permission to execute any instance of the task.
Model: U, R, RH, UA are unchanged from RBAC96
OP = {execute} (singleton set which contains the execute operation)
TT – set of tasks, TI – set of task instances
ℑ – An instance mapping that maps each task to its instances

2 We consider the details like how these task instances are created, or how these task instances

come into existence to be outside the scope of this paper. We leave these details to the
Workflow Management System.

6 Savith Kandala and Ravi Sandhu

ℑ : TT → 2TI such that ℑ (a) ∩ ℑ (b) = φ if a ≠ b and a, b ∈ TT
EP (set of EXPLICIT PERMISSIONS) = OP × TT
IP (set of IMPLICIT PERMISSIONS) = OP × TI
P (set of permissions) = EP ∪ IP
EPA (set of explicitly assigned permissions) ⊆ R × EP
IPA (set of implicitly assigned permissions derived from EPA)
IPA = {(ri, execute, ti) | [∃ (ri, execute, t) ∈ EPA] ∧ ti ∈ ℑ (t)}
PA (Permission Assignment) = EPA ∪ IPA
permissions: R → 2IP, a function mapping each role r to a set of permissions.
permissions*: R → 2IP extends permissions in presence of a role -hierarchy.
permissions(ri) = {(execute, ti) | (∃ [(ri , execute, t) ∈ EPA] ∧ ti ∈ ℑ (t)}
permissions*(ri)={(execute, ti)|(∃ r ≤ ri)[(r, execute, t) ∈ EPA] ∧ ti ∈ ℑ (t)}

Roles

Constraints

Operations

Tasks

Explicit
Permissions

Task Instances

Implicit
Permissions

Instance
Mapping

Explicit
Permissions
Assignment

Implicit
Permissions
Assignment

Figure 3 Secure Role Based Workflow Model 0

A proof-of-concept implementation to demonstrate the practical
feasibility of this model is described in [1]. The system implemented
ensures that users belonging to a specific role can execute the task instances.
This model was not formally described in [1] we have described it formally
here. The paper [1], describes an experiment to inject RBAC into an
existing web-based workflow system us ing commercial-of-the-shelf (COTS)
technology with minimal changes to the existing system.

5. SECURE ROLE-BASED WORKFLOW MODEL1

In this section we describe our second model for Secure Role -Based
Workflow systems. An obvious shortcoming of the previous mode l is that

Secure Role-Based Workflow Models 7

there is no notion of the task instances being completed. Therefore, there is
no restriction on how many times a task instance can be repeatedly executed.
We introduce the notion of states in tasks, and constrain the state transitions
and the operations possible in each state in this model to improve upon the
previous model.

For the purpose of this paper, we only consider transactional tasks. We
believe that non-transactional tasks as well as two-phase commit tasks can
also be modeled in a similar way. Figure 4 below, illustrates the states and
the state transitions for some task structures.

 Initial

execute

Executing

Failed Done

fail done

Non-transactional
task structure

Initial

execute

Executing

Aborted Committed

abort

commit prepare

Prepared

Aborted Committed

abort

Open 2PC transaction
task structure

commit

Done

abort

Initial

execute

Executing
done

Figure 4 Some Task Structures

Consider the transactional task structure; the task is in the Initial state.
The execute operation transitions the task instance to the Executing state.
From this state there are two operations that are possible, commit and abort.
The commit operation transitions the task instance to the Committed state
and the abort operation transitions the task instance to the Aborted state.
Although, we do not emphasize this in figure 3 below, from the Aborted
state task instances are put back in the Initial state, so that they could be tried
again for successful execution.

It should be noted that this task structure does not determine the means of
execution or the functionality of the task, but only a high-level description of
the (visible) state transitions.

