
Proceedings of IFIP WG 11.3 Workshop on Database Security, Lake Tahoe,

California, Aug 11-13, 1997

The URA97 Model for Role-Based User-Role Assignment

Ravi Sandhu and Venkata Bhamidipati

Laboratory for Information Security Technology
ISSE Department, Mail Stop 4A4
George Mason University, Fairfax, VA 22033, USA
sandhu@isse.gmu.edu, www.list.gmu.edu

Abstract In role-based access control (RBAC) permissions are associated with
roles, and users are made members of appropriate roles thereby acquiring the
roles' permissions. The principal motivation behind RBAC is to simplify ad-
ministration. An appealing possibility is to use RBAC itself to manage RBAC,
to further provide administrative convenience. In this paper we introduce a
role-based administrative model, called URA97 (user-role assignment '97), for
assignment of users to roles.

1 INTRODUCTION

Role-based access control (RBAC) has recently received considerable attention
(see, for example, [FK92, Gui95, HDT95, NO95, SCFY96, RBAC95]). In RBAC
permissions are associated with roles, and users are made members of appro-
priate roles thereby acquiring the roles' permissions. This greatly simpli�es
management of permissions. Roles are created for the various job functions in
an organization and users are assigned roles based on their responsibilities and
quali�cations. Users can be easily reassigned from one role to another. Roles can
be granted new permissions as new applications and systems are incorporated,
and permissions can be revoked from roles as needed. Role-role relationships
can be established to lay out broad policy objectives.

In large enterprise-wide systems the number of roles can be in the hundreds
and users in the tens of thousands. Managing these roles and users, and their
interrelationships is a formidable task that often is highly centralized and dele-
gated to a small team of security administrators. It is natural to ask how RBAC
itself can be used to manage RBAC.

RBAC administration encompasses the issues of assigning users to roles,
assigning permissions to roles, and assigning roles to roles to de�ne a role hier-
archy. These activities are all required to bring users and permissions together.
However, in many cases, they are best done by di�erent administrators (or ad-
ministrative roles). Assigning permissions to roles is typically the province of

application administrators. Thus a banking application can be implemented so
credit and debit operations are assigned to a teller role, whereas approval of a
loan is assigned to a managerial role. Assignment of actual individuals to the
teller and managerial roles is a personnel management function. Assigning roles
to roles has aspects of user-role assignment and role-permission assignment.
Role-role relationships establish broad policy. Control of these relationships is
typically centralized in the hands of a few security administrators.

In this paper we focus exclusively on user-role assignment. A comprehensive
administrative model for RBAC must account for all three issues mentioned
above, among others. However, user-role assignment is a particularly critical
administrative activity. It is likely to be the �rst administrative function that is
decentralized and delegated to users rather than system administrators. Assign-
ing people to tasks is a normal managerial function. Assigning users to roles
should be a natural part of assigning users to tasks. A user-role assignment
model can also be used for managing user-group assignment and therefore has
applicability beyond RBAC.

In this paper we introduce a model for the assignment of users to roles by
means of administrative roles and permissions. We call our model URA97 (user-
role assignment '97). URA97 imposes strict limits on individual administrators
regarding which users can be assigned to which roles. URA97 is de�ned in
context of the family of RBAC96 family of models due to Sandhu et al [SCFY96].
However, it applies to almost any RBAC model, because user-role assignment
is a basic administrative feature which will be required in any RBAC model.

The next section reviews the RBAC96 family of models followed by the
de�nition of URA97 in section 3. URA97 has been implemented in the Ora-
cle DBMS. Space limitations preclude description of the implementation here.
Section 4 concludes the paper.

2 THE RBAC96 MODELS

A general family of RBAC models called RBAC96 was de�ned by Sandhu et
al [SCFY96]. Figure 1 illustrates the most general model in this family. For
simplicity we use the term RBAC96 to refer to the family of models as well as
its most general member.

The top half of �gure 1 shows (regular) roles and permissions that regulate
access to data and resources. The bottom half shows administrative roles and
permissions. Intuitively, a user is a human being or an autonomous agent, a
role is a job function or job title within the organization with some associated
semantics regarding the authority and responsibility conferred on a member of
the role, and a permission is an approval of a particular mode of access to one
or more objects in the system or some privilege to carry out speci�ed actions.

