
ParaSDN: An Access Control Model for SDN
Applications based on Parameterized Roles and

Permissions

Abdullah Al-Alaj
Institute for Cyber Security

C-SPECC
Department of Computer Science

UTSA, San Antonio

Texas, USA

abdullah.al-alaj@utsa.edu

Ram Krishnan
Institute for Cyber Security

C-SPECC
Department of Electrical

and Computer Engineering
UTSA, San Antonio

Texas, USA

ram.krishnan@utsa.edu

Ravi Sandhu
Institute for Cyber Security

C-SPECC
Department of Computer Science

UTSA, San Antonio

Texas, USA

ravi.sandhu@utsa.edu

Abstract—Software Defined Networking (SDN) has become one
of the most important network architectures for simplifying net-
work management and enabling innovation through network pro-
grammability. Network applications submit network operations
that directly and dynamically access critical network resources
and manipulate the network behavior. Therefore, validating these
operations submitted by SDN applications is critical for the
security of SDNs. A feasible access control mechanism should
allow system administrators to specify constraints that allow for
applying minimum privileges on applications with high granu-
larity. However, the granularity of access provided by current
access control systems for SDN applications is not sufficient to
satisfy such requirements. In this paper, we propose ParaSDN,
an access control model to address the above problem using
the concept of parameterized roles and permissions. Our model
provides the benefits of enhancing access control granularity
for SDN with support of role and permission parameters. We
implemented a proof of concept prototype in an SDN controller
to demonstrate the applicability and feasibility of our proposed
model in identifying and rejecting unauthorized access requests
submitted by controller applications.

Index Terms—Software Defined Networking, Security and
privacy, Access control, Formal models, Network security.

I. INTRODUCTION AND MOTIVATION

Software-Defined Networking (SDN) has become one of the

most important architectures for network management and, not

surprisingly, helps shape how networks will be designed in

the future. Decoupling the control logic of the network from

the forwarding hardware has been determined as the core of

SDN. This process led to the ability to control the network

behavior via network apps, which often have to share the same

infrastructure managed by a central controller, causing several

security challenges, and access control is at the forefront of

them.

Information about network resources stored in the SDN

controller are highly valuable which makes it an attractive

target for attackers and increases the potential to be gained

via unauthorized access. Also, the potential damage that can

be done increases dramatically if this unauthorized access is

done by compromised, buggy, or malicious SDN apps.

In prior works on access control for SDN [1]–[3], an access

control system was built based on a set of course grained

permissions. For example, a permission to install a flow rule

allows an app to handle any type of traffic. In other proposals

that exploit the concept of roles for SDN [4], permissions

are created based on object types rather than specific object

instances. For example, a permission to read an object of type

flow rule is generally used to read every flow rule in a switch.

In another example, a permission to access a network device

allows access to all network devices.

However, in real SDN deployments, a higher access con-

trol granularity is required, and there is often the need to

assign permissions to a subset of object instances that share

the same type. For instance, in a campus network it might

be required for an app to access particular resources (e.g.,

switches, servers, etc.) that belong to a specific department

only. Moreover, there is a need to assign permissions with

higher granularity and make access decisions based on low

level parameters derived from the request or contents of object

itself (e.g., TCP protocol, VLAN id, IP address, Ethernet

address, etc.).

This requires an access control system that restricts apps’

access scope to unique object instances. An easy solution for

this problem is to have an access control system in which a

separate permission is created for each single object. However,

adopting such approach in role-based systems has known

problems and hard to manage as it requires creating and

managing huge number of permissions, roles, permission-role

associations, and app-role associations. A more feasible access

control mechanism should allow the system administrator

to flexibly specify the constraint that every app can only

access and modify specific object instances commensurate to

99

2020 IEEE 6th International Conference on Collaboration and Internet Computing (CIC)

978-1-7281-4146-6/20/$31.00 ©2020 IEEE
DOI 10.1109/CIC50333.2020.00022

its authorization requirements. Otherwise, apps may access

resources not under their authority and thus conflicts may

arise. For instance, apps that manage web services and require

installing flow rules to handle web traffic should not be

allowed to handle other traffic types.

