Proc. of the IFIP W(G'11.3 Workshop on Database Security,
Shepherdstown, West Virginia, November /-7, 1991.

SUPPORTING TIMING-CHANNEL FREE
COMPUTATIONS IN MULTILEVEL SECURE
OBJECT-ORIENTED DATABASES

Ravi S. Sandhu, Roshan Thomas and Sushil Jajodia

Center for Secure Information Systems &
Department of Information and Software Systems Engineering
George Mason University

Fairfax, Virginia 22030-4444, USA

Abstract

In an earlier paper [3], Jajodia and Kogan proposed a message filter approach to enforcing
mandatory security in multilevel object-oriented databases. The key idea in the message
filter model is that all information exchange be permitted solely through messages and
that security be enforced by a message filter component that mediates these messages.
In a recent paper [8] the authors proposed a kernelized architecture for implementing
the message filter model. A major complication in implementing this model arises due
to timing channels intrinsic to the object-oriented model of computing. These channels
arise because object-oriented “write-up” operations are abstract and arbitrarily complex
(as opposed to primitive memory writes). One approach to closing these timing chan-
nels is to execute a logically sequential computation as concurrent pieces. Our earlier
paper presented an execution model for managing such concurrent computations as well
as a multiversion synchronization protocol to guarantee correctness with respect to the
intended sequential execution. While our approach with asynchronous computations can
close such channels, the scheduling strategy presented earlier was not totally secure as it
may be exploited for timing channels under certain conditions. In this paper we present
a revised execution model that not only guarantees correctness but is also timing channel
free. We give proof outlines to support these claims.

1 Introduction

In recent years we have seen a considerable effort in the research and development of
object-oriented databases (e.g., ORION [1], IRIS [2], GEMSTONE [6]). The driving
force behind these efforts can be attributed to the advantages offered by object-oriented
data models. These include the ability of objects to model the complex structure of
entities in an application domain. Such modeling capabilities cannot be readily provided

in conventional database systems as they have a rather flat view of data. Further, object-
oriented systems provide the capability to model the behavior of real world entities in the
domain through methods encapsulated in objects.

Intuitively, the object-oriented model appears attractive to environments requiring
multilevel data security. This is because access control and security policies can be speci-
fied and implemented in terms of objects that map closely to the real world entities that
are modeled.

Accordingly, we have seen a number of proposals for models that address mandatory
security issues in object-oriented databases [3, 4, 5, 7, 9]. The model proposed by Jajodia
and Kogan [3] (referred to as the message filter model) is distinguishable from this set as
it expresses the security policy with a message filtering algorithm and relies on a message
filter component to mediate all messages sent between objects. The main advantage of
the message filter model is the simplicity with which mandatory security policies can be
stated and enforced.

In a recent paper [8] we proposed a kernelized architecture for the message filter model
that was motivated by the existing architecture of object-oriented database systems. A
major complication in implementing the message filter model arises from timing channels
inherent in the object-oriented computational model. This is because write-up operations
on objects are no longer primitive, but rather are complex and may involve several com-
putations taking arbitrary amounts of processing time. It is therefore insecure to report
the completion of a write-up operation. Instead the process which initiated the write-up
must proceed concurrently with the process which executes the write-up.

In other words these timing channels can be closed by supporting concurrent asyn-
chronous computations. This idea was proposed in [8]. However, the scheduling strategy
and execution model for concurrent computations that was presented in [8] is not totally
secure as it may be exploited for timing channels under certain conditions. In this paper,
we present an alternate execution model and a multiversion synchronization scheme that
collectively ensure that the concurrent computations are timing channel free and serially
correct (preserves the correctness of the intended logical and sequential* execution).

The rest of this paper is organized as follows. Section 2 gives a brief overview of
the message filter model. This is followed in section 3 by the kernelized architecture
for implementing the model. Section 4 presents the timing channel problem as well as
algorithms to close these channels. Section 5 contains proof sketches for these algorithms.
Section 6 gives our conclusions.