Roles are organized in a partial order �, so that if x � y then role x inherits the
permissions of role y. Members of x are also implicitly members of y. In such
cases, we say x is senior to y. Each session relates one user to possibly many
roles. The idea is that a user establishes a session and activates some subset of
roles that he or she is a member of.

Motivation and discussion about various design decisions made in developing
this family of models is given in [SCFY96, San97]. It is worth emphasizing
that RBAC96 distinguishes roles and permissions from administrative roles and
permissions respectively, where the latter are used to manage the former. How
are administrative permissions and roles managed in turn? One could consider
a second level of administrative roles and permissions to manage the �rst level
ones and so on. We feel such a progression of administration is unnecessary.
Administration of administrative roles and permissions is under control of the
chief security o�cer or delegated in part to administrative roles.

3 THE URA97 ADMINISTRATIVE MODEL

RBAC has many components as described in the previous section. Administra-
tion of RBAC involves control over each of these components including creation
and deletion of roles, creation and deletion of permissions, assignment of per-
missions to roles and their removal, creation and deletion of users, assignment
of users to roles and their removal, de�nition and maintainence of the role hi-
erarchy, de�nition and maintainence of constraints and all of these in turn for
administrative roles and permissions. A comprehensive administrative model
would be quite complex and di�cult to develop in a single step.

Fortunately administration of RBAC can be partitioned into several areas
for which administrative models can be separately and independently developed
to be later integrated. In particular we can separate the issues of assigning users
to roles, assigning permissions to roles and de�ning the role hierarchy. In many
cases, these activities would be best done by di�erent administrators. Assigning
permissions to roles is typically the province of application administrators. Thus
a banking application can be implemented so credit and debit operations are
assigned to a teller role, whereas approval of a loan is assigned to a managerial
role. Assignment of actual individuals to the teller and managerial roles is a
personnel management function. Design of the role hierarchy relates to design of
the organizational structure and is the function of a chief security o�cer under
guidance of a chief information o�cer.

In this paper our focus is exclusively on user-role assignment. As discussed
in section 1 this is likely to be the �rst and most widely decentralized admin-
istrative task in RBAC. In the RBAC96 framework of �gure 1 control of UA
is vested in the administrative roles AR. For simplicity we limit our scope to
assignment of users to regular roles. Assignment of users to administrative roles

U

USERS

SESSIONS

S

ADMINIS-

TRATIVE

ROLES

AR

.

.

.
user roles

HIERARCHY

ROLE

RH

ROLE

HIERARCHY

ADMINISTRATIVE

ARH

PERMISS-

IONS

P
PERMISSION

ASSIGNMENT

PA

ROLES

R

PERMISSION

APA

ADMINISTRATIVE

ASSIGNMENT

ADMIN.

PERMISS-

IONS

AP

CONSTRAINTS

USER

ASSIGNMENT

UA

USER

ASSIGNMENT

AUA

� U , a set of users; R and AR, disjoint sets of (regular) roles and adminis-
trative roles; P and AP , disjoint sets of (regular) permissions and admin-
istrative permissions; S, a set of sessions

� UA � U �R, user to role assignment relation
AUA � U �AR, user to administrative role assignment relation

� PA � P �R, permission to role assignment relation
APA � AP �AR, permission to administrative role assignment relation

� RH � R�R, partially ordered role hierarchy
ARH � AR�AR, partially ordered administrative role hierarchy
(both hierarchies are written as � in in�x notation)

� user : S ! U , maps each session to a single user (which does not change)

roles : S ! 2R[AR maps each session si to a set roles(si) � fr j (9r0 �
r)[(user(si); r

0) 2 UA [AUA]g (which can change with time)

session si has permissions [r2roles(si)fp j (9r
00 � r)[(p; r00) 2 PA[APA]g

� there is a collection of constraints stipulating which values of the various
components enumerated above are allowed or forbidden

Figure 1: Summary of the RBAC96 Model

is centralized under the chief security o�cer. In general the chief security o�cer
has complete control over all aspects of RBAC96.

In the rest of this section we develop a model called URA97 in which RBAC
is used to manage user-role assignment. We de�ne URA97 in two steps dealing
with granting a user membership in a role and revoking a user's membership.
URA97 is deliberately designed to have a very narrow scope. For example
creation of users and roles is outside its scope. In spite of its simplicity URA97
is quite powerful and goes much beyond existing administrative models for user-
role assignment. It is also applicable beyond RBAC to user-group assignment.