Because of the known advantages of role-based access

control especially in facilitating access control management,

we propose ParaSDN, an access control model that addresses

the above problems using the concept of parameterized roles

and permissions.

This paper is organized as follows. In Section II, we discuss

related work. Section III describes the concept of parameter-

ized permissions and roles. Section IV describes the concep-

tual ParSDN model and its formal definitions. In Section V, we

define app and permission assignment administrative actions.

The framework architecture is described in Section VI. Section

VII describes Parameter types in SDN. In VIII, we describe

proof-of-concept use case and its configuration. Section IX

discusses implementation and performance evaluation of the

ParaSDN. Finally, Section X presents conclusion and outlines

future work.

II. LITERATURE REVIEW

Several proposals on access control for SDN apps exist in

the literature. [5]–[7] described the access control system in

terms of the set of operations (APIs) as the basic unit for

restricting app’s activities. Although in works like [1]–[3],

roles were assigned to apps, the operation (API) assigned

to roles was too course grained leads to violating the least

privilege principle to a large extent.

We classify SDN apps authorization into two main cate-

gories: firstly, permission-based app authorization which in-

cludes techniques wherein apps authorization is driven by di-

rect permission-app assignment. Secondly, role-based app au-

thorization in which app authorization is driven by permission-

to-role followed by role-to-app assignment.

PermOF [5] proposed a permission system in which a

permission set is directly granted to apps. The authors of

[6] adopted the concept of PermOF. Inspired by Android

permission system, [7] proposed a permission system based

on OpenFlow messages’ states that can be used as the unit to

which the permission details can be applied. The authors in

[8] introduced AEGIS using security access rules. Managing

the aforementioned permission-based authorization systems is

a widely known problem which we opt-out of. So we will only

discuss role based authorization system for SDN.

FortNOX [1] implemented a role-based authorization sys-

tem with three roles. FortNOX is extended and improved in

SE-Floodlight [2]. In [9], a formal access control model for

SDN apps based on SE-Floodlight as a reference controller is

presented. SM-ONOS [10] proposed a permission system at

four-level granularity. Based on API-level permissions from

SM-ONOS, [11] proposed information flow control among

apps for the ONOS controller. Tseng et al. [3], inspired by

[2], proposed Controller-DAC with API request threshold and

a priority for each app assigned either directly or via the

role. These approaches have a limited granularity scope and

don’t provide an extensive and open fine grained capabilities.

However, in our work we present a more convenient and

flexible approach for creating a set of easy manageable roles

built upon fine-grained and fully customized permissions that

suit complex SDN use cases.

Works in [12]–[14] used the concept of parameterization

with roles and privileges. However, their formalization is not

well structured in a complete model, which make it hard

to adopt in different contexts including SDN. In this work,

we introduce a formal definition for parameterized roles and

permissions that conform to the standard RBAC model and

more flexible to adopt in a variety of environments including

and beyond SDN.

III. PARASDN COMPONENTS OVERVIEW

In this section, we present an overview of the ParaSDN

components and give examples of the syntax and semantics in

the context of SDN environment.

A. Parameters

A parameter is a name:value pair that, when assigned to a

permission, may indicate the subset of network resources that

an app can access using this permission, or add restrictions

on the performed operation. A parameter value can identify

network resources in several ways. For example, It can usec

(1) network resource IDs, for instance, a parameter ‘attach-

ment point’ can be assigned the value {0x1:1, 0x1:2, 0x2:1}
to indicate the listed switch:port combinations; (2) a label that

indicates a group of network resources, for instance, the label

‘CS’, when assigned to the parameter ‘dept’, may indicate

all switch IDs in the CS department; (3) a property existing

in the requested resource, for instance, the parameter ‘traffic’

with a value of ‘web’ indicates the set of ports used for Web

protocol; or (4) a contextual property that restricts access to

the resource, for instance, the parameter ‘time active’ with the

value of ‘9-17’ may indicate the time frame during which an

operation can be carried out.

The range of each parameter is represented by a finite set

of atomic values. For example, the range of ‘dept’ is a set of

department names that share the network infrastructure. Each

parameter can either be atomic or set-valued from its declared

range. For a particular parameter p, it is range is composed

only from those values defined by the system administrator.