2 Message Filter Model

The main elements of the message filter model are objects and messages. Every ob-
ject is assigned a single classification, which remains unchanged for the object’s lifetime.
Messages are assumed (and required) to be the only means by which objects can com-

*For the sake of simplicity we have throughout assumed that the computation is intended to be
logically sequential. Our algorithms and protocols can be extended to the case where concurrency is
present in the original computation.

municate and exchange information. Thus the central idea is that information flow can
be controlled by mediating the flow of messages. Consequently, even basic object activity
such as access to internal attributes, object creation, and invocation of local methods are
to be implemented by having an object send messages to itself (we consider such messages
to be primitive messages). The message filter takes appropriate action upon intercepting
a message and examining the classifications of the sender and receiver of the message. It
may let the message pass unaltered; or interpose a NIL reply in place of the actual reply;
or set the status of method invocations (as restricted or unrestricted).

The message filter utilizes the filtering algorithm shown in figure 1 to mediate messages.
We assume that O1 and O2 are sender and receiver objects respectively. Let L(O) denote
the security level of object O. Also, let t1 be the method invocation in O1 that sent
the message m, and t2 the method invocation in O2 on receipt of m. Each method
invocation has a status, denoted by S(t), which can be either R (for restricted) or U (for
unrestricted). Each method invocation also has an attribute called rlevel which is a label
from the lattice of security classes. The interpretation of status and rlevel is explained
below. Both these attributes are determined when the method invocation is created and
remain fixed thereafter for the duration of the method execution.

The two major cases of the algorithm correspond to whether or not m is a primitive
message. Cases (1) through (4) in figure 1 deal with a non-primitive message sent from
object O1 to 02. In case (1), the sender and the receiver are at the same level. The
message and the reply are allowed to pass. The status of t2 will be the same as that
of t1. In case (2), the levels are incomparable and thus the message is blocked and a
NIL reply returned to method t1. In case (3), the receiver is at a higher level than the
sender. The message is passed through, but a NIL reply is returned to t1 while the actual
reply from t2 is discarded (thus effectively cutting off the backward flow). For case (4),
the receiver is at a lower level than the sender. The message and the reply are allowed
to pass. However, the status of t2 (in the receiver object) is restricted to prevent illegal
flows. This is because a restricted method cannot update the state (attributes) of an
object whereas an unrestricted method is allowed to do so. In other words although a
message is allowed to pass from a high-level sender to a low-level receiver, it cannot cause
a write-down violation as the method invocation in the receiver is restricted from updating
the state of any object. Finally, it is important to note that every method invoked (such
as t2 in cases (1), (3), and (4)) is executed at a fixed security level. This level is given by
the variable rlevel in the algorithm. A method is given the restricted status whenever its
rlevel is higher than the level of the object accessed by the method.

We illustrate these filtering functions with the help of a payroll database. Our simple
object-oriented database consists of three classes of objects: (1) EMPLOYEE (Unclassi-
fied), (2) PAY-INFO (Secret), and (3) WORK-INFO (Unclassified) with the corresponding
attributes as shown in figure 2. Objects EMPLOYEE and WORK-INFO are unclassified
as their attributes (such as name, address, hours-worked) represent information about an
employee that can be made readily available. The object PAY-INFO is secret because its
attributes contain sensitive information such as hourly-rate and weekly pay.

Let us see how cases (1), (3) and (4) in the filtering algorithm apply to the payroll
database. Case (1) occurs when the sender and receiver are at the same level and applies

if O1 # 02 v m ¢ {READ, WRITE, CREATE} then case % i.e., m is a non-primitive message
(1) L(O1) = L(02) : % let m pass, let reply pass
s(12) — s(t1);
rlevel(t2) « rlevel(t1);
return reply from t2 to t1;
(2) L(O1) ~ L(02) : % i.e., the levels are incomparable
% block m, inject NIL reply
return NIL to t1;
(3) L(O1) < L(02) : % let m pass, inject NIL reply, ignore actual reply
return NIL to t1;

invoke t2 with

s(t2) « if L(O2)<rlevel(O1) then s(tl) else U;
rlevel(t2) < lub[L(02), rlevel(t1)];
discard reply from t2;
(4) L(O1) > L(02) : % let m pass, let reply pass
s(t2) — R;
rlevel(t2) — rlevel(t1);
return reply from t2 to t1;

invoke t2 with

invoke t2 with

end case;
if 01 = 02 A m € {READ, WRITE, CREATE} then case % i.e., m is a primitive message
(5) misaREAD : % allow unconditionally