In the simplest case user-role assignment can be completely centralized in a
single chief security o�cer role. This is readily implemented in existing systems.
However, this simple approach does not scale to large systems. Clearly it is
desirable to decentralize user-role assignment to some degree.

In several systems it is possible to designate a role, say, junior security o�cer
(JSO) whose members have administrative control over one or more regular
roles, say, A, B and C. Thus limited administrative authority is delegated to
the JSO role. Unfortunately these systems typically allow the JSO role to have
complete control over roles A, B and C. A member of JSO can not only add
users to A, B and C but also delete users from these roles and add and delete
permissions. Moreover, there is no control on which users can be added to the
A, B and C roles by JSO members. Finally, JSO members are allowed to assign
A, B and C as junior to any role in the existing hierarchy (so long as this does
not introduce a cycle). All this is consistent with classical discretionary thinking
whereby member of JSO are e�ectively designated as \owners" of the A, B and
C roles, and therefore are free to do whatever they want to these roles.

In URA97 our goal is to impose restrictions on which users can be added
to a role by whom, as well as to clearly separate the ability to add and remove
users from other operations on the role. The notion of a prerequisite condition
is a key part of URA97.

De�nition 1 A prerequisite condition is a boolean expression using the
usual ^ and _ operators on terms of the form x and x where x is a regular role
(i.e., x 2 R). A prerequisite condition is evaluated for a user u by interpreting
x to be true if (9x0 � x)(u; x0) 2 UA and x to be true if (8x0 � x)(u; x0) 62 UA.
For a given set of roles R let CR denotes all possible prerequisite conditions
that can be formed using the roles in R. 2

In the trivial case a prerequisite condition can be a tautology. The simplest
non-trivial case of a prerequisite condition is test for membership in a single
role, in which situation that single role is called a prerequisite role.

User-role assignment is authorized in URA97 by the following relation.

De�nition 2 The URA97 model controls user-role assignment by means of the
relation can-assign � AR � CR� 2R. 2

(QE2)

Quality
Engineer 2

(PE1)
Engineer 1
Production Quality

Engineer 1
(QE1)

Engineering Department (ED)

Employee (E)

Director (DIR)

Project lead 1 (PL1)

Engineer 1 (E1)

Project lead 2 (PL2)

Engineer 2 (E2)

Project 1 Project 2

Production

(PE2)
Engineer 2

Figure 2: An Example Role Hierarchy

Project Security Officer 1 (PSO1) Project Security Officer 2 (PSO2)

Department Security Officer (DSO)

Senior Security Officer (SSO)

Figure 3: An Example Administrative Role Hierarchy

The meaning of can-assign(x; y; fa; b; cg) is that a member of the administrative
role x (or a member of an administrative role that is senior to x) can assign a
user whose current membership, or non-membership, in regular roles satis�es
the prerequisite condition y to be a member of regular roles a, b or c.1

To appreciate the motivation behind the can-assign relation consider the role
hierarchy of �gure 2 and the administrative role hierarchy of �gure 3. Figure 2
shows the regular roles that exist in a engineering department. There is a
junior-most role E to which all employees in the organization belong. Within
the engineering department there is a junior-most role ED and senior-most role
DIR. In between there are roles for two projects within the department, project

1User-role assignment is subject to constraints, such as mutually exclusive roles or max-

imum cardinality, that may be imposed. The assignment will succeed if and only if it is

authorized by can-assign and it satis�es all relevant constraints.

1 on the left and project 2 on the right. Each project has a senior-most project
lead role (PL1 and PL2) and a junior-most engineer role (E1 and E2). In
between each project has two incomparable roles, production engineer (PE1
and PE2) and quality engineer (QE1 and QE2).

Figure 2 su�ces for our purpose but this structure can, of course, be ex-
tended to dozens and even hundreds of projects within the engineering depart-
ment. Moreover, each project could have a di�erent structure for its roles. The
example can also be extended to multiple departments with di�erent structure
and policies applied to each department.

Figure 3 shows the administrative role hierarchy which co-exists with �g-
ure 2. The senior-most role is the senior security o�cer (SSO). Our main in-
terest is in the administrative roles junior to SSO. These consist of two project
security o�cer roles (PSO1 and PSO2) and a department security o�cer (DSO)
role with the relationships illustrated in the �gure.