Different SDN-related parameter types with examples are

discussed in section VII.

B. Parameterized Permissions

A parameterized permission is represented by the ordered

pair:

((opi, oti), {(par1, val1), (par2, val2), ...})

where (opi, oti) combines a network operation with an object

type in the ordinary permission format, and {(par1, val1),

(par2, val2), ...} is a subset of parameter:value pairs. In the pa-

rameterized permission, the object type oti indicates all object

instances of that type on which operation opi can be exercised.

100

If used alone, it provides a very course-grained access privilege

and impractical for many SDN security policies. In many

situations, what is required is to provide access to subset of

object instances of that type. This is achieved with the help of

the parameters associated with this permission. The semantics

of this parameterized permission is that an app can execute the

operation opi on only object instances of type oti that satisfy

the restrictions imposed by the parameter values.

The values of parameters in a permission are not assigned

at the time of permission creation; instead, their values re-

mains unknown until the permission is associated with a

parameterized role whose parameter values already defined,

i.e., permission parameters’ values are steered by the values

of role parameters. So, when security architects create a

parameterized permission, they initialize parameter values with

a special value ⊥, which means unknown. For example, the

parameterized permission:

((addFlow, FLOW-RULE), {(dept, ⊥), (traffic, ⊥)})

indicates that an app can insert flow rules in switches of as-

yet-unknown department(s), and these rules can handle traffic

of as-yet-unknown type. If the values of parameters ‘dept’ and

‘traffic’ are ‘CS’ and ‘web’, then an app can add flow rules

that handle Web traffic in switches of CS department.

C. Parameterized Roles

A parameterized role is represented using an ordered pair:

(ri, {(par1, val1), (par2, val2), ...})

where ri represents a role name, and {(par1, val1), (par2,

val2), ...} is a set of parameter:value pairs. Initially, all role

parameters are assigned a special value ⊥, which means

unknown. For example,

(Flow Mod, {(dept, ⊥), (traffic, ⊥)})

is a parameterized role that includes permissions to read,

update, insert, and delete flow rules in switches of as-yet-

unknown department(s), and these rules can handle traffic of

as-yet-unknown type. If the values of parameters ‘dept’ and

‘traffic’ are ‘CS’ and ‘web’, then an app can exercise these

operations only to flow rule instances that reside in switches

of CS department and handle traffic destined to Web servers.

D. Parameter Value Assignment

At the time of role engineering, there is no need to worry

about actual parameter values at the level of permissions and

roles. As mentioned above, parameterized permissions and

parameterized roles are instantiated with parameter values

assigned a special value ⊥, which means unknown.

A parameterized permission is assigned to a parameterized

role via the administrative action assignPPerm(pp, pr), where

pp is a parameterized permission and pr is a parameterized

role. At this step, no actual parameter values are assigned.

This is demonstrated in step 1 of Fig. 1 (a). Because pa-

rameter values are assigned based on the requirements for

an app to access system resources, their values will remain

unknown until actual app-to-role assignment is executed via

assignApp(a, pr, valset), where a is an app, pr is a param-

eterized permission, and valset is the set of values to be

Fig. 1. Parameter values assigned via assignApp administrative action
propagate automatically from role parameters to permission parameters.

supplied to pr. The values in valset propagates automatically

to corresponding permission parameters. This app-to-role as-

signment and value propagation is demonstrated in steps 2 and

3 of Fig. 1 (a). The final state of the parameterized role and

parameterized permission as associated with app a is shown

in Fig. 1 (b).

E. Parameter Verification

We consider an app’s access request to an object as a right

of access claim by that app to that object. This claim requires

verification by the access control system. We use specific

functions, called Verifiers, to check the validity of this claim

by comparing the parameter values in the actual access rights

of the app (i.e., the available parameterized permissions of the

session) with the properties of the requested object.