READ value; return value to t1;

(6) misa WRITE : % allow if status of t1 is unrestricted
if s(t1) = U then [WRITE; return SUCCESS to t1;]
else return FAILURE to t1;

(7) mis a CREATE : % allow if status of t1 is unrestricted
if s(t1) = U then [CREATE O with L(O) <« L(O1); return O to t1;]
else return FAILURE to t1;

end case;

Figure 1: Message filtering algorithm

Figure 2: Objects in a payroll database

to the message exchange between objects EMPLOYEE and WORK-INFO. The message
RESET-WEEKLY-HOURS and reply DONE are both allowed to pass by the message
filter. Case (3) applies to the message exchange between objects EMPLOYEE and PAY-
INFO. As the latter is classified higher, a NIL reply is returned in response to the PAY
message and the actual reply is discarded. Case (4) involves the objects PAY-INFO
and WORK-INFO. As the object WORK-INFO is classified lower than PAY-INFO the
message GET-HOURS and reply HOURS-WORKED are allowed to pass. However, the
method invocation in WORK-INFO is given the restricted status. This prevents the
method from updating the state of object WORK-INFO (which if allowed, would cause

a write-down violation).

Returning to the algorithm let us examine cases (5) through (7) which deal with
primitive messages. READ operations always succeed as they are confined to an object’s
(internal) methods and the results can only be exported by messages or replies that are
filtered by the message filter. In the case of WRITE and CREATE messages, the corre-
sponding operation will succeed only if the status of the method invoking the operation is
unrestricted (otherwise a FAILURE message is returned to the sender indicating failure).

3 Architecture

Figure 3 depicts the secure kernelized architecture proposed in [8] for implementing the
message filter model. The architecture is motivated and built upon the typical architecture
of existing object-oriented database systems. As shown in the figure this architecture is a
layered one and consists of storage and object layers. The lower storage layer interfaces to
the operating system and file system primitives and supports the functionality required

Figure 3: A secure kernelized architecture

for the read, write, and creation of raw bytes representing untyped objects. In contrast to
the storage layer, the object layer provides a more abstract view of data by supporting the
notion of objects as encapsulated units of information. Object-oriented concepts such as
classes, class-hierarchies, and inheritance as well as supporting facilities such as message
passing are implemented at this layer.

Our architecture calls for the entire storage layer to be trusted and thus implemented
within the trusted computing base (TCB). This assumption is reasonable as this layer
provides very specific functions and thus need not be very large. On the other hand,
only a small portion of the object layer needs to be trusted and thus included within the
TCB. The trusted functions are precisely those required to support the message filtering
function and are collectively implemented by message and session manager modules. T

To provide support for asynchronous computations, a new message manager process
is forked whenever a message is sent to a higher level object. Once forked, the message
manager proceeds to execute the method invoked in the receiver object in order to enable
processing of the received message. In general, several message managers may be created
for a user session. A session manager process is thus created for every user session for the
purpose of coordinating the various message managers. The interface between a message
manager and its session manager is made up of two calls: (1) FORK issued by a message
manager to its session manager to request the creation of a new message manager, and
(2) TERMINATE issued by a message manager to its session manager to terminate itself.

TWe must of course also ensure that the message manager acts as a reference monitor, i.e., it cannot
be bypassed in accessing objects. It the task of the underlying trusted operating system to ensure this.

In the next section we discuss in detail the algorithms required to process these FORK
and TERMINATE requests in a secure and correct fashion.

4 Algorithms

In this section we discuss in details the problems posed by timing channels and elaborate
on our approach to close such channels.

4.1 Addressing Timing Channels

Consider a message sent from a low object to a receiver object at a higher level. In
accordance with the filtering algorithm the message filter returns a NIL value to the
sender and discards the actual reply. However, in order to avoid a timing channel, it
should not be possible for the high method to modulate the timing of the delivery of this
NIL. Thus, delivering the NIL value on the termination of the method in the receiver
(and effectively suspending/blocking execution of the sender method during this period)
is clearly not acceptable.