For sake of illustration we de�ne the can-assign relation shown in table 1
looking for the moment at the role set column. This example has the sim-
plest prerequisite condition of testing membership in a single role known as the
prerequisite role.

The PSO1 role has partial responsibility over project 1 roles. Let Alice be a
member of the PSO1 role and Bob a member of the ED role. Alice can assign
Bob to any of the E1, PE1 and QE1 roles, but not to the PL1 role. Also if
Charlie is not a member of the ED role, then Alice cannot assign him to any
project 1 role. Hence, Alice has authority to enroll users in the E1, PE1 and
QE1 roles provided these users are already members of ED. Note that if Alice
assigns Bob to PE1 he does not need to be explicitly assigned to E1, since E1
permissions will be inherited via the role hierarchy. The PSO2 role is similar
to PSO1 but with respect to project 2. The DSO role inherits the authority
of PSO1 and PSO2 roles but can further add users who are members of ED
to the PL1 and PL2 roles. The SSO role can add users who are in the E role
to the ED role, as well as add users who are in the ED role to the DIR role.
This ensures that even the SSO must �rst enroll a user in the ED role before
that user is enrolled in a role senior to ED. This is a reasonable speci�cation for
can-assign . There are, of course, lots of other equally reasonable speci�cations
in this context. This is a matter of policy decision and our model provides the
necessary exibility.

In general, one would expect that the role being assigned is senior to the role
previously required of the user. That is, if we have can-assign(a; b; C) then b is
junior to all roles c 2 C. We believe this will usually be the case, but we do not
require it in the model. This allows URA97 to be applicable to situations where
there is no role hierarchy or where such a constraint may not be appropriate.

The notation of table 1 has bene�ted from the administrative role hierarchy.
Thus for the DSO we have speci�ed the role set as fPL1, PL2g and the other

Admin. Role Prereq. Role Role Set Role Range

PSO1 ED fE1, PE1, QE1g [E1, PL1)
PSO2 ED fE2, PE2, QE2g [E2, PL2)
DSO ED fPL1, PL2g (ED, DIR)
SSO E fEDg [ED, ED]
SSO ED fDIRg (ED, DIR]

Table 1: can-assign with Prerequisite Roles

values are inherited from PSO1 and PSO2. Similarly for the SSO. Nevertheless
explicit enumeration of the role set is unwieldy, particularly if we were to scale
up to dozens or hundreds of projects in the department. Moreover, explicit enu-
meration is not resilient with respect to changes in the role hierarchy. Suppose
a third project is introduced in the department, with roles E3, PE3, QE3, PL3
and PSO3 analogous to corresponding roles for projects 1 and 2. We can add
the following row to table 1.

Admin. Role Prereq. Role Role Set

PSO3 ED fE3, PE3, QE3g

This is a reasonable change to require when the new project and its roles are
introduced into the regular and administrative role hierarchies. However, we
also need to modify the row for DSO in table 1 to include PL3.

Consider instead the range notation illustrated in table 1 in the role range
column. The role set and role range columns of table 1 show the same role sets.
A role range de�nes this set by identifying a range within the role hierarchy of
�gure 1(a) by means of the familiar closed and open interval notation.

De�nition 3 Role sets are speci�ed in the URA97 model by the notation below

[x; y] = fr 2 R j x � r ^ r � yg
(x; y] = fr 2 R j x > r ^ r � yg

[x; y) = fr 2 R j x � r ^ r > yg
(x; y) = fr 2 R j x > r ^ r > yg

2

This notation is resilient to modi�cations in the role hierarchy such as addition
of a third project which requires addition of the following row to table 1.

Admin. Role Prereq. Role Role Range

PSO3 ED [E3, PL3)

No other change is required since the [ED, DIR) range speci�ed for the DSO
will automatically pick up PL3.

The range notation is not resilient to all changes in the role hierarchy. Dele-
tion of one of the end points of a range can leave a dangling reference and an
invalid range. Standard techniques for ensuring referential integrity would need
to be applied when modifying the range hierarchy. Changes to role-role rela-
tionships could also cause a range to be drastically di�erent from its original
meaning. Nevertheless the range notation is much more convenient than explicit
enumeration. There is also no loss of generality in adopting the range notation
since every set of roles can be expressed as a union of disjoint ranges.