We further restrict the permissions on task instances by stating that if a
task instance is in the Initial state then the only possible operation on it
should be execute. Similarly, if the task instance is in Executing state, then
the possible operations should be commit or abort. By further restricting the
assignment of implicit permissions we ensure that only those task instances

8 Savith Kandala and Ravi Sandhu

that are in the proper state are assigned to roles. In order, to get the current
state of a task instance and list possible operations of a task instance we
define two functions CurrentState and PossibleOperations.

Definition 2: CurrentState determines the current state of the task.
Let TI be the set of task instances and S the set of states.
CurrentState: TI → S maps each task instance to its state.
CurrentState(ti) = { s | s ∈ S and s is the current state of ti}
Definition 3: PossibleOperations determines the operations possible in a
given state.
Let S the set of states and OP the set of operations
PossibleOperations ⊆ S X OP specifies the operations possible in each
state. (For transactional tasks we consider PossibleOperations =
{(Initial, execute), (Executing, commit), (Executing, abort)})
As mentioned earlier, the crux of our Secure Role -Based Workflow

models lies in the two relations EPA and IPA. The definitions for EP, IP and
EPA remain unchanged from our previous model. The definition IPA is
changed to include its dependency on EPA and the state of the task instance.

In order for the model to be complete we should consider the following
constraints. First, either all permissions ((execute, t), (commit , t), (abort, t))
on the task t are assigned to a role or none of them are assigned. Second, the
user who invokes the operation execute on the task instance, should also
invoke either commit or abort operation on the same task instance. We list
these constraints informally in the model.

We now describe our model in terms of the OM-AM framework as
described in section 2 of this paper.
Security Objective: Security Objective for Role -Based Workflow Model 0
+ Tasks have states (Initial, Executing, Committed, Aborted) and only
certain operations (execute, commit, abort) can be performed in each state.
Model
U, R, RH, UA, TT, TI, EP, IP are unchanged from RBWM0
OP (set of operations) = {execute, commit, abort}
S (set of states) = {Initial, Executing, Committed, Aborted}
T (set of state transitions) = {(Initial, execute, Executing), (Executing,
commit, Committed), (Executing, abort, Aborted)}
CurrentState(ti) = { s | s ∈ S and s is the current state of ti}
PossibleOperations = {(Initial, execute), (Executing, commit), (Executing,
abort)}
P = EP ∪ IP
EPA ⊆ R × EP (Set of explicitly assigned permissions)
IPA = {(ri, op, ti) | [∃ (ri, op, t) ∈ EPA] ∧ [ti ∈ ℑ(t)] ∧
 [(CurrentState (ti), op) ∈ PossibleOperations]}
PA = EPA ∪ IPA

Secure Role-Based Workflow Models 9

permissions: R → 2IP, a function mapping each role r to a set of permissions.
permissions*: R → 2IP extends permissions in presence of a role -hierarchy.
permissions(ri) = {(op, ti) | [∃ (ri, op, t) ∈ EPA] ∧ [ti ∈ ℑ(t)] ∧

[(CurrentState(ti), op) ∈ PossibleOperations] }
permissions*(ri) = {(op, ti) | (∃ r ≤ ri)[(r, op, t) ∈ EPA] ∧ [ti ∈ ℑ(t)] ∧

 [(CurrentState(ti), op) ∈ PossibleOperations] }
Constraints:

Either all permissions ((execute, t), (commit, t), (abort, t)) on the task t are
assigned to a role or none of them are assigned.

The user who invokes the operation execute on the task instance, also is
the only one who can invoke either commit or abort operation on the same
task instance3.

6. SECURE ROLE-BASED WORKFLOW MODEL2

In this section we describe our third model for Secure Role -Based
Workflows. We introduce the notion of task ordering at this stage. A
workflow is considered to be a set of task types and their order of execution.
Intertask dependencies determine how tasks in the workflow are coordinated
for execution. The general type of dependency that is of interest is the state
dependency. We use the Workflow Specification Language (WSFL)
described in [4] to describe the workflow and the intertask dependencies.
We focus on how the tasks can be placed together in a workflow with the use
of state dependencies. The details of the language are not discussed in this
paper, but can be found in [4].