Our solution to close such timing channels is to allow concurrent computations. In
other words whenever a message is sent to a higher level object, we would allow the sender
method as well as the receiver method to be invoked on receipt of this message, to execute
concurrently. As we do not want the sender to remain blocked waiting for a reply, the
NIL reply is returned immediately to the sender independent of the receiver’s termination
point.

Every method is executed by a message manager process that incorporates algorithms
to implement the message filtering function. Thus whenever a message is sent to a higher
receiver object, the receiver’s method is executed by a newly forked (i.e., newly created)
and concurrently running message manager process. Every message manager runs at a
fixed security level that is equivalent to the rlevel of the corresponding method invocation
(as determined by the message filtering algorithm). A user session may create several
message managers depending on the number of messages sent upwards in security levels.

There exists a session manager process for every user session and it is charged with
coordinating the various message managers created for a session. Since message managers
may execute concurrently it is critical that such concurrent executions produce the same
result as the intended sequential computation. In particular, a concurrent execution
must ensure that the object states accessed by methods are equivalent to the states that
would have been accessed in a sequential execution. Note, that we do not want arbitrary
concurrency with serializability as the correctness criterion. Instead we require equivalence
to the one specific serial execution which was logically intended. The session manager
achieves this goal by enforcing a discipline on the concurrent execution of its message
managers.

One can visualize such concurrent computations as a tree (see figure 4). The labeled
nodes (circles) in the figure represent computations (message managers executing meth-
ods) while the arrows represent messages. The figure shows a snapshot of a tree of message

Figure 4: A tree of concurrent message managers

Figure 5: Progressive execution of figure 4

managers with message manager 1 at the unclassified level having sent messages to one
secret object, one top-secret object and one confidential object in this sequence. These
receiver objects are at a higher level than the sender and this has resulted in the forking
of message managers 2, 3, and 4 as the children of 1. Similarly message manager 4 at
the confidential level has forked off two message managers at top-secret and secret levels
respectively. The labels on the arrows in figure 4 convey the order in which the messages
(sent to higher level objects) are processed if we execute this tree of computations sequen-
tially. Note that this order can be derived by a depth-first traversal of the tree. In other
words a computation to the left of another in the tree, would have been forked earlier and
executed to termination ahead of the latter in a sequential execution.

4.2 The Execution Model

Any execution model to manage such a tree of concurrent computations must be motivated
by two requirements: (1) the ease with which synchronization can be provided, and (2) the
security properties.t The synchronization protocol must ensure that we achieve the same
results as the intended sequential computation. The security properties must guarantee
freedom from timing and storage channels.

The execution model presented in [8] allowed only the leftmost computations in a
tree to execute concurrently. This invariant guarantees that there will be only one active
computation (message manager) at each ascending security level. However, the weakness
of this scheme arises from the fact that new message managers are not always forked by
ascending level. For example in figure 4 the message manager 4 at level confidential is
forked after the higher message manager 3 at top secret. Consequently, message manager
4 will be denied execution until message manager 3 and its children terminate. If the
lower message manager 4 can observe the elapsed time before it is actually started, a
cooperating message manager such as 3 can introduce a timing channel.

We now present a scheme that overcomes this problem. The basic idea here is that
the execution of a message manager is never delayed due to an earlier forked message
manager at a higher level. A session manager now guarantees the following invariants in
managing a tree of computations

o Invariant A computation is started if and only if all the current as well as future
computations to the left of it are guaranteed to execute at a higher level or incom-
parable level.

Note that this invariant guarantees the following property: for every security level there
can exist at most one executing (active) computation at that level at any given time.

Let us see the motivation and principles behind this invariant. The “only if” part is
required to get correctness, i.e., equivalence to the intended logically sequential execution.
A depth-first traversal of the tree specifies the order in which the message managers would
terminate in a sequential execution. In particular for a given node in the tree, say n, we
have the following properties in a sequential execution.

tPerformance must also be an important consideration. A detailed consideration of performance
implications is beyond the scope of this paper. Our initial focus is on feasibility, correctness and security.