Strictly speaking the role set and role range speci�cations of table 1. With
role sets the DSO role is explicitly authorized to enroll users in PL1 and PL2,
and inherits the ability to enroll users in other project 1 and 2 roles from PSO1
and PSO2. On the other hand, in with role range the DSO role is explicitly
authorized to enroll users in all project 1 and 2 roles. As it stands the net e�ect
is the same. However, if modi�cations are made to the role hierarchy or to the
PSO1 or PSO2 authorizations the e�ect can be di�erent. The DSO role set
authorization in can be replaced by the following row to make it more nearly
identical to the speci�ed role range.

Admin. Role Prereq. Role Role Set

DSO ED fE1, PE1, QE1, PL1,
E2, PE2, QE2, PL2g

Now even if the PSO1 and PSO2 roles of table 1 are modi�ed respectively
to the role sets fE1g and fE2g, the DSO role will still retain administrative
authority over all project 1 and project 2 roles. Of course, explicit and implicit
speci�cations will never behave exactly identically under all circumstances. For
instance, introduction of a new project 3 will exhibit di�erences as discussed
above. Conversely, the DSO role range authorization in table 1 can be replaced
by the following rows to make it more nearly identical to the speci�ed role set.

Admin. Role Prereq. Role Role Range

DSO ED [PL1, PL1]
DSO ED [PL2, PL2]

There is an analogous situation with the SSO role in table 1. Clearly, we must
anticipate the impact of future changes when we specify the can-assign relation.

An example of can-assign which uses prerequisite conditions rather than
prerequisite roles is shown in table 2. The authorizations for PSO1 and PSO2
have been changed relative to table 1.

Let us consider the PSO1 tuples (analysis for PSO2 is exactly similar). The
�rst tuple authorizes PSO1 to assign users with prerequisite role ED into E1.

Admin. Role Prereq. Condition Role Range

PSO1 ED [E1, E1]
PSO1 ED ^ QE1 [PE1, PE1]
PSO1 ED ^ PE1 [QE1, QE1]
PSO1 PE1 ^ QE1 [PL1, PL1]
PSO2 ED [E2, E2]
PSO2 ED ^ QE2 [PE2, PE2]
PSO2 ED ^ PE2 [QE2, QE2]
PSO2 PE2 ^ QE2 [PL2, PL2]
DSO ED (ED, DIR)
SSO E [ED, ED]
SSO ED (ED, DIR]

Table 2: can-assign with Prerequisite Conditions

The second one authorizes PSO1 to assign users with prerequisite condition
ED ^ QE1 to PE1. Similarly, the third tuple authorizes PSO1 to assign users
with prerequisite condition ED ^ PE1 to QE1. Taken together the second and
third tuples authorize PSO1 to put a user who is a member of ED into one but
not both of PE1 and QE1. This illustrates how mutually exclusive roles can
be enforced by URA97. PE1 and QE1 are mutually exclusive with respect to
the power of PSO1. However, for the DSO and SSO these are not mutually
exclusive. Hence, the notion of mutual exclusion is a relative one in URA97.
The fourth tuple authorizes PSO1 to put a user who is a member of both PE1
and QE1 into PL1. Of course, a user could have become a member of both PE1
and QE1 only by actions of a more powerful administrator than PSO1.

We now turn to consideration of the URA97 revoke model. The objective is
to de�ne a revoke model that is consistent with the philosophy of RBAC. This
causes us to depart from classical discretionary approaches to revocation.

In the typical discretionary approach to revocation there are at least two
issues that introduce complexity and subtlety. Suppose Alice grants Bob some
permission P. This is done at Alice's discretion because Alice is either the owner
of the object to which P pertains or has been granted administrative authority on
P by the actual owner. Alice can later revoke P from Bob. Now suppose Bob has
received permission P from Alice and from Charlie. If Alice revokes her grant of
P to Bob he should still continue to retain P because of Charlie's grant. A related
issue is that of cascading revokes. Suppose Charlie's grant was in turn obtained
from Alice, perhaps Bob's permission should end up being revoked by Alice's
action. Or perhaps it should not, because Alice only revoked her direct grant
to Bob but not the indirect one via Charlie which really occurred at Charlie's
discretion. A considerable literature has developed examining the subtleties that

arise, especially when hierarchical groups and negative permissions or denials
are brought into play.

