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Abstract

The development of transaction management schemes is essential to the maturing of database
technology for multilevel secure environments. Accordingly, several concurrency control and
transaction management schemes have appeared in the recent literature. However, a close
examination of these proposals reveal that they are cast in the context of individual problems and
specialized architectures. Our objective in this paper is not to present yet another concurrency
control (and transaction management) scheme; but rather to develop a uni�ed framework and
theory of multilevel transaction management from �rst principles. The long term vision is to
develop a framework and theory that will be applicable for traditional as well as emerging
(complex) transaction models.
Our approach is based on analyzing the various dependencies that can develop between trans-

actions and database objects across security levels, leading to a better understanding of the
crucial interplay between security and correctness. To guarantee correctness, any transaction
processing scheme must schedule and complete transactions according to the commit order im-
posed by such dependencies. Hence, by utilizing these dependencies as the logical starting point,
we are able to separate the analysis of insecurity arising from the maintenance of the correct-
ness of transactions (concurrency control), from other causes. We present the groundwork for
a theory of non-interference for concurrent multilevel transactions, that identi�es commit de-
pendencies between low and high level transactions as the central cause of interference. The
presence of such dependencies will inevitably lead to a tradeo� between security and correctness.
We demonstrate the applicability of our framework by analyzing the security and correctness of
several existing proposals for transaction management.
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1. INTRODUCTION

A historical perspective on database management systems would attribute their usefulness,
and much of their success, to the evolution of the transaction concept. The notion of a trans-

1The work of both authors was partially supported by the National Security Agency through contract MDA904-
92{C-5140. We are indebted to Pete Sell, Howard Stainer and Mike Ware for making this work possible.
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action as introduced by the early researchers in the �eld [4], considers it to be an atomic unit
of execution. Hence, a transaction is considered to be both the unit of concurrency as well
as the unit of recovery in applications. As a unit of concurrency, the concurrent execution of
transactions causes no interference between transactions. This characteristic is often referred
to as serializability, since the concurrent execution of transactions produces the net e�ect of a
serial execution. As a unit of recovery, a transaction is characterized by the property of failure
atomicity meaning that if a transaction succeeds, it performs all of its operations; if it fails it
leaves the database unchanged.
The above concept of a transaction is appropriate for what we now call traditional database

applications (such as relational systems processing inventory, billing or payroll), and has in-
deed served the database community well. Such database applications are characterized by
transactions that are of short durations, and competing to access database objects. There ex-
ists a wide-body of knowledge addressing the theory of serializability and related transaction
management issues [2].
However, this traditional view of transactions does not mesh well with the requirements and

characteristics of databases for emerging application areas such as computer-aided design (CAD),
o�ce information systems, software development environments, cooperative work, etc. Why is
this? Unlike traditional applications, transactions in these new areas (referred to as complex
transactions) are often of long durations, and cooperative in nature. Hence, interactions and
visibility across such transactions have to be promoted rather than curtailed, and serializability
as the correctness criterion needs to be relaxed. Thus, there was a recognition that the transac-
tion concept itself had to be reexamined [3,16], as it combined several important notions such
as visibility, permanence, recovery, and consistency.2

The need for more exible transaction models has resulted in various extensions and proposals
to the traditional transaction model over the last decade [1,12]. As is perhaps inevitable, these
initial e�orts have a rather ad hoc avor. This has led some researchers to reexamine transaction
models and management issues from �rst principles, in an e�ort to gain a better understanding
of the fundamentals at play, and to formulate a more unifying framework. The ACTA framework
reported in [3] is a step in this direction. This framework allows us to capture the e�ects of
transactions on other transactions, as well as the e�ect of transactions on other objects in the
database, in terms of the dependencies that can develop between. The framework also allows us
to deal with notions of visibility, permanence, recovery, and consistency with more individualized
control. By utilizing dependencies as a common thread, it is able to accommodate traditional
as well as emerging transaction models.
As researchers in database security, we believe there is wisdom and foresight in the adage:

\history often repeats itself ." Most research e�orts in transaction management for multilevel
secure database management systems (mls DBMS's) are still in their infancy. The various
solutions and proposals in the literature are addressed to very speci�c problems under specialized
architectures, and as such have been approached from fairly narrow considerations [6,7,10,13{
15,17]. One is always tempted, by the excitement and prospects of unexplored territory, to
pursue yet another algorithm or solution. Alternatively, one could reect on lessons learned
from the research experience in the non-secure database domain, and work towards developing
paradigms and theories with more general applicability; thus, contributing to a better overall

2Visibility, refers to how one transaction during its lifetime, can see the e�ects of another. Permanence, refers to
the ability of a transaction to record its results in the database permanently. Recovery, refers to the ability, as
a consequence of a failure, to restore the database to some state that is considered to be correct. Consistency,
pertains to the correctness of the database state that is produced by a committed transaction.
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understanding of secure and correct transaction management.3 We feel that the increasing
interest (and maturity) of this area warrants a serious attempt at the latter approach.
Our main objective in this paper is to present the initial results of e�orts aimed at developing

a uni�ed framework and theory for understanding security and integrity of transaction manage-
ment in MLDBMS's.4 We were led to this e�ort by our examination of the growing literature
on this subject, and the subsequent di�culty in answering some fundamental questions such as
the following.

� What is the interplay between security and the correctness (in terms of preserving consis-
tency of the database) in transaction management?

� Is there a unifying approach to reasoning about the correctness and security of multilevel
transactions?

� Is it possible to reason about the security of transaction management solutions irrespective
of the underlying architecture and implementation?

� Can we formulate frameworks and theories to reason about the security and correctness
of existing solutions, as well as non-traditional and emerging transaction models?