1. All nodes to the left of the path from the root to node n represent computations
that would have terminated prior to n’s execution.

2. The ancestor nodes of n represent computations that are blocked and waiting for
their descendants (including n) to terminate.

3. All nodes to the right of n in the tree would be executed after the termination of n.

It follows that all writes performed by computations to the left of n must be visible to
n, due to sequential precedence. In a multilevel context however only those writes at or
below the level of n are actually visible. Thus it suffices to ensure that all computations
to the left of n which are at or below the level of n have terminated. Similar observations
apply to the computations to the right of n in the tree. That is, the writes performed by
n must be visible to those computations to the right of n which are at or above n’s level.

The “if” part of the invariant is required due to confidentiality. No computation should
be delayed for some computation to its left which is at a higher or incomparable level.
Such a delay opens up a timing channel. Fortunately the above invariant turns out to be
necessary and sufficient to guarantee correctness and security.

To illustrate the application of this invariant consider execution of the tree in figure 4.
The progress of this tree is shown in figure 5. The terminated message manager (node)
which advances the computations to the next stage is highlighted. Message manager 2
being the first to be forked is allowed to execute immediately. Message manager 3 is
queued up as its execution has to be delayed until message manager 2 terminates. This
action is necessary because writes performed by the secret message manager 2 must be
visible (i.e., readable) to the top secret message manager 3, due to sequential precedence.
Our invariant guarantees that message manager 3 remains suspended at least till such
time as message manager 2 and its top secret children terminate. Message manager 4
is allowed to execute immediately after being forked, since no writes from active non-
terminated computations to the left of 4 in the tree will be visible at the confidential
level. On the contrary, for confidentiality reasons, the start up of 4 should not be delayed
(or modulated) by the higher message managers 2 (secret) and 3 (top secret) to the left of
4. Thus no potential exists for the introduction of any timing channels. Finally, message
manager 5 will be started only after message manager 3 terminates and 6 will be started
when 2 terminates.

4.3 Multiversion Synchronization

While our execution model above allows concurrent computations in order to close timing
channels, it introduces a related synchronization problem. Synchronization schemes are
needed to ensure that the concurrent execution of methods achieve the same result as a
sequential one. For example in the payroll database of figure 2 a concurrent execution can
lead to the message sequence (as identified by the message labels): «a, d, €, f, b, ¢. Now
in order to achieve the same result as a sequential execution (with sequence: a, b, ¢, d, e,
/) the method in object PAY-INFO should not see any changes in object WORK-INFO

that occurred after it was forked. To illustrate further, consider again the tree in figure

4. Although message managers 4 (confidential) and 6 (secret) may terminate well-ahead
of 3 (top secret), our synchronization schemes must ensure that message manager 3 does
not see any updates by message managers 4 and 6. This is because message managers 4
and 6 are to the right of 3 and as such would start later than 3 in a sequential execution.
Similarly message manager 5 (top secret) should not see any updates by 6 (secret).

Solving this synchronization problem using classical techniques, such as those based
on locking and semaphores, is unsuitable for multilevel secure systems as they introduce
covert channels. Our solution instead relies on maintaining multiple versions of objects
in memory. In the payroll example the processing of the (¢) RESET-WEEKLY message
would result in the creation of a new version of object WORK-INFO with the reset hours.
However, an earlier version of object WORK-INFO that existed before the method in
PAY-INFO was forked is used to process the (b) GET-HOURS message. Similarly in
figure 4 message manager 3 (top secret) should not see any versions of confidential objects
written by 4 or any secret objects written by 6.

To support the above versioning scheme, object versions are uniquely identified by
time stamps. In order to incorporate the versioning scheme into our execution model, the
session manager maintains the following data structure.

e RStamp This is a global table of time stamps with one entry per level. It identifies
the initial version of objects at every level (that exists before a session starts). An
individual message manager can see that portion of the table which is for levels
dominated by that message manager.