The RBAC approach to authorization is quite di�erent from the traditional
discretionary one. In RBAC users are made members of roles because of their
job function or task assignment in the interest of the organization. Granting of
membership in a role is speci�cally not done at the grantor's whim. Suppose
Alice makes Bob a member of a role X. In URA97 this happens because Alice is
assigned suitable administrative authority over X via some administrative role
Y and Bob is eligible for membership in X due to Bob's existing role member-
ships (and non-memberships) satisfying the prerequisite condition. Moreover,
there are some organizational circumstances which cause Alice to grant Bob
this membership. It is not merely being done at Alice's personal fancy. Now
if at some later time Alice is removed from the administrative role Y there is
clearly no reason to also remove Bob from X. A change in Alice's job func-
tion should not necessarily undo her previous grants. Presumably some other
administrator, say Dorothy, will take over Alice's responsibility. Similarly, sup-
pose Alice and Charlie both grant membership to Bob in X. At some later time
Bob is reassigned to some other project and no longer needs to be a member of
role X. It is not material whether Alice or Charlie or both or Dorothy revokes
Bob's membership. Bob's membership in X is being revoked due to a change in
organizational circumstances.

We now introduce our notation for authorizing revocation.

De�nition 4 The URA97 model controls user-role revocation by means of the
relation can-revoke � AR � 2R. 2

The meaning of can-revoke(x; Y) is that a member of the administrative role
x (or a member of an administrative role that is senior to x) can revoke mem-
bership of a user from any regular role y 2 Y . Y is speci�ed using the range
notation of de�nition 3. We say Y de�nes the range of revocation.

The revocation operation in URA97 is said to be weak because it applies
only to the role that is directly revoked. Suppose Bob is a member of PE1 and
E1. If Alice revokes Bob's membership from E1, he continues to be a member
of the senior role PE1 and therefore can use the permissions of E1. To make
the notion of weak revocation precise we introduce the following terminology.
Recall that UA is the user assignment relation.

De�nition 5 Let us say a user U is an explicit member of role x if (U; x) 2 UA,
and that U is an implicit member of role x if for some x0 > x, (U; x0) 2 UA. 2

Weak revocation has an impact only on explicit membership. It has the straight-
forward meaning stated below.

[Weak Revocation] Let Alice have a session with administrative roles
A = fa1; a2; : : : ; akg, and let Alice try to weakly revoke Bob from role

Admin. Role Role Range

PSO1 [E1, PL1)
PSO2 [E2, PL2)
DSO (ED, DIR)
SSO [ED, DIR]

Table 3: Example of can-revoke

User E1 PE1 QE1 PL1 DIR Alice revokes user from E1

Bob Yes Yes No No No removed from E1, PE1
Cathy Yes Yes Yes No No removed from E1, PE1, QE1
Dave Yes Yes Yes Yes No no e�ect
Eve Yes Yes Yes Yes Yes no e�ect

Table 4: Example of Strong Revocation

x. If Bob is not an explicit member of x this operation has no e�ect,
otherwise: if there exists a can-revoke tuple (b; Y) such that there exists
ai 2 A; ai � b and x 2 Y revoke Bob's explicit membership in x.

Strong revocation of U's membership in x requires that U be removed not
only from explicit membership in x, but also from explicit (or implicit) mem-
bership in all roles senior to x. However, strong revocation in URA97 takes
e�ect only if all implied revocations upward in the role hierarchy are within the
revocation range of the administrative roles that are active in a session. Strong
revocation is theoretically equivalent to a series of weak revocations but it is a
useful and convenient operation for administrators.

Let us consider the example of can-revoke shown in table 3 and interpret it in
context of the hierarchies of �gures 2 and 3. Let Alice be a member of PSO1, and
let this be the only administrative role she has. Alice is authorized to strongly
revoke membership of users from roles E1, PE1 and QE1. Table 4 illustrates the
e�ect of Alice's strong revocation of a user from role E1. Alice is not allowed
to strongly revoke Dave and Eve from E1 because they are members of senior
roles outside the scope of Alice's revoking authority. If Alice was assigned to the
DSO role she could strongly revoke Dave from E1 but still would not be able to
strongly revoke Eve's membership in E1. In order to strongly revoke Eve from
E1, Alice needs to be in the SSO role.

The algorithm for strong revocation is stated in terms of weak revocation as
follows.