Our work has been inuenced by the ACTA framework [3], mentioned above. Although ACTA
has no relation to security, its exibility to model traditional as well as complex transactions
in a unifying manner, is appealing. Hence we utilize some of its key insights. In particular, we
consider the dependencies formed by the interaction of transactions with other transactions, as
well as objects, in the database. However, we bring in the additional dimension of security to
the forefront by considering the implications of mandatory security rules on the formation of
such dependencies. From these dependencies, we lay the groundwork for advancing a theory
of non-interference for transactions executing at multiple security levels. We demonstrate how
the formation of commit dependencies between transactions across security levels (low and high
as well as incomparable) is the central cause of interference. We further analyze some existing
transaction management schemes for the formation of such commit dependencies, and discuss
their security.
To the best of our knowledge, the only other research e�ort to date, in developing a framework

for analyzing the security of concurrency control and scheduling protocols is the one reported by
Keefe and Tsai in [9{11]. Our work di�ers from that of Keefe and Tsai in many respects. Firstly,
our work is based more on a bottom-up, �rst principles approach, and thus forms the substratum
upon which the work of Keefe and Tsai (logically) rests. We illustrate, later in the paper, how
the various conditions causing insecurity as identi�ed by Keefe and Tsai can be reduced to
interfering commit dependencies within our theoretical framework. Secondly, the Keefe and
Tsai framework is molded too strongly by the traditional notions of concurrency control and
transaction processing. On the other hand, our framework is built upon the dependencies that
develop between transactions, and can thus be applied to the analysis of traditional as well as
non-traditional concurrency control schemes and transaction models (such as various semantic
concurrency control schemes and cooperative transaction models).
Our long-term vision is to develop a framework and theory for understanding and reasoning

about security, integrity, and availability requirements, across the entire spectrum of transaction

3In this paper we use the term security, in the narrow sense of con�dentiality or secrecy. The term correctness is
used in the sense of internal consistency of the database (which is an aspect of integrity).
4When we refer to transaction management in this paper, we are speci�cally addressing the issue of concurrency
control. We do not deal with other issues such as recovery.
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management schemes. Hence it would have to be exible enough to accommodate traditional
as well as emerging (complex) transaction models. In this paper, we have limited most of our
investigations to just traditional transaction models. Analysis of cooperative and other advanced
(complex) transaction models is left for future work. We also limit the scope of our investigations
to the interplay between security and integrity (correctness). Integration of availability issues
would be too ambitious at this point, given the limited understanding of availability (denial-of-
service) in transaction management.
The rest of this paper is organized as follows. Section 2 gives reviews the formation of

dependencies among classical single-level transactions. Section 3 explores the basics of how de-
pendencies can develop across transactions at multiple security levels. Section 4 investigates the
vital link between dependencies and interference among transactions. Section 5 analyzes some
well known architectures, and corresponding concurrency control proposals, for their security
and correctness characteristics. Section 6 highlights some future directions for research, and
concludes the paper.

2. TRANSACTIONS AND DEPENDENCIES

As transactions execute, they issue operations which access and modify database objects.
When transactions execute concurrently, we have to consider the following:

1. the e�ect of transactions on each other, and

2. the e�ect of transactions on objects.

These two considerations provide the guiding light to building any broad and unifying framework
to specify and analyze the entire spectrum of transaction management schemes.
The e�ects of concurrent transactions have implications on the correctness of the database,

as well as on the security of the system as a whole. Hence, concurrent executions are governed
by some correctness criterion (such as serializability, for traditional transaction processing).
As far as security is concerned, the execution of high level transactions should not introduce
(observable) interference from high-level to low-level users.5 In this section we give a brief review
of the correctness issue. We defer discussion on security until the next section.
It is useful to begin with a classi�cation of the di�erent types of operations in a database.

In general, we classify an operation as an observer (O), modi�er (M), or modi�er-observer
(MO). A read operation would be considered an observer, while a write would be a modi�er.
That is, a modi�er changes the state of the object accessed, whereas an observer does not. The
modi�er-observer (MO) category is required to model abstract operations with semantics beyond
primitive reads and writes. An operation of type MO, observes the value of an object, before
modifying it. For example, an object that models a bank account would support operations
such as deposit, withdraw, and balance. The balance operation is an observer, while the deposit
operation is a modi�er. The withdraw operation, on the other hand, is a modi�er-observer;
as it needs to check if the amount requested for withdrawal, exceeds the current balance in
the account. Concurrent operations from di�erent transactions conict, if they access the same
object and one of them is a modi�er.

5For convenience, we loosely use the term user as synonymous with the traditional notion of subject in multilevel
systems. In reality, of course, a high user may have low-level subjects acting on the user's behalf (when the user
is logged in as low). Therefore, strictly speaking, we need to prevent interference from high-level subjects to
low-level subjects. Also, we use only two levels, high and low, with high dominating low, in our examples. The
framework, however, does apply to general lattices.
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Figure 1. The formation of abort dependencies
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Figure 2. The formation of commit dependencies

The e�ect of concurrent transactions, and their interacting operations, can be understood by
examining the dependencies that develop between the transactions. Such dependencies impose
a commit order among the various transactions and thus govern how they can be scheduled and
completed. There are basically two types of dependencies, as mentioned in [3], and we de�ne
them below:

� Commit-Dependency: If a transaction t1 develops a commit-dependency on a second

transaction t2 (denoted by t1
cd
�! t2), then t1 cannot commit until t2 terminates (i.e.,

either commits or aborts).

� Abort-Dependency: If a transaction t1 develops an abort dependency on another trans-

action t2 (denoted by t1
ad
�! t2), then t1 would have to abort whenever t2 aborts.