The session manager also maintains a tree structure that reflects the progress of the
concurrent message managers forked in a session. Every forked message manager is rep-
resented by a node (in the tree) that contains the following information attributes:

status: this can be one of the following: active, terminated, queued;

level: the level of the message manager;

local-stamp: a local table where the time stamp entry at the level of the message
manager indicates the version that will be written at the level;
the time stamps in the other entries identify the versions that
will be used to process read-down requests;

parent: pointer to parent message manager;
object: receiving object;

message: message;

p: message parameters;

4.3.1 Session Manager Algorithms

A high-level (pseudocode) specification of the session manager algorithms is shown in
figures 6, 7, and 8. The algorithms make extensive use of the tree structure representing
the various message managers. Let us discuss these algorithms in more detail. They
are basically designed to ensure that the session manager invariant is never violated.

Procedure FORK(O2, m, p)

{

Let parent be the node issuing the fork;
Let child be a new message manager node;

Make the rightmost child of parent;
child.level « lub[parent.level, L(O2)];

If in a depth-first traversal of the tree starting at the leftmost path (and until child is
traversed) there exists a node, say n, with {n.level < child.level and n.status = active or
queued}
then child.status <« queued;
else
START (child);
end-if
}
end procedure FORK;

Figure 6: Session manager algorithm for FORK

Procedure TERMINATE(Imsgmgr)

{

Let term be the node that terminated at level Imsgmgr;
% Mark this node as terminated

term.status < terminated;

% See if any queued nodes can be started
Initiate a depth-first traversal to the right of term such that:

If for every leaf node say leaf, that is traversed there exists no previously traversed node
p with {p.level < leaf.level and p.status = active or queued}
then
START (leaf);
end-if
}
end procedure TERMINATE;

Figure 7: Session manager algorithm for TERMINATE

Procedure START (nn)

{

% Let node nn represent the message manager to be started
% Update timestamps from ancestors

For every ancestor a of nn at level [do

nn.local-stampll] < a.local-stampll];

% Update timestamps from terminated message managers to the left
Initiate a depth-first search of the tree until node nn is traversed such that:

If the level [of a node n traversed is not a level of any of the ancestors of nn
and 1 < nn.level
then

nn.local-stampl[l] < n.local-stampll];

end-if

% Update remaining local timestamp entries from the RStamp table
If there exists a level [lower than the level of nn and which is neither the level of a node
traversed in the tree nor of an ancestor of nn
then
nn.local-stamp[l] « RStampll];
end-if
}
end procedure START;

Figure 8: Session manager algorithm for START

Whenever a fork request is received, the session manager updates its tree structure by
creating a node for the forked message manager and making it the right most child of the
parent node issuing the fork. The session manager then checks to see if the forked node
can be started immediately. To do so, a depth first traversal of the tree is made starting
at the leftmost path until the newly inserted leaf node is reached. If during this traversal
we find another node (either active or queued) at the same or a lower level, the newly
inserted node (message manager) is queued and thus forced to wait.

The processing of a terminate request begins by updating the status of the node to
terminated. We then check to see if this termination can release other nodes queued
up. In determining this, our invariant leads to the property that any nodes started as
a result of a termination have to be to the right of the terminated node and at a equal
or higher level (and of course have to be leaves in the tree). Thus a depth first traversal
to the right of the terminated node is initiated. Now as in the fork case, a leat node is
allowed to execute if and only if required by the invariant. It is important to note that a
termination may result in more than one node being started. For example in figure 5(b)
the termination of message manager node 2 (secret) results in nodes 3 (top secret) and 6
(secret) being started.

Both the Fork and Terminate algorithms utilize a common Start procedure. The
procedure is concerned with updating the local-stamp table of a node before start up so
that the message manager may know which versions of objects to use to process read
down requests (at lower levels) and write operations at its level. The local-stamp-table
entries may be updated with time stamps from three sources.

1. Ancestors: In a sequential execution, a sender method is effectively blocked until
the receiver method terminates. The receiver would thus read down the latest
update by the sender before it was blocked. Although in our concurrent execution
a sender does not block, we can achieve the same read down result by requiring
a sender to pass the last version (timestamp) it wrote at its level before issuing
the fork as well as the timestamps of its ancestors, to its child (the receiver). Our
scheme thus calls for the local-stamp entries at the levels of the ancestors to be
updated by timestamps that have been successively passed down by the ancestors
themselves (along the path on which the node to be started lies®).