For example, a verifier VRuleSwitch will be called after

exercising the permission ((addFlow, FLOW-RULE), (dept,

CS), (traffic, web)). It is used to verify that a flow rule that is

being submitted by an app for insertion is to be inserted in an

authorized switch, i.e., in switches if the CS department. The

verifier exploits information from the object, i.e., the flow rule,

and parameter values from the parameterized permission, i.e.,

CS department. If the accessed switch is within the switches

of CS department, a positive response is returned, otherwise

the verifier returns negative response.

It worth mentioning that one verifier can serve multiple

parameterized permissions. For example, the same verifier

VRuleSwitch will be called with the permission ((deleteFlow,

FLOW-RULE), (dept, CS), (traffic, web)). Associating one

verifier with multiple parameterized permissions reduces the

management effort when dealing with large number of per-

missions. Also, one parameterized permission might require

multiple verifiers. For example, another verifier that will

be invoked for any of the above parameterized permissions

is VRuleTraffic which verifies that the accessed flow rule

handles corrcet traffic type, i.e., web traffic. The verifiers must

be called for one parameterized permission depends on the

parameters associated with the permission.

IV. PARASDN CONCEPTUAL MODEL AND DEFINITION

The conceptual model and the relations between the com-

ponents of ParaSDN are shown in Fig. 2. ParaSDN has the

following basic components: OpenFlow apps APPS, roles

ROLES, operations OPS, objects OBS, object types OBTS,

the parameter set PAR, and the set of parameter values VAL.

101

Fig. 2. ParaSDN Conceptual Model.

The basic sets and functions in ParaSDN are shown in

Table I. APPS refer to the set of OpenFlow apps. ROLES

is the set of role names. OPS is the set of all operations

exposed to apps by the controller services and performed on

objects. Inserting flow rules and reading port statistics are

examples of operations. OBS is the set of object instances

that are managed by the controller and should be protected

from unauthorized access. They are managed by the controller

to maintain a consistent state of the network infrastructure.

An element in OBTS represents the type of a specific object

instance. For example, FLOW-RULE, DEVICE, and LINK

refer to the type of actual instances of flow rules, devices,

and links respectively.

PAR represents the set of all parameters in the system. This

could be atomic or set valued as determined by the type of the

parameter. Type of a parameter, set or atomic, is specified by

the function parType. VAL is the set of all parameter values

used in the system. PRMS is the set of permissions, where a

permission combines a network operation with an object type.

The set SESSIONS represents a mapping between an app and

an activated subset of parameterized roles. An app can have

multiple sessions and a session belongs to only one app. OT

is a relation for the combinations between objects and their

types. PVPAIRS is a subset of parameter:value pairs. PPRMS

defines the set of parameterized permissions as discussed in

Section III-B. PROLES defines the set of parameterized roles

as discussed in Section III-C.

The functions required for parameter verification are defined

in part 4 of Table II. VERIFIERS is a set of boolean functions

defined by security administrators for parameter verification.

Each Vi ∈ VERIFIERS is applied on an object and a parameter

to check whether an object satisfies the requirements of the

parameter. Param verifier is a function that returns a verifier

that needs to be executed at the time of access request. It maps

an (object type, parameter) pairs to their related verifier.

In our model, parameter checking and verification process

is an essential part of evaluating each session’s access request.

It requires different components to communicate as illustrated

in Table II. Security administrators firstly need to define a

parameter verification function Vi (or so-called a verifier)

that must be executed to find whether an object fulfills the

requirements of a parameter. Verifiers are defined by means

of the language LVerify defined in Table III. The language

LVerify allows to create conditions that involve parameter

values and information about the object. In this language,

ConsSet and ConsAtomic are constant sets and atomic values.

Because not all the verifiers need to be executed for a

requested object, security administrators need to specify the

subset of verifiers applicable to the requested object and

the permission parameters. An access request might need

to execute multiple verifiers depending on the parameters

associated with the parameterized permission undergo the

check. At the time of access request, the function CandidateV-

erifiers receives all parameters associated with a parameterized

permission need to be checked. This function is responsible

of retrieving the set of applicable verifiers and submitting this

set to the function ParamCheck for evaluation. In order to do

this, it passes the object type along with each parameter to

param verifier function that retrieves the applicable verifier.