[Strong Revocation] Let Alice have a session with administrative roles
A = fa1; a2; : : : ; akg, and let Alice try to strongly revoke Bob from role x.
Find all roles y � x and Bob is a member of y. Weak revoke Bob from all
such y as if Alice did this weak revoke. If any of the weak revokes fail then
Alice's strong revoke has no e�ect otherwise all weak revokes succeed.

An alternate approach would be to do only those weak revokes that succeed
and ignore the rest. URA97 allows this as an option to the behavior identi�ed
above. In general, we can give exible meaning to strong revocation so long as
it can be expressed in terms of weak revocation.

So far we have looked at the cascading of revocation upward in the role
hierarchy. There is a downward cascading e�ect that also occurs. Consider Bob
in our example who is a member of E1 and PE1. Suppose further that Bob
is an explicit member of PE1 and thereby an implicit member of E1. What
happens if Alice revokes Bob from PE1? If we remove (Bob, PE1) from the UA
relation, Bob's implicit membership in E1 will also be removed. On the other
hand if Bob is an explicit member of PE1 and also an explicit member of E1
then Alice's revocation of Bob from PE1 does not remove him from E1. The
revoke operations we have de�ned in URA97 have the following e�ect.

Property 1. Implicit membership in a role a is dependent on ex-
plicit membership in some senior role b > a. Therefore when explicit
membership of a user is revoked from b, implicit membership is also
automatically revoked on junior role a unless there is some other se-
nior role c > a in which the user continues to be an explicit member.

Note that our examples of can-assign in table 1 and can-revoke in table 3 are
complementary in that each administrative role has the same range for adding
users and removing users from roles. Although this would be a common case
we do not impose it as a requirement on our model.

To summarize, URA97 controls user-role assignment by means of the relation
can-assign � AR � CR � 2R. Role sets are speci�ed using the range notation
of de�nition 3. Assignment has a simple behavior whereby can-assign(a; b; C)
authorizes a session with an administrative role a0 � a to enroll any user who
satis�es the prerequisite condition b into any role c 2 C. The prerequisite
condition is a boolean expression using the usual ^ and _ operators on terms of
the form x and x respectively denoting membership and non-membership regular
role x. Revocation is controlled in URA97 by the relation can-revoke � AR�2R.
Weak revocation applies only to explicit membership in a single role. Strong
revocation cascades upwards in the role hierarchy. In both cases revocation
cascades downwards as noted in property 1.

4 CONCLUSION

In this paper we have developed the URA97 model for assigning users to roles
and revoking users from roles. URA97 is de�ned in context of the RBAC96
model [SCFY96]. However, it should apply to almost any RBAC model, because
user-role assignment is a basic administrative feature which will be required in
any RBAC model. Authorization to assign and revoke users to and from roles
is controlled by administrative roles. The model requires users must previously
satisfy a designated prerequisite condition (stated in terms of membership and
non-membership in roles) before they can be enrolled via URA97 into additional
roles. URA97 applies only to regular roles. Control of membership in admin-
istrative roles remains entirely in hands of the chief security o�cer. We have
identi�ed strong and weak revocation operations in URA97 and have de�ned
their precise meaning.

Acknowledgment This work is partially supported by the National Science
Foundation, the National Security Agency and the National Institute of Stan-
dards and Technology.

References

[FK92] D. Ferraiolo and R Kuhn. Role-based access controls. In Proc. 15th

NIST-NCSC National Computer Security Conf., pp. 554{563, '92.

[Gui95] Luigi Guiri. A new model for role-based access control. In Proc. of

11th Annual Computer Security Application Conference, pages 249{
255, New Orleans, LA, December 11-15 1995.

[HDT95] M.-Y. Hu, S.A. Demurjian, and T.C. Ting. User-role based security
in the ADAM object-oriented design and analyses environment. In
Database Security VIII: Status and Prospects. North-Holland, 1995.

[NO95] Matunda Nyanchama and Sylvia Osborn. Access rights adminis-
tration in role-based security systems. In Database Security VIII:

Status and Prospects. North-Holland, 1995.

[RBAC95] Proc. of the 1st ACM Workshop on Role-Based Access Control, Nov

31-Dec. 1, 1995. ACM, 1997.

[San97] Ravi Sandhu. Rationale for the RBAC96 family of access control
models. In [RBAC95].

[SCFY96] Ravi Sandhu et al. Role-based access control models. IEEE Com-

puter, 29(2):38{47, February 1996.