2. Terminated left nodes: For levels dominated by a node’s level, and for which
timestamps were not obtained from the ancestors (as explained above), the start
algorithm looks to the subtree of computations to the left of the node to be started.
The time stamp of the last written versions at such levels is obtained from the last
forked message manager (or rightmost node to the left of the node to be started)
which wrote at these levels.

3. RStamp table: If there are levels for which time stamps could not be obtained
from the above two sources, the algorithm then retrieves the time stamps from the
global RStamp table maintained by the session manager. This is because objects at

81t does not matter in which order these timestamps are collected along this path because the level of
each ancestor will be different from every other ancestor.

these levels have not been updated so far in the session. Thus the initial versions
of objects (that existed before the session started) at these levels should be used by
the starting message manager. The time stamps in the RStamp table identify such
versions.

Thus once a message manager starts, its node in the tree will have all the timestamps
necessary to process read down requests for objects classified below its level. These
timestamps are never modified in the local-stamp table after start up. However, the
timestamp entry at the level of the message manager is dealt with differently. On start,
the timestamp is incremented unconditionally before the first write/update operation and
subsequently incremented after every fork request issued to the session manager. Thus
the timestamp passed on to the forked children by a message manager will vary. Each
value identifies the state of the objects at the level of the message manager as of the time
the fork was issued.

5 Correctness and Security Proofs

In this section we give proof sketches to show that our schemes preserve serial correctness
and are free from timing channels.

5.1 Serial Correctness

We say that our multiversioning scheme preserves serial correctness if the concurrent
execution as governed by our execution model guarantees the same result as a sequential
(serial) execution of methods. Intuitively, serial correctness assures us that the database
objects will be in the same final state (as in a sequential execution) when a session
terminates. In other words the concurent execution is logically a sequential one. We
approach the proof in two parts.

Part 1 We show that write operations at any level occur in the same relative order as in
a sequential execution.

Consider a method (message manager), say nn, that is started (as a result of a fork or
terminate) at a level . We can then infer the following:

1. There exists no earlier forked message manager at level [still pending execution.

2. All current and future executions to the left of nn will be at a higher level than .

From (2) we can see that all message managers to the left of nn but started after nn will
write objects only at levels higher than or incomparable to [(as “write down” operations
are not permitted). Thus from (1) and (2) we can conclude that when method nn is
started at level [, no more write events at this or lower levels will be forthcoming from
earlier forked methods. It follows that write events will always occur in the same relative
order as in a sequential execution.

Part 2 We show that read operations under concurrent execution obtain the same state
as in a sequential execution.

Consider again a method nn started at level [.

Case 1: Reads at level |
A read at level [would obtain the latest updates of objects at level [This is consistent
with the sequential execution.

Case 2: Reads at levels below [

Consider a second method mm at a level lower than [but which starts later than nn in
a sequential execution. However, in a concurrent execution it is possible that mm may
start before nn (even when mm is to the right of nn in the tree). We must now show
that updates by mm are not read by nn. The proof follows from the fact that the values
of timestamps assigned to nn on start up come from only these categories (as mentioned
earlier).

e When obtained from the ancestors of nn the time stamps identify versions whose
states correspond to the fork times of the ancestors. These are the same states as
in a sequential execution where the issuers of forks are effectively suspended (until
their children terminate). Since mm cannot be an ancestor of nn, the latter would
not read updates by the former.

o In this category the time stamps are obtained from the latest versions created by
terminated message managers to the left of nn. These latest versions reflect the
same state as in a sequential execution. However, once again since mm is to the
right of nn no time stamps are obtained by nn from mm.

e This last category of time stamps come from the global RStamp table maintained
by the session manager. Once a session starts, the RStamp table is never updated.
Hence the time stamps of versions written by mm are never reflected in the RStamp
table and thus never obtained by a message manager such as nn.

From the above three categories of time stamps, we can conclude that a read by nn
below its level [would always obtain the same state as in the corresponding sequential
execution. This is because the timestamps obtained at every level identify versions whose
states reflect the progress of computations in a sequential execution as of the time the
stamps were obtained.