It should be mentioned that the function CandidateVerifiers

doesn’t deal with the parameter values or the object instances

themselves, however, it relies on the parameter name and the

object types to fetch the relevant verifiers. On the other hand,

the verifiers returned by CandidateVerifiers use information

about actual object and actual parameter values for evaluation.

The function ParamCheck receives the applicable verifiers

for the object and verifies if the object can be accessed based

on the provided parameter values. It achieves this by invoking

102

TABLE I
PARASDN FORMAL MODEL DEFINITION.

1.Basic Sets:
– APPS, ROLES, OPS, OBS, OBTS, PAR, and VAL: set of apps, roles, operations, objects, object types, parameters, and parameter values.
– For each par ∈ PAR, Range(par) represents the parameter’s range, a finite set of atomic values. We assume VAL includes a special value “⊥” to

indicate that the value of a parameter is unknown.
– parType: PAR → {set, atomic} specifies parameter type as set of atomic valued.
– PRMS ⊆ OPS × OBTS, set of ordinary permissions.
– SESSIONS, set of sessions.
2.Assignment Relations:
– OT ⊆ OBS × OBTS, a many-to-one relation mapping an object to its type, where

(o, ot1) ∈ OT ∧ (o, ot2) ∈ OT ⇒ ot1 = ot2.
– PVPAIRS ⊆ PAR × VAL, a many-to-many mapping parameter to value assignment relation.

For convenience, for every pvpair = (pari, vali) ∈ PVPAIRS, let pvpair.par = pari and pvpair.val = vali.

– PPRMS ⊆ PRMS × 2PVPAIRS, a relation mapping a permission role to subset of (parameters , value) combinations.
For convenience, for every pp = ((opi, oti), PVPAIRSi) ∈ PPRMS, let pp.op = opi, pp.ot = oti, and pp.PVPAIRS = PVPAIRSi.

– PROLES ⊆ ROLES × 2PVPAIRS, a relation mapping a role to subset of combinations of parameters and their values.
For convenience, for every pr = (ri, PVPAIRSi) ∈ PROLES, let pr.r = ri and pr.PVPAIRS = PVPAIRSi.

– PPA ⊆ PPRMS × PROLES , a many-to-many mapping parameterized permission to parameterized role assignment relation.
– AA ⊆ APPS × PROLES, a many-to-many mapping app to parameterized role assignment relation.
3.Derived Functions:
– assigned pperms: PROLES → 2PPRMS, the mapping of parameterized role into a set of parameterized permissions.

Formally, assigned pperms(pr) = {pp ∈ PPRMS — (pp, pr) ∈ PPA}.

– app sessions: APPS → 2SESSIONS, the mapping of an app into a set of sessions.

– session app : SESSIONS → 2APPS, the mapping of session into the corresponding app.

– session roles: SESSIONS → 2PROLES, the mapping of session into a set of parameterized roles.
Formally, session roles(s) = {pr ∈ PROLES — (session app(s), pr) ∈ AA}.

– type: OBS → OBTS, a function specifying the type of an object defined as
type(o) = {t ∈ OBTS — (o, t) ∈ OT}.

– avail session pperms: SESSIONS → 2PPRMS, the parameterized permissions available to an app in a session.
Formally, avail session pperms(s) =

⋃
pr∈session–roles(s)assigned pperms(pr).

4.Parameter Verification Functions:
– VERIFIERS = {V1, V2, ..., Vn} a finite set of Boolean functions.

For each Vi ∈ VERIFIERS.Vi : SESSIONS × OPS ×OBS × PVPAIRS → {True, False}.
– param verifier: OBTS × PAR → VERIFIERS, a function that maps a combination of object type and parameter to the corresponding verification

function needs to be evaluated.

TABLE II
PARAMETER CHECKING FUNCTIONS.

A. Verifiers:
Language LVerify is used to define each verifier Vi(s: SESSIONS, op: OPS, ob: OBS, pvpair : PVPAIRS) in VERIFIERS.