A state dependency specifies how a transition of a task depends on the
current states of other tasks. A state dependency is specified as a rule
consisting <left hand side> evaluator <right hand side>. The state
dependencies are expressed using the evaluator ⇒, such that the left-hand
side includes a predicate over task states and the right-hand side refers to a
transition. For example, the following dependency specifies that if T1 is in a
Committed state then T2 must transition to Initial state.

(T1, Committed) ⇒ (T2, Initial);
Definition 5: (Workflow)
A workflow is defined as a compound task that is composed of a set of

tasks and a set of intertask dependencies associated with it, which
specifies the order of task execution. The intertask dependencies are
specified in terms of state dependencies.

3 The identity of the user who performs the operations should be recorded to enforce this

constraint. This is a mechanism issue, which belongs at the bottom layer of OM-AM. As
such it is out of scope for this paper where our focus is on the top two layers of OM -AM.

10 Savith Kandala and Ravi Sandhu

Examples
We discuss an example to demonstrate some of the specification features.

The example has three tasks Initial Review, Correct Errors, and Process
Application, and their order of execution is illustrated in figure 5 below.

Initial Review

 Initial

Executing

Aborted Committed

Correct Errors

Initial

Executing

Aborted
Committed

Application
Process

Workflow

Initial

Executing

Aborted Committed Process App
Initial

Executing

Aborted Committed

OR

Figure 5 Application Process Workflow (example).

In terms of the above definition for Workflow we can write the intertask
dependencies as follows:
Application Process Workflow = {Initial Review, Correct Errors, Process
Application}
Intertask Dependencies:

(Application Process Workflow, Executing) ⇒ (Initial Review, Initial);
(Initial Review, Aborted) ⇒ (Correct Errors, Initial);
(Correct Errors, Committed) ⇒ (Initial Review, Initial);
(Initial Review, Committed) ⇒ (Process Application, Initial);
(Process Application, Committed)⇒(Application Process Workflow,
Committed);
(Process Application, Aborted) ⇒ (Application Process Workflow,
Aborted);
(Correct Errors, Aborted) ⇒ (Application Process Workflow, Aborted);

Intuitively, the intertask dependencies specified are consistent if and only
if every path (with the exception of loops) from the Workflow Initial state
terminates in the Workflow Aborted state or Workflow Committed state.
Notice that the following scenario can occur Task Initial Review moves to
aborted, Task Correct Errors is started and then committed, then Task Initial
Review is moved to Initial, and so on. We assume that the loops eventually
terminate and then the workflow terminates in either an aborted or

Secure Role-Based Workflow Models 11

committed state. We also consider formally specifying consistency checking
of intertask dependencies to be outside of the scope of this paper and
therefore do not specify them here. The StartCondition Function evaluates
the intertask dependencies for the task instance and returns a boolean value
TRUE or FALSE.

Definition 6: StartCondition Function evaluates the intertask
dependencies for the task instance and returns a boolean value TRUE or
FALSE.
Let TI be the set of task instances.
StartCondition: TI → {TRUE, FALSE}.
As mentioned earlier, the crux of our Secure Role-Based Workflow

models lies in the two relations EPA and IPA. The definitions of EP, IP and
EPA remain unchanged from our previous model. The definition IPA is
changed to include its dependency on EPA, the state of the task instance and
the start condition of the task instance.