Abort and commit dependencies|collectively known as completion dependencies|respectively
arise between transactions due to information ow and information obsolescence that oc-
cur between them. If a transaction is abort-dependent on another, the information used by it
would no longer be valid if the other transaction aborts. If a transaction A is commit-dependent
on another transaction B, then A cannot e�ect its changes until B commits. This enforces
serializability by ensuring that the information produced/used by B is not made obsolete.
Please note that the above dependencies are formed by transactions interacting over a shared

object. Dependencies can also arise due to the structural properties of transactions (especially
in advanced transaction models). For example, in a nested transaction model, a parent may not
be able to commit until all its child (component) transactions have committed.
We elaborate on the formation of completion dependencies by considering various operation

pairs (sequences), as shown in �gures 1 and 2. Consider abort dependencies �rst. As can be
seen in the �rst row in �gure 1, a transaction (p) issuing a modi�er operation followed by a
second transaction (q) issuing an observer operation (the operation pair (M, O)), makes the
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second transaction abort dependent on the �rst. The operation pairs (M, MO), (MO, O), and
(MO, MO) similarly cause abort dependencies to arise. In each of these cases, we notice that
there is information ow from the �rst transaction to the second, because the operation in the
second transaction observes the results produced by the �rst.
Commit dependencies are caused by the operation pairs (O, M), (O, MO), (MO, M), and

(M, M), as shown in �gure 2. In each case we notice that the second transaction with the
modi�er operation can overwrite (and thus obsolete) the value of the object accessed by the
�rst transaction. To avoid this, the second transaction should delay its commit until the �rst
transaction has committed. Otherwise, the �rst transaction will use the obsolete value, causing
inconsistencies in the database.
We note there is no entry in the tables in �gures 1 and 2 for the operation pair (O, O). This

is because two concurrent observer operations will never conict. Hence, they can be ordered in
any fashion without causing dependencies to develop.

3. THE FORMATION OF DEPENDENCIES IN mls DBMS'S

We now explore the formation of completion dependencies among transactions executing at
various security levels. We consider transactions that are classi�ed at a security level, and whose
operations are subject to mandatory security rules (as applied to that security level). Thus to
begin with, we note that dependencies, across security levels, can form between transactions
only as a result of conicts arising through read-down and write-up operations (as read-up and
write-down operations are prohibited by mandatory security rules in the Bell-LaPadula style
access control policies). We consider the write-up case separately for ease of analysis.
We are particularly interested in what e�ect dependencies have on security. Consider what

happens when a low-level transaction develops a dependency on a higher level transaction. In the
case of a commit dependency, the low transaction cannot commit until the high one commits. If
this can be modulated by the high transaction, we have the potential for a signaling channel. On
the other hand, if a low transaction is abort dependent on a higher one, it would have to abort
whenever the high transaction aborts. This could again lead to a signaling channel. Fortunately,
it turns out (as we show in the analysis below) that such abort dependencies cannot form among
multilevel transactions. Hence we have to be concerned only about commit dependencies.

3.1. Completion dependencies without write-up

We begin by looking at which operations are permitted by transactions on objects, by virtue
of their security levels and classi�cations, respectively. As shown in the table in �gure 3, an
operation issued by a transaction may be an observer (O), modi�er (M) or modi�er-observer
(MO), to an object at the same level. Without write-up, there is no operation compatibility be-
tween a low level transaction and a high level object. An operation from a high-level transaction,
however, may be an observer (O) to a low level object.
The tables in �gures 4 and 5 depict how completion dependencies form across transactions

at multiple levels. These tables are derived directly by combining compatible (permissible)
operations (as given in �gure 3) with all completion dependencies generated by transactions
in general (as given in �gures 1 and 2, respectively for commit and abort dependencies). The
operation pairs (MO, O) and (M, O) lead to high transactions developing abort dependencies
on lower level transactions. This poses no security risk, and for analysis purposes can be largely
ignored in this paper.6 However, it is interesting to note that (even without write-up operations)
the pairs (O, MO) and (O, M) can lead to low transactions becoming commit dependent on

6It should be noted that these dependencies can lead to denial of service problems for high-level transactions.
A complete theory which addresses security, consistency and freedom from starvation would need to consider
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Figure 3. Operation compatibility matrix with no write-up
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Figure 4. Formation of abort dependencies with no write-up
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Figure 5. Formation of commit dependencies with no write-up

higher level ones. From a security perspective, these dependencies cannot be ignored as they
could cause interference to low level transactions (as we will demonstrate in section 4).

3.2. Completion dependencies with write-up

When write-up operations are allowed, additional dependencies (than in the case with no
write-up) form. To see this, consider the operation compatibility matrix in �gure 6. In compar-
ison to the matrix in �gure 3 (for the no write-up case), we see that there is an extra M entry.
This is because an operation issued by a low transaction may now be a modi�er (M) to a high
level object. The occurrence of such modi�ers leads to the formation of the dependencies shown
in �gures 7, 8, and 9 (in addition to those of �gures 4 and 5). The operation pairs (M, O) and
(M, MO) are generated when a write-up operation by a low transaction precedes operations that
are observers or modi�er-observers from a high transaction. This causes the high transaction
to be abort dependent on the low transaction. On the other hand, a high transaction becomes
commit dependent on a lower one, when a write-up precedes a modi�er operation from a high
transaction (operation pair (M, M)).
The operation pairs (O, M), (M, M), and (MO, M)|generated when operations from high

transactions precede write-up operations from a low transaction|lead to low transactions be-
coming commit-dependent on higher ones (as shown in the table in �gure 9). Also, allowing
write-up operations would lead to commit dependencies developing between transactions at in-
comparable levels. This is illustrated in the table in �gure 10. Here we have two transactions at
incomparable levels la and lb writing-up on a data item classi�ed at a level lab that is an upper
bound to la and lb. The resulting (M, M) operation sequence would lead to the transaction at

these dependencies. In this paper we have put aside the availability issue for the moment, so as to �rst unify
con�dentiality and consistency. Integration of availability into this framework is left for future work.
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lb developing a commit dependency on the transaction at la. Again, from a security standpoint,
these commit dependencies warrant further investigation. In particular, these dependencies have
broad implications on concurrency control algorithms that allow write-up actions. In our fur-
ther discussions and examples, we only consider dependencies between low and high transactions.
However, all our results apply equally well to transactions at incomparable levels.

3.3. A Basic Property

We conclude this section by proving the fact that abort dependencies from low to high, as well
as incomparable levels, cannot develop with multilevel transactions, as stated in the following
theorem.

Theorem 1. In scheduling transactions at multiple levels, dependencies of the form tla
ad
�! tlb

cannot develop, where tla and tlb are any two transactions at levels la and lb in the security
lattice, such that la 6� lb.