B. CandidateVerifiers: a function that maps each object type to its applicable set of verifiers.
CandidateVerifiers(ot: OBTS, pvpairs : 2PVPAIRS){

verifiers = {};
For each pvpairi ∈ pvpairs do

Vi = param verifier(ot, pvpairi.par);
verifiers := verifiers ∪ {(Vi × pvpairi)};

return verifiers;
}
C. ParamCheck: a function that checks an object against all candidate verifiers until the first failure is discovered or a true is returned as the final outcome.
ParamCheck(s: SESSIONS, op: OPS, ob: OBS, pvpairs: 2PVPAIRS){

For each (Vi × pvpairi) ∈ CandidateVerifiers(type(ob), pvpairs) do
if ¬Vi(s, op, ob, pvpairi)

return false;
return true;

}

TABLE III
LANGUAGE LVERIFY TO FORM VERIFIERS.

ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | (ϕ) | ¬ϕ | ∃x ∈ set.ϕ | ∀x ∈ set.ϕ | set setcompare set | atomic ∈ set | atomic atomiccompare atomic setcompare ::= ⊂ | ⊆ | �atomiccompare ::=

< | = | ≤
set ::= setpar.val | ConstSet
atomic ::= atomicpar.val | ConstAtomic
setpar ∈ {pvpair | pvpair ∈ PVPAIRS ∧ parType(pvpair.par) = set}
atomicpar ∈ {pvpair | pvpair ∈ PVPAIRS ∧ parType(pvpair.par) = atomic}

103

TABLE IV
APP AUTHORIZATION FUNCTION.

Function Authorization Condition
checkAccess(s: SESSIONS, op: OPS, ob: OBS) ∃pr ∈ PROLES : pr ∈ session roles(s), ∃pp ∈ PPRMS : (pp, pr) ∈ PPA ∧

(op, type(ob)) = (pp.op, pp.ot) ∧ ParamCheck(s, op, ob, pp.PVPAIRS) =
True.

Fig. 3. General Overview of the proposed system components and Architec-
ture

the verifiers one by one. For finding the final outcome of

session’s access request, the system function CheckAccess is

used. This function is formally defined in Table IV. As part

of the final decision, it invokes the function ParamCheck to

evaluate the compliance of the object with the permission

parameters. It is responsible of returning the final decision

whether an app’s session is or is not allowed to perform a

given operation on a given object.

V. ADMINISTRATIVE ACTIONS FOR APP AND PERMISSION

ASSIGNMENT

The specification of a complete list of administrative

functions is out of the scope of this paper. We only

show two administrative functions assignApp(a, pr, valset) and

assignPPerm(pp, pr) due to their relation to the parameter

values as described in Section III-D. The formal specification

of these two administrative functions is shown in Table V.

The function assignApp(a, pr, valset) assigns an app a to a

parameterized role pr and assigns the values in valset to

parameters in pr. The values in valset propagates automatically

to the corresponding permission parameters in every param-

eterized permission pp associated with pr. A parameterized

permission pp can be assigned to a role parameterized pr via

the assignPPerm(pp, pr) function.

VI. FRAMEWORK ARCHITECTURE AND PARAMETER

ENGINE COMPONENTS

In this section, we show how ParaSDN framework is de-

signed to integrate role parameters in the decision process, and

then we elaborate on how it works by presenting its operational

scenario.

A. ParaSDN Framework Architecture

As shown in Fig. 3, ParaSDN consists of four main

components: (1) Policy Enforcement Point (PEP), (2) Policy

Decision Point (PDP), (3) Policy Information Point (PIP),

and (4) Parameter Engine. The General functionality of the

Parameter Engine itself is distributed among multiple com-

ponents, namely, Parameter Check Point (PCP), Verifiers

Retrieval Point (VRP), and multiple Parameter Verification

Points (PVPs). These components function together to provide

parameter evaluation essential for generating an access control

decision fundamental for security policy enforcement.

When an app’s session submits an access request, the

authorization flow involves intercepting the session’s access

request by the PEP, passing the request to the PDP, querying

the PIP to get the parameterized permissions available for the

session, and finally calling the Parameter Engine for parameter

verification. It is the PDP’s decision to involve the Parameter

Engine in the authorization process or not. If the ordinary per-

mission in the parametrized permission doesn’t match with the

sessions request, the PDP denies access, otherwise the request

is passed to the Parameter Engine for further evaluation.