Definition 7: IPA – Implicit Permission Assignment.
IPA = {(ri, op, ti) | [∃ (ri, op, t) ∈ EPA] ∧ [ti ∈ ℑ(t)] ∧
[(CurrentState(ti), op) ∈ PossibleOperations] ∧
[(StartCondition(ti) = TRUE] }
We now describe our model in terms of the OM-AM framework as

described in section 2 of this paper.
Security Objective: Security Objective for Role-Based Workflow

Model1 + Tasks are executed according to the specified intertask
dependencies.
Model
U, R, RH, UA, TT, TI, OP, T, S, EP, IP, EPA, CurrentState,
PossibleOperations, are unchanged from RBWM1
StartCondition: TI → {TRUE, FALSE}
P (set of permissions) = EP ∪ IP
EPA (set of explicitly assigned permissions) ⊆ R × EP
IPA (set of implicit permissions) =
{(ri, op, ti) | [∃ (ri, op, t) ∈ EPA] ∧ [ti ∈ ℑ(t)] ∧
[(CurrentState(ti), op) ∈ PossibleOperations] ∧
[(StartCondition(ti) = TRUE] }
PA = EPA ∪ IPA
permissions: R → 2IP , a function mapping each role r to a set of
permissions.
permissions*: R → 2IP extends permissions in presence of a role-hierarchy.
permissions(ri) = {(op, ti) | [∃ (ri, op, t) ∈ EPA] ∧ [ti ∈ ℑ(t)] ∧

 [(CurrentState (ti), op) ∈ PossibleOperations] ∧
 [(StartCondition(ti) = TRUE] }

permissions*(ri) = {(op, ti) | (∃ r ≤ ri)[(r, op, t) ∈ EPA] ∧ [ti ∈ ℑ(t)] ∧

12 Savith Kandala and Ravi Sandhu

[(CurrentState(ti), op) ∈PossibleOperations] ∧
[(StartCondition(ti) = TRUE] }

Constraints:

Same as the constraints for Role -Based Workflow Model1

7. SECURE ROLE-BASED WORKFLOW MODEL3

In this section we describe our fourth and final model for Secure Role -
Based Workflows. We introduce notion of specifying authorization
constraints on tasks at this stage. We mainly focus on the Separation of
Duties (SOD) constraints. We use the syntax specified in Transaction
Control Expressions (TCEs) [6] to model these constraints. Extensions
beyond this fourth model may be possible but are beyond the scope of this
paper. In other words we are not claiming that this is the last word on this
topic. We now briefly describe the syntax proposed in TCEs for expressing
SOD constraints by an example. The details of the syntax are not discussed
here, but can be found in [6]. Consider the workflow example Process
Checks with three tasks Prepare, Approve, Issue. If all the three tasks are to
be performed by different users, we do not associate any symbols with the
tasks and simply write them as

(Prepare,), (Approve,), (Issue,)
If any user can perform task Approve, and the task Prepare and task Issue

have to be performed by different users we write them as follows
 (Prepare,), (Approve, ↑), (Issue,)
If the tasks Prepare and Issue have to be performed by same user and task

Approve has to be performed by a different user we write them as follows
(Prepare, ↓x), (Approve,), (Issue, ↓x)

(Note: The token “x” is for relating multiple anchors. For instance we can
use the symbol ↓ with a token “y” to identify another set of tasks that need
to be performed by the same user.)

Definition 5: (Workflow)
A workflow is defined as a compound task that is composed of a set of
tasks, a set of intertask dependencies associated with it, which specify the
order of task execution and a set of TCE constraints. Each element in the
set of TCE constraints is a two tuple (t, symbol) where t ∈ set of tasks and
symbol is ↑ or ↓ (with token).
In order to enforce these constraints, the identity of the user who

performs each task should be recorded. The TCE constraints can be viewed
as constraints on the Permissions component of RBAC96. We are basically

Secure Role-Based Workflow Models 13

checking if the user attempting to perform an operation on a task instance
satisfies the TCE constraints for the workflow instance.

We now describe our model in terms of the OM-AM framework as
described in section 2 of this paper.

Security Objective: Security Objective for Role-Based Workflow Model2
+ Separation of Duty and related Constraints
Model
The model is unchanged from Role -Based Workflow Model2, except for
the additional constraint on Implicit Permissions.
Constraints:
Same as the constraints for Role -Based Workflow Model2 +
The user attempting to execute Implicit Permission should satisfy the TCE
constraints.