Proof. For abort dependencies to develop, we need operation pairs of the form (M, O), (M, MO),
(MO, O), or (MO, MO). In any one of these pairs, the result of a modi�er (M) operation is made
visible to a second observer (O) operation. Now for a low-level transaction to become abort de-
pendent on a higher one, it would have to observe the modi�cations made by the higher-level
transaction. However, since high transactions cannot write-down, and low transactions cannot
read-up, this can never happen. That is, information cannot ow from high to low, and conse-
quently abort dependencies, cannot develop. Similar arguments can be made for transactions
at incomparable levels.2

From a theoretical standpoint, the absence of such abort dependencies is an important result
for security and correctness considerations.7 In terms of security, it means that the abortion of
high transactions cannot induce (or modulate) the aborts of transactions at lower levels. Thus
interference due to abort dependencies cannot occur. This allows us to narrow the scope of
interference analysis, to just commit dependencies.
From a correctness perspective, the absence of abort dependencies implies that the abort of

a high transaction cannot lead to a chain of cascading aborts at lower levels, for correctness
reasons. Thus if the transactions at individual levels avoid cascading aborts (ACA), and there
exists no high to low abort dependencies (i.e., no high transaction is abort dependent on a low
transaction), the entire set of transactions across all security levels will also have the property
of ACA. Histories that are ACA have very desirable properties such as recoverability [2].

4. COMMIT DEPENDENCIES AND INTERFERENCE

Having discussed the formation of low to high commit dependencies, we now discuss the
implication of such dependencies on security and correctness. We �rst illustrate, by examples,
how low to high commit dependencies can cause interference from higher to lower transactions
(subjects). The only way to get around such interferences would be to ignore the dependencies.
But doing so would clearly compromise correctness. Hence in the presence of such commit
dependencies, there always exists a tradeo� between security and correctness. This fact has
strong implications for any transaction management solution for multilevel systems.

7This property is also signi�cant for availability, because it tells us that abortion of high transactions cannot
induce denial-of-service or starvation of low transactions.
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4.1. Commit dependency as a source for interference

The approach of non-interference [5] to multilevel security has a strong appeal, due to its
ability to abstract away unnecessary implementation details and artifacts. In this section we
focus on developing the groundwork for the advancement of a theory of non-interference for
multilevel transactions. Our hope is that such a theory would provide a useful tool for analyzing
and predicting the security of existing as well as future transaction management schemes.
Interference from high to low-level transactions manifests itself in several ways. For example

when high and low transactions are interleaved, it may be possible for a high-level transaction
to modulate the value (of a low-level object) read by a low transaction (see example 1 below).
In other scenarios, a low level transaction could experience interference by operations being
delayed, or rejected, or by the entire transaction being aborted. Keefe and Tsai have catego-
rized schedules which are free from such interferences as being value-secure, delay-secure, and
recovery secure [9,10]. We illustrate below these, as well as other, scenarios. In each case, we
observe that low transactions become commit dependent on high transactions (ie., a low to high
commit dependency develops). In the following schedules, read, write, and commit operations
are denoted with the letters R, W, and C, respectively.

Example 1: Interference through modulation of low reads

We illustrate this form of interference with an example taken from [10]. Consider the three
transactions accessing an item x with the classi�cations and schedules as shown below:
High: T1

Low: T2, T3, x

Schedule1 Schedule2 = purge(Schedule1, hi)
T1: R[x]
T2: W[x] T2: W[x]
T3: R[x] T3: R[x]

Schedule2 is obtained by purging the Schedule1 of the high transaction T1. As a consequence
of this purge, we see that T3 reads a di�erent value of x in Schedule2 (one that is modi�ed
by the W[x] operation of T2). Observe that the original schedule (Schedule1) with the high
transaction T1, leads to the low transaction T2 developing a commit dependency on the high
transaction due to the presence of the operation sequence (R[x], W[x]) (which is of the form (O,
M)). If the dependency is not followed, the value of x obtained by the R[x] operation of the high
transaction T1, will be inconsistent (as it will be obsolete). On the other hand, if the dependency
is obeyed so as to guarantee consistency, the high transaction clearly causes interference (since
it can modulate the value read by the lower transaction, as shown in Schedule2). Let us see why.
The possible serial orders for Schedule1 include T3T1T2 and T1T3T2. On the other hand, the
equivalent serial order of Schedule2 is T2T3 (i.e., the order between T2 and T3 is now reversed).
That is, in Schedule2, the W[x] operation of T2 could be placed ahead of the R[x] of T1, thus
giving the e�ect of T2 committing before T3. But to do the same in Schedule1, that is making
T2 commit before T3, implies that T2 commit before T1 as well. In summary, the presence of a
low to high commit dependency in Schedule1 prevents the scheduler from guaranteeing that such
a schedule would be non-interfering if the high transaction had been purged (as in Schedule2).
If non-interference can be guaranteed, it can be done so only by compromising consistency.

Example 2: Interference through delays in scheduling

Here we are interested in how low-level transactions can experience interference through ob-
servable delays in the scheduling, and subsequent execution, of one or more operations. We say
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that an operation p1 experiences a delay if it arrives before another operation p2 (in the input
schedule), but is scheduled and executed after p2 (in the output schedule). In considering how
delays can cause interference, we are only interested in operations that conict. This is because
schedulers have the freedom to reorder nonconicting operations according to the dominates
relationship in the security lattice, thereby eliminating any delays.
If we look at the conicting operation pairs given in the tables of �gures 4, 5, 7, 8, and 9,

we observe that only in �gures 5 and 9 do operations from low transactions follow operations
of higher transactions. These are the operation pairs (O, MO), (O, M), (M, M), (MO, M). But
these operation pairs are precisely those that cause low to high commit dependencies to develop.
In other words, if a low operation arrives before an operation from a higher transaction but is
scheduled (in the output schedule) after the operation from the higher transaction, this will
manifest in the output schedule as a low to high commit dependency. Conversely, if the output
schedule is free of commit-dependencies, then we can conclude that all low operations (from lower
level transactions) precede the corresponding conicting operations from high transactions.