B. ParaSDN Parameter Engine

The first component of the Parameter Engine is the PCP. It

represents a central point in the Policy engine. It is responsible

of receiving the object and the permission parameters and

verifying if the object can be accessed based on the provided

parameters’ values. In order to do this, the PCP must check

if the requested object complies with the requirements of

each and every parameter associated with the permission.

This is done by invoking candidate verifiers each represents a

parameter verification point (PVPs).

Each PVP is a boolean expression designed by the security

administrator to verify if an object satisfies the requirement

of the parameter. In other words, each PVP receives an object

and a parameter and evaluates the session’s right to access

the object based on the parameter value. If any PVP returns

FALSE, which means that the requirements of that parameter

is not satisfied, the PCP stops the whole parameter verification

process and returns false to the PDP. On the other hand, the

PCP will return true if and only if the object satisfies all

the perimeter requirements, i.e., all PVPs return TRUE. The

PDP logic relies on this result to allow or deny access to the

requested object.

Before the PCP calls any PVP, it need to specify the subset

of PVPs need to be invoked. We design the VRP as responsible

104

TABLE V
FORMAL SPECIFICATION OF ASSIGNAPP(A, PR, VALSET) AND ASSIGNPPERM(PP, PR) ADMINISTRATIVE FUNCTIONS.

Function Authorization
Condition

Update

assignPPerm(pp,
pr)

pp ∈ PPRMS
∧

pr ∈
PROLES

∧
(pp, pr) /∈

PPA

PPA’ = PPA
⋃ {(pp, pr)}

assignApp(a, pr,
valset)

a ∈ APPS
∧

pr ∈
PROLES

∧

valset ∈ VAL
∧

(a, pr)
/∈ AA

//Assign values to role parameters.
For each pr pvpairi ∈ pr.PVPAIRS, vi ∈ valset, 1 ≤ i ≤ —pr.PVPAIRS— do

pr pvpairi.val = vi
//Pass parameter values from pr to its member parameterized permissions.
For each pp ∈ PPRMS : (pp, pr) ∈ PPA do

For each pr pvpairi ∈ pr.PVPAIRS, pp pvpairi ∈ pp.PVPAIRS, 1 ≤ i ≤ —pr.PVPAIRS— do
pp pvpairi.val = pr pvpairi.val

AA’ = AA
⋃ {(a, pr)}

TABLE VI
EXAMPLES FOR FLOW-DRIVEN PARAMETERS FOR SDN.

Parameter Description
tcp src, tcp dst TCP source/distination port
udp src, udp dst UDP source/distination port
vlan id VLAN id
ip proto IP protocol
ipv4 src, ipv4 dst IPv4 source/distination address
ipv4 src mask,
ipv4 dst mask

IPv4 source/distination subnet mask

of identifying these PVPs and submitting them to the PCP. The

VRP does this by referring to the VerifiersMap which maps

pairs of object type and parameter to their applicable PVP.

c

VII. PARAMETER CATEGORIES FOR SDN

We identify four categories of parameters that can be used

with parameterized roles and permissions for SDN environ-

ment.

1. Topology-specific parameters: parameters to iden-

tify subsets of network switches, links, or ports. For ex-

ample, the set-valued parameter switch id with a value

of 00:00:00:00:00:00:00:01 assigned to a role Topology-

Visualizer restricts role holders from accessing other switches.

2. Flow-driven parameters: represent parameters to iden-

tify flow rules. They can be supplied to roles (e.g., ‘Flow

Mod’) that authorize access to objects of type FLOW-RULE.

For example, parameter tcp dst assigned a value of 80 will

identify all flow rules that manipulate traffic destined to an

HTTP server. A parameter ipv4 dst mask assigned a value of

192.168.5.0/24 identifies flow rules targeting this subnet. i.e.,

targeting IP addresses in the range 192.168.5.0 - 192.168.5.255

that has subnet mask of 255.255.255.0. Table VI shows

examples of Flow-driven parameters.