8. CONCLUSION AND FUTURE WORK

We have presented a series of Secure Role -Based Workflow models,
which systematically span the spectrum from very simple at one end to quite
complex at the other. We started with a simple security objective and
formulated our first Secure Role -Based Workflow model. For each
subsequent model we added more complexity to the security objective and
formulated our models by building on earlier ones. In this paper, we have
shown that RBAC96 can be extended to model Secure Role -Based
Workflows. The models were formulated following the OM-AM framework,
thus demonstrating the effectiveness of the framework. The models
developed realize the promise of RBAC96, which is a policy neutral,
flexible, easy-to-customize framework for articulating and enforcing access
control policies. Each of the models proposed can be implemented,
depending upon the requirements of the system. For example, we have
given a reference to the implementation of Model0 [1], where the
requirement was to just ensure that a user belonging to a specific role could
execute a task.

The work presented in this paper can be extended along several
directions. One such possible direction could be moving further down the
OM-AM framework in terms of Architecture and Mechanisms to implement
the models. Another possible direction could be extending these models for
distributed and heterogeneous workflow systems. Yet another possible
research direction could be to investigate the possibility of fitting our models
into an existing Workflow System. Finally, incorporating issues related to
delegation and controlled overriding of constraints into these models is also
a challenging research goal.

14 Savith Kandala and Ravi Sandhu

ACKNOWLEDGEMENT

This work is partially supported by the National Science Foundation at
George Mason University.

REFERENCES

[1] Ahn G, Sandhu R, Myong H K, Park J. (2000) Injecting RBAC to Secure
a Web-based Workflow System. Fifth ACM Workshop on RBAC, pp 1 – 10
[2] Bertino, E., Ferrari, E. and Atluri, V. (1997). A flexible model for the
specification and enforcement of authorization constraints in workflow
management system. Proceedings of the Second ACM Workshop on Role -
Based Access Control.
[3] Clark, D.D. and Wilson, D.R. (1987). A comparison of commercial and
military security policies. Proceedings of IEEE Symposium on Security and
Privacy, pp. 184-194.
[4] Narayanan K, Sheth A, (1995) Managing Heterogeneous Multi-system
Tasks to Support Enterprise-wide Operation. Distributed and Parallel
Databases vol 3 number 2 April 1995 pp 155 - 186 [5] Nash, M.J. and
Poland, K.R. (1987). Some conundrums concerning separation of duty.
Proceedings of IEEE Symposium on Security and Privacy, pp. 201-207.
[6] Sandhu, R. (1988). Transaction control expressions for separation of
duties. Proceedings of the Fourth Aerospace Computer Security
Applications Conference, pp. 282-286.
[7] Sandhu, R., Coyne, E.J., Feinstein, H.L. and Youman, C.E. (1996). Role -
based access control models. IEEE Computer, 29(2), pp. 38-47.
[8] Sandhu, R. (1990). Separation of duties in computerized information
systems. Proceedings of the IFIP WG 11.3 Workshop on Database Security.
[9] Sandhu, R, (2000) Engineering Authority and Trust in Cyberspace: The
OM-AM and RBAC Way. Fifth ACM Workshop on RBAC, pp 111 – 119
[10] Sandhu R, Ferraiolo D, Kuhn R, (2000) The NIST Model for Role -
based Access Control: Towards a Unified Standard, Fifth ACM Workshop
on RBAC, pp 47-64
[11] Simon, R.T. and Zurko, M.E. (1997). Separation of duty in role -based
environments. Proceedings of Computer Foundations Workshop X.
[12] Thomas, R.K. and Sandhu R. (1997). Task-based authorization controls
(TBAC) Proceedings of the IFIP WG 11.3 Workshop on Database Security.
[13] Ullman, J (1989) Principles of Database and Knowledge-Base Systems
(2nd volume). Computer Science Press, New York.