Example 3: Interference through delays in synchronization

In addition to scheduling delays, an operation may be delayed due to synchronization with
conicting operations from other transactions. Consider the example below with dynamic two-
phase locking:

Schedule5
T1: lock[x] R[x] lock[y] W[y]
T2: W[x]

Transaction T1 has obtained a lock on item x and proceeds with the R[x] operation. Hence the
W[x] operation of the lower level transaction T2 will be delayed (suspended) until this lock is
released, leading to interference. To test for such interference, all we have to do is inspect the
schedule for any low to high commit dependencies. Why? Because if a low transaction is never
delayed waiting for a lock, the only conicts that are possible, are those with observer operations
from higher transactions. These result in the operation pairs (MO, O) and (M, O), as shown in
the table in �gure 4. But these pairs can cause only abort dependencies. On the other hand,
whenever the high transaction acquires a lock �rst on a low item, the resulting operation pairs
are of the form (O, MO), and (O, M), which as shown in the table in �gure 5, cause low to high
commit dependencies.

Example 4: Interference through rejected operations

In this example, transactions are timestamped on arrival. The lower transaction T2 arrives
�rst, and is thus assigned a smaller timestamp than the higher level transaction T1. In other
words T2 is before T1 in the equivalent serial order. Consider the schedule below. Although
transaction T1 arrived later than T2, we assume that T1 issued its �rst operation before T2.

Schedule6
T1: R[x] W[y]
T2: W[x]

A timestamp based scheduler will reject the W[x] operation of the lower-level transaction T2,
as it has already processed the R[x] operation from a transaction with a larger timestamp; and
the W[x], if allowed to proceed, would invalidate the value obtained by the R[x] operation. Such
rejections of low operations can cause interference. Again this problem manifests itself in the
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commit dependency that the low transaction T2 develops on the higher transaction T1 as a result
of the R[x] W[x] sequence. Avoiding such dependencies would eliminate such interferences.

Example 5: Interference through deadlocks

In this example we illustrate how interference is caused by deadlocks. Consider the following
schedule where transactions use a dynamic two-phase locking protocol to obtain locks for ac-
cessing data items (these can be read or write locks).8 Transaction T1 is at a higher level than
T2.
Schedule7
T1: rlock[x] r[x] request-r-lock[y]
T2: wlock[y] w[y] request-w-lock[x]

The above schedule leads to a deadlock as each transaction is requesting a lock held by the
other. What role does low to high commit dependencies play in such a situation? Since low to
high abort dependencies cannot develop across transactions at multiple levels, a cyclical wait-
for relationship due to conicting actions at multiple security levels (which is necessary for a
deadlock) cannot exist unless there is a low to high commit dependency. In the schedule above,
the write lock (request request-w-lock) of T2 follows the r[x] operation of T1, leading to the
potential for the low transaction T2 to develop a commit dependency on the higher transaction
T1. In other words, the potential for low to high commit dependencies to develop is indeed
a necessary condition for a deadlock (the actual dependency develops only if the operation,
associated with the requested lock, is allowed to proceed). In summary, low to high commit
dependencies are necessary for interference through deadlocks across security levels.

4.2. Insecurity of Serializable Schedules

A well established and suitable correctness criterion for traditional transaction processing
is serializability. As mentioned earlier in the introductory section, the traditional notion of a
transaction is that it is an atomic unit, and hence indivisible. Serializability follows from the
atomicity requirement. This is because if transactions are atomic units, then running them
concurrently should produce the same e�ect as running them one after the other (serially) in
isolation. To be more precise, a history (schedule) H is serializable, if it is equivalent to a serial
history Hs. Equivalence here requires that the two histories have the same operations, and
conicting operations have the same ordering in both histories. A serializable history can be
characterized by the following:

� There exists no cyclical dependencies of the form:

ti
d
�! tj and tj

d
�! ti where d 2 fad, cdg.

As an illustration, consider the following histories (operations are subscripted to identify the
transaction issuing the operation).

Sa : W1[x] R2[x] R2[y] W1[y]

Sb : R1[x] W2[x] R2[y] W1[y]

Both schedules are not serializable. In Sa we have the dependencies t2
ad
�! t1 (due to W1[x]

preceding R2[x]) and t1
cd
�! t2 (due to R2[y] preceding W1[y]). In Sb on the other hand, we have

8In dynamic two-phase locking, locks are acquired as required. However, with static two phase locking, a trans-
action is required to acquire all the necessary locks before it can proceed, and is thus deadlock free.
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the dependencies t2
cd
�! t1 (due to R1[x] preceding W2[x]) and t1

cd
�! t2 (due to R2[y] preceding

W1[y]) . If such cycles in the dependencies exist, there is no equivalent serial history (in this
case for Sa and Sb).
The inadequacy of serializability theory for reasoning about the security of multilevel trans-

actions stems from the fact that it addresses only the correctness issue. In particular, the
speci�cation for serializability does not preclude the presence of low to high commit dependen-
cies among transactions at various security levels. Further, the equivalent serial order, and the
order in which transactions actually commit, could be di�erent. To put it di�erently, the as-
sertion that a transaction processing system (scheduler) guarantees serializability, says nothing
about its security properties.
We elaborate on the above with multiversion schedules (histories). The serializability based

correctness criterion for multiversion histories is called one-copy serializability. We say a mul-
tiversion history is one-copy serializable if it is equivalent to a 1-serial multiversion history. In
1-serial histories, operations of individual transactions are not interleaved and a read operation
always obtains the last written version. Consider the multiversion schedule below, and its 1-
serial equivalent (version numbers are indicated by subscripts attached to the data items).

Schedulemv

T1 (hi): R1[X3]
T2 (lo): R2[Y0] W2[X2]
T3 (lo): R3[Z0] W3[X3]

S1�serial: R2[Y0] W2[X2] R3[Z0] W3[X3] R1[X3]

The history is clearly one-copy serializable and transaction t3;lo precedes t1;hi in the serial order.
However, there is a low to high commit dependency from t2;lo to t1;hi since the operation W2[X2]
invalidates the value read by operation R1[X3].
In summary, it is thus important to note that serializability and related theory are artifacts

of an era of database development where correctness alone was the overriding concern. With
the advent of multilevel secure databases, there is clearly a need to reexamine such theories.
Any criterion to govern transaction processing in the security context, has to incorporate both
security and correctness in a uni�ed manner. This will enable us to reason about the security
as well as correctness of transaction management solutions, and further provide the foundation
for developing a systematic methodology to design such solutions. Our approach in this paper
of identifying commit dependencies as a cause for interference is the �rst step in understanding
the link (interplay) between security and correctness.