We have shown that writes at a level [occur in the same relative order as a sequential
execution and that read operations obtain the same states of objects (again as in a sequen-
tial execution). It follows that the set of operations/updates received at the boundary of
every object at level [would be the same set and in exactly the same sequence as in a
sequential execution. The state transformations that occur at objects would leave them
in the same final state as a sequential execution and thus preserve serial correctness.

5.2 Freedom from Timing Channels

To prove that our protocols are timing channel free, we observe that a message manager
may be started only as a result of a fork or terminate request. We consider each case
separately:

Case 1: Start due to fork
Consider a message manager nn forked at level . Our algorithms ensure that nn can be
denied immediate execution if and only if the following are true.

e Another node exists to the left of nn which is executing at level [

o If the above condition is not true then there must exist another executing node to
the left at level lower than [

In both cases message manager nn is denied immediate execution by one or more message
managers at equal or lower levels (and not by higher or incomparable levels). This cannot
lead to a timing channel as the start of nn cannot be modulated by any message manager
higher in level than nn.

Case 2: Start due to terminate

In this case we are guaranteed that when a message manager nn terminates at level [,
any subsequent activations of message managers will be at level [or higher and to the
right of nn. The proof of this follows from the fact that a message manager to the right
of nn, say m1 that is at a lower level, would have to be executing anyway. If m1 is not
executing then it must prevented from doing so only by an intermediate message manager
m2 to the left of mI and running at a level below [In other words, nn cannot hold up
the execution of m1. Thus in either case, the termination of nn cannot result in the start
of another message manager at a level lower than .

From the above we see that neither a fork or terminate request can cause a timing
channel and this concludes our proof sketch.

6 Conclusion

In this paper we have provided an execution model that manages concurrent computations
in a secure manner, free from timing channels. We also presented a multiversion synchro-
nization scheme that guarantees the serial correctness of the concurrent computations.
Although our focus in this paper has been on closing timing channels, we are currently
investigating other issues related to the implementation of the message filter model. In
particular we are looking into techniques for providing synchronization and concurrency
control across multiple user sessions. We are currently investigating the suitability of an
extended checkin/checkout model of transaction processing. We are also looking into an
exception and error model that will deal with errors in the concurrent computations in a
secure and covert channel free manner.

Acknowledgment

We are indebted to Joe Giordano and Howard Stainer for their support and encourage-
ment, making this work possible. The opinions expressed in this paper are of course our

own and should not be taken to represent the views of these individuals.

References

1]

W. Kim et al. Features of the ORION object-oriented database system. In W. Kim
and F. Lochovsky, editors, Object-Oriented Concepts, Databases, and Applications,
Addison-Wesley Publ. Co., Inc., Reading, MA, 1989.

D. Fisherman. IRIS: An object-oriented database management system. ACM Trans-
actions on Office Information Systems, 5(1):pp. 48-69, January 1987.

S. Jajodia and B. Kogan. Integrating an object-oriented data model with multi-level
security. Proc. of the 1990 IEEE Symposium on Security and Privacy, pp. 76-85,
May 1990.

T.F. Keefe and W.T. Tsai. Prototyping the SODA security model. Proc. 3rd IFIP
WG 11.3 Workshop on Database Security, September 1989.

T.F. Keefe, W.T. Tsai, and M.B. Thuraisingham. A multilevel security model for
object-oriented systems. Proc. 11th National Computer Security Conference, pp. 1-9,
October 1988.

D. Maier. Development of an object-oriented DBMS. Proc. 1st Intl. Conf. on Object-
Oriented Programming Systems, Languages and Applications, pp. 472-482, 1986.

J.K. Millen and T.F. Lunt. Secure Knowledge-based Systems. Technical Report,
Computer Science Laboratory, SRI International, August 1989.

R.S. Sandhu, R. Thomas, and S. Jajodia. A Secure Kernelized Architecture for Multi-
level Object-Oriented Databases. Proc. of the IEEE Computer Security Foundations
Workshop IV, pp. 139-152, June 1991.

M.B. Thuraisingham. A multilevel secure object-oriented data model. Proc. 12th
National Computer Security Conference, pp. 579-590, October 1989.