3. Application-specific parameter: This parameter repre-

sents an app id. It is supplied to roles to identify particular

app that will operate using this role. For example, assume

the parameter app id is supplied to role ‘Pool Manager’ and

app id is assigned the value ”Load Balancer” (assuming ”Load

Balancer” is an app ID for a load balancer app), this means

that this role can operate only by ”Load Balancer” app. Every

time a request is submitted by a session using this role, a

verifier function VApp id should verify that session app(s)

= app id(‘Pool Manager’), i.e., session app(s) = ”Load Bal-

ancer”. Assuming this session is compromised by an app

MalApp, this makes session app(s) = MalApp. As a result,

any request using this session will not be granted because the

verifier VApp id will fail since the check session app(s) =

app id(‘Pool-Manager’) will return false because the parame-

ter value ‘Pool Manager’ is attached as the parameter value in

the parameterized role. This requires sending the session id as

parameter to the verifier function in order to use session app(s)

in the evaluation process which is already depicted in the

formal model in Table I.

4. Organization-specific parameters: They represent pa-

rameters pertaining to internal organizational structure such

as divisions and departments operating internally at some

level in the organization hierarchy. For example, a parameter

dept with the value of CS or CE associated with a ‘Flow

Mod’ role identifies network resources that can be accessed

by apps operating under Computer Science or Computer

Engineering departments, respectively. These resources might

include set of switches, ports and links under the authority

of specific department. The interpretation of the organization-

specific parameters and the resources associated with them is

an internal organization issue. In another example, a parameter

tenant with the value tenant1, authorizes an app to access

tenant1 resources.

VIII. PROOF OF CONCEPT USE CASE

In this section we demonstrate and configure a use case

in ParaSDN. Assume in a small campus network we have the

network infrastructure as depicted in Fig. 4. The infrastructure

is divided between two departments CS and CE. Assume CS

dept independently manages two switches, 0x1 and 0x2 and

the four hosts connected to them. Host-3 runs a web server.

The CE department separately manages one switch 0x3 and

two hosts host-5 and host-6. Host-5 runs a web server. Hosts 1-

4 are assigned vlan id=1, and hosts-5 and Host-6 are assigned

to vlan id=2. Switches are connected to one controller. The

controller has two apps, one for each Department. ‘Data

105

TABLE VII
CONFIGURATION OF THE PROOF OF CONCEPT USE CASE OF SECTION VIII IN PARASDN (PART1).

1. Model Basic Sets:
– APPS = {Data Usage Cap Mngr, Intrusion Prevention App}.

– ROLES = {Device Handler, Bandwidth Monitoring, Flow Mod, Packet-In Handler}.

– OPS = {queryDevice, getBandwidthConsumption, addFlow, readPacketInPayload}.

– OBS = D ∪ PS ∪ FR ∪ PIP, where D = set of all network devices, PS = set of all port statistics in all switches, FR = set of all flow rules, and PIP = set of all

packet-in messages.

– OBTS = {DEVICE, PORT-STATS, FLOW-RULE, PI-PAYLOAD}.

– PAR = {vlan id, attachment point, dept, traffic}.

– Range(vlan id) = {1, 2}. Range(attachment point) = {0x1:1, 0x1:2, 0x2:1, 0x2:2, 0x3:1}. Range(dept) = {CS, CE}. Range(traffic) = {web}.

– parType(vlan id) = atomic. parType(attachment point) = set. parType(dept) = set. parType(traffic) = atomic.

– PRMS = {(queryDevice, DEVICE), (getBandwidthConsumption, PORT-STATS), (addFlow, FLOW-RULE), (readPacketInPayload, PI-PAYLOAD)}.

– SESSIONS = {DataUsageAnalysisSession, DataCapEnforcingSession, IntrusionPreventionSession}.

2. Assignment Relations:
– OT = {(d, DEVICE) : d ∈ D} ⋃ {(ps, PORT-STATS) : ps ∈ PS} ⋃ {(fr, FLOW-RULE) : fr ∈ FR} ⋃ {(pip, PI-PAYLOAD) : pip ∈ PIP}}.

– PPRMS = {((queryDevice, DEVICE), {(vlan id, ⊥)}), ((getBandwidthConsumption, PORT-STATS), {(attachment point, ⊥