5. ANALYSIS OF VARIOUS ARCHITECTURES AND TRANSACTION MAN-

AGEMENT SCHEMES

In this section, we analyze some of the well known architectural approaches and solutions
that have been reported in the literature. We discuss the implications of low to high commit
dependencies in trusted9 subject, kernelized, and replicated architectures. In the replicated

9The term \trusted" is used often in the literature to convey one of two di�erent notions of trust. In the �rst
case, it conveys the fact that something is trusted to be correct. In the second case, we mean that some subject
is exempted from mandatory con�dentiality controls; in particular the simple-security and ?-properties in the
Bell-Lapadula framework. It is the latter sense of trust that we refer to in this paper. In general, a trusted
subject is expected not to violate mandatory information ow eventhough it is exempted from mandatory access
controls.
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architecture, the backend databases are untrusted. Any trusted subject, would have to reside in
the trusted front end (TFE). The discussion on the architectures is necessary as they have an
impact on the type of schedulers (concurrency controllers) that can be implemented, and it is
the schedulers that have to enforce the various dependencies.
Rather than overwhelming the reader with comprehensive details and terminologies of each

of these solutions, we have opted to be concise and present the crux of the matter at hand. In
other words, how do these solutions handle commit dependencies and the related interference
problem?
We begin with some de�nitions to characterize clearly the notions of correctness, as well as

freedom from low to high commit dependencies.

De�nition 1. We de�ne a transaction management system (scheduler) to be correctness
preserving if given any set of of transactions T, transactions commit according to the order
consistent with commit and abort dependencies that develop when executing T.

De�nition 2. We de�ne a transaction management system to be low-dependency free

if given any set of transactions T, the system can guarantee that no dependencies of the form

t1
cd
�! t2 can develop, where t1 and t2 are transactions at levels l1 and l2 respectively, and l1 6� l2.

The rest of this section is organized as follows. In sections 5.1, 5.2 and 5.3, we discuss the
broad implications of commit dependencies in the replicated, trusted subject, and kernelized
architectures respectively. This leads us to a categorization of systems and implementations
in section 5.4, based on their concurrency control characteristics. Section 5.5 gives an analysis
of existing proposals for concurrency control in MLDBMS's, relating these proposals to the
categorization of section 5.4.

5.1. Commit dependencies in replicated architectures

We explain (and formalize) an interesting scenario involving commit dependencies, that arises
with transaction processing in architectures supporting replicated data. In such systems, a
separate database management system is used to manage data at or below each security level,
and also contains all the data at its level or below. Thus lower level data is replicated across
all databases containing higher level data. When a low level transaction updates its local copy,
it is required to send an update report (or a replica of the transaction itself) to a trusted front
end (TFE). The TFE subsequently distributes these reports to other containers (databases) at
higher levels that hold copies of the same data item. In this way, the mutual consistency of the
copies (replicas) is ensured.
In some of the proposals for replica control, the TFE raises the level of the incoming update

report (or transaction replica) to a level say, l, before distributing it to the database at l. We
refer to such update reports whose levels have been raised, as clones of the original parent
transaction. (A clone transaction will only contain the modi�er (write) operations issued by
its parent.) Now at �rst glance, it seems that no low to high commit dependency can develop
at level l (since the clone and any local incoming transaction at l would be at the same level).
However, the clone developing a commit dependency on the local transaction is semantically
equivalent to the original parent transaction developing a dependency on the local transaction
at l, if they both access the same data item. In some sense, the dependency permeates through
the clone. We de�ne a cloning operator, using the notation j=, to express this. For example,
t1 j= t2, conveys the fact that a lower transaction has created a clone at a higher level. The

notation tlo j= tchi
cd
�! thi indicates a commit dependency between the low transaction tlo and
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the higher transaction thi, after the creation of the clone transaction tc.

5.2. Commit dependencies in trusted subject architectures

Architectures that utilize trusted subjects are characterized by the fact that such subjects are
exempt from mandatory security rules. From a transaction processing viewpoint, the advantage
of using trusted subjects is that it makes it feasible to implement trusted (multilevel) schedulers.
Such subjects can access information (data structures) at various levels, and maintain a global
snapshot of transactions across multiple levels, as they progress. A low transaction can now
be informed of the commit of a higher one with a write-down operation by a trusted subject,
enabling the low to high commit order to be enforced. Thus the maintenance of correctness
appears to be an achievable goal. But the following conjecture poses a dilemma:

Conjecture 1. If a transaction management system is implemented under an architecture
with trusted subjects, and is not low-commit-free, it will compromise security to be correctness
preserving. (Of course, it may not be correctness preserving and still compromise security.)

The problem with trusted subject architectures is that non-interference arguments have to
be made to demonstrate the security of the system. However this is not an easy task. There
are always unexpected scenarios one may overlook, and often it is di�cult to identify let alone
cover all cases. Even if interference does not manifest itself in an obvious fashion, such as when
transactions are delayed or rejected, other forms of interference are inevitable. This could happen
for example, due to the �nite nature of resources in the system, leading to data structures getting
saturated. In some architectures with trusted subjects, it might be possible for the system to
guarantee security. But this can be done only by ignoring the commit order mandated by the
dependencies. Correctness is then clearly compromised.

5.3. Commit dependencies in kernelized architectures

The di�culties in evaluating trusted subject architectures have sparked an increased interest
in kernelized architectures. In these architectures, all subjects are single level and thus untrusted
(if a subject is trusted, it is exempt from mandatory security rules). Security comes for free in
such architectures as there is no information ow downwards in the security lattice. Hence, at
�rst sight, it might appear that our fear of security violations from interference can be allayed
by architectural solutions. But consider the following conjecture:

Conjecture 2. A transaction management subsystem implemented under a kernelized archi-
tecture and which is not low-dependency-free (i.e., allows low to high commit dependencies to
develop), can guarantee security (as it comes for free), but not correctness (as it may not be
correctness preserving).

Now it is not possible for the commit time of a high transaction to be made known to a dependent
low transaction, without any subject having the privilege to write down. Single-level (untrusted)
subjects and scheduler components do not have such privileges (as they are not exempt from
mandatory security access control rules). Thus in a system that is not low-dependency free, it
would not be possible to schedule transactions according to the order imposed by the commit
dependencies. There also exist other scenarios where a kernelized architecture may not be able to
keep up with incoming requests (transactions), forcing it to eventually compromise correctness.
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5.4. A categorization of systems and implementations

Conjectures 1 and 2 collectively point to the fundamental conict between security and cor-
rectness. Any architecture that allows low to high commit dependencies to develop, would have
to settle for a tradeo� between security and correctness, to a certain degree. A third implemen-
tation alternative would be to pursue solutions that place restrictions on how transactions can
be interleaved, so that commit dependencies can be avoided (these systems are thus inherently
low dependency free).
We are thus led to believe that any transaction processing system and the associated imple-

mentation can be classi�ed as belonging to one of the three categories below:

� Category A: Systems which are low-dependency free.

� Category B: Systems which are not low-dependency free. We recognize two sub-cases.

{ Category B1: Systems which do not use trusted subjects for concurrency control.

{ Category B2: Systems which use trusted subjects for concurrency control.

(Recall that a trusted subject is exempted from the simple-security and star-properties, whereas
an untrusted subject must operate under these constraints.)
We believe that any category A system can be implemented under both trusted subject and

kernelized architectures. The porting of such a system from a trusted subject to a kernelized
architecture should not pose any signi�cant di�culty as it basically involves the modi�cation of
centralized coordination tasks, with algorithms that enable distributed coordination. For exam-
ple, global schedulers may now have to be be implemented as distributed single-level schedulers.
This has been undertaken in some of the systems presented in [13,17]. Of course, the bene�t
of doing this would be that the assurance of security now comes for free. As mentioned before,
category B1 systems will never compromise security (to be more precise con�dentiality) but this
assurance comes at the heavy price of correctness. Category B2 systems, in the worst case, may
compromise both security and correctness.

5.5. Analysis

In this section we present some of the well known proposals in the growing pool of transaction
management schemes that have been reported in the literature. In presenting them, we identify
the category (A, B1, or B2) to which each of them belong.

5.5.1. Solutions for the Replicated Architecture

Jajodia and Kogan: Category B2

We have classi�ed this as a category B2 solution, since the architecture utilizes a trusted (sub-
ject) front end (TFE) [6]. Hence by conjecture 1, this solution will not be able to simultaneously
guarantee security and correctness. Let us see if our claim holds up. The fundamental issue in
this architecture is the maintenance of the mutual consistency of the replicas, in a secure fashion.
For simplicity, consider just two levels, high and low, and one data item x (with two replicas, one
at each level). Once a low level transaction tlow commits, its clone, tclone;high (update projection)
is dispatched to the high database by the the TFE. However, on reaching the high database,
tclone;high �nds that there is a local transaction tlocal;high that has read data item x and is still
active (not committed). Due to the resulting commit dependency (which can happen with both
locking and timestamped based intra-level synchronization) the commit of the clone (update
projection) will be held up until the local transaction commits. Recall from the last section,

that this is a low to high commit dependency of the form tlow j= tclone;high
cd
�! tlocal;high .
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At �rst glance, this poses no interference (insecurity) since, as argued in [6], the commit of
the parent transaction is never held up by the clone. Unfortunately, a closer examination yields
evidence to the contrary. We need to see if the trusted subject in the architecture, which in this
case is the TFE, can cause interference (perhaps unintentionally) in other ways. Consider what
happens if the update projections of a million low-level transactions are sent to the TCB. (This
is rather an extreme scenario, but illustrates the point.) The TCB stores these projections in a
queue (which has a �nite capacity). Now if the commit of the original update projection (clone)
has still not been processed, the queue in the TFE cannot be emptied (serviced), and will soon
overow as it will be unable to keep up with the high rate of incoming update projections. The
TFE now has two options: (1) to reject or delay further incoming update projections; or (2) to
still accept further projections at the cost of discarding others that are overowing from the head
of the queue. Option 1 causes interference as the observable e�ect of the system's behavior to
low level subjects would be di�erent had the commit dependency not developed (i.e., if tlocal;hi
had been purged from the system). On the other hand, with option 2, the system attempts to
provide non-interfering behavior, but can succeed only by forsaking correctness (as it does not
service all the update projections, thereby a�ecting the mutual consistency of the replicas of x).
In either case conjecture 2 is true and our claim holds.
It is important to stress that the above interference scenario arises precisely because of the

low to high commit dependency, and not due to design aws in the TFE. The design of the
TFE could be an ideal one, with the queue capacity tuned to accommodate the highest (worst
case) input rates of update projections. However, the above scenario would still break such an
ideal design, so long as the capacity of the queue is �nite. It is also signi�cant to note that
interference may manifest itself in other observable ways, such as system response time, and
other performance characteristics, to name a few.

Kang, Froscher, Costich: Category B2

This solution is one that uses trusted subjects [8], and is thus vulnerable to the same scenario
illustrated for the earlier proposal of Jajodia and Kogan. It utilizes a tree model of transactions.
A set of local schedulers are concerned with the scheduling of the lower layer primitive read
and write actions, while a global (trusted) scheduler is responsible for the scheduling of more
abstract higher layer operations (queries). Unfortunately low to high commit dependencies will
develop under the scheduling strategies of the local schedulers, leading to interference.

McDermott, Jajodia, and Sandhu: Category B1

In this approach to replica control, single-level (untrusted) conservative timestamp ordering
schedulers are used [14]. Low to high commit dependencies may still develop as in the previously
illustrated scenario. This could lead to one or more of the single-level queues at the back-end
databases becoming saturated, and consequently correctness cannot be guaranteed. However, as
there are no trusted subjects, the security of the system (non-interference) is never compromised.

5.5.2. Multiversioning Schemes

Keefe and Tsai: Category A.

In [10], Keefe and Tsai describe a multiversion timestamp ordering (MVTO) algorithm with
an implementation that calls for a trusted subject. It is claimed to be secure and can handle
write-up operations. Let us see why. The basic intuition behind their approach can be seen by
considering the following simple schedules.



18

Schedule8a Schedule8b
T1a (high): R[x] T1b: R[x] Commit1b
T2a (low): W[x] T2b: W[x]

In Schedule8a, if the lower transaction T2a is assigned an earlier timestamp than the higher
transaction T1a, the W[x] operation of the lower transaction would invalidate the higher R[x]
operation, and this obviously causes a low to high commit dependency to develop. The scheduler
avoids these situations by assigning to the higher transaction T1a, a lower timestamp than
T2a. Hence semantically, transactions execute as in schedule8b , with the higher transaction
committing well before the W[x] operation can invalidate its read. In summary a commit
dependency is avoided.

Maimone and Greenberg: Category A.

This is basically an implementation of the Keefe and Tsai approach using single-level sched-
ulers [13]. As mentioned earlier, category A systems can always be ported to architectures which
don't support trusted subjects. In this revised implementation, timestamps are obtained from a
shared clock at system low. Each scheduler maintains two values, the earliest timestamp (ETS),
and the earliest lower timestamp (ELTS), to implement a timestamping scheme in a distributed
fashion.

Jajodia and Atluri: Category A.

The approach presented by Jajodia and Atluri in [7] is also based on multiversion timestamp
ordering, and uses single-level schedulers. It can be described as a category A solution, and hence
avoids commit dependencies. However the approach di�erent from that of Keefe and Tsai. If
a high level read is found to be invalidated by a lower write operation, the high transaction is
rolled back to the read operation and re-executed. Also, the commit of the high transaction
is delayed until the lower transaction has committed. In e�ect, a schedule such as Schedule8a
above, is transformed to the one below:

Schedule8c
T1c (high): R[x]
T2c (low): W[x] Commit2c

We see that the low to high commit dependency in Schedule8a is eliminated by making sure
that the lower transaction with the W[x] operation has committed well before the high read.
The Keefe, Tsai and Jajodia, Atluri schemes represent two extreme approaches in eliminating
(avoiding) interfering low to high commit dependencies. In the former, livelocks are avoided at
the price of high transactions being given older versions of data (than those chosen with classical
timestamping schemes). In the latter, high transactions do not receive very old versions of data,
but may have to rollback and restart.

5.5.3. Lock based approaches: Orange Locking: McDermott and Jajodia: Category

A

Unlike the multiversion timestamp ordering schemes above, the approach in [15] is for single-
version databases, and uses locking for concurrency control. Data items can be read locked or
write locked. When a high level transaction wants to read lower data, it sets a read-(down)
lock on the needed item. If a lower transaction wants to write a data item, it is unconditionally
allowed to set a write lock and proceed. However, if a read-down lock is held by a higher
transaction on this item just locked for writing, the read lock is changed to an orange lock.
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The orange lock indicates the potential for a low to high commit dependency to develop (as we
have an operation pair (R[x], W[x]) which is of the form (O, M)). The high transaction is then
aborted and would have to reissue the read operation. It will be allowed to commit at some
point when it has read locked all data items none of these locks are orange.
In summary, this approach is similar to that used in Schedule8c above, but is cast in terms of

locking. The authors limit the scope of the algorithms in [15] to transactions that write only at
their own levels. To handle write-up operations, the additional low to high commit dependencies
that result from the operation pairs (M, M), (MO, M) in table 9, need to be considered. In
this case, orange locks will have to be applied to write locks as well, since a lower write can
invalidate a preceding write at a higher level.

6. SUMMARY AND CONCLUSIONS

In this paper, we have presented a unifying approach for reasoning about the security and
correctness of transaction management in multilevel secure databases. The approach is based on
analyzing the dependencies that develop between concurrently interacting transactions. While
it is necessary to obey the commit order induced by such dependencies to guarantee correctness,
our approach makes it easy to check if the maintenance of correctness itself can cause security
violations. Thus in designing any transaction management scheme, our framework makes it
easy to answer such questions as: (1) is the transaction management scheme secure? Is it
correct? (2) In trying to guarantee both security and correctness, is one achieved at the expense
(compromise) of the other?
Our investigations reveal that analyzing the presence or absence of commit dependencies

between low and high transactions (or those at incomparable levels) is su�cient to give an
answer to these questions. In particular, it is su�cient to �nd one schedule which has such
dependencies to assert that the system cannot simultaneously achieve security and correctness.
On the other hand, proving the absence of these dependencies establishes that the concurrency
control component does not compromise security or correctness (Of course, security might still
be compromised due to aws in other components of the system).
We have demonstrated in this paper how some of the solutions proposed for transaction

management in replicated architectures do not avoid such commit dependencies, and hence
can cause interference under some scenarios. However, the elegance of our approach is that it
eliminates guesswork and gives the designer a clear roadmap on how the problem can be �xed.
In this paper, we have limited the scope of our discussion to traditional transaction processing

(including write-up). However abort and commit dependencies also develop due to transactions
sharing objects through abstract operations de�ned in their interfaces. Hence by utilizing these
dependencies as a common thread, we are in a position to extend our investigations to the
security and correctness of complex transactions and concurrency control schemes (such as for
object-oriented databases).
In our future work, we hope to advance the ideas presented here into a comprehensive frame-

work that addresses all aspects of transaction processing in multilevel databases. In particular,
the e�ect of dependencies on the availability (and denial of service) issue needs to be incor-
porated. We would also like to incorporate the idea of transaction authorization. This would
allow authorization mechanisms to be based on the semantics of the transactions and the objects
accessed.
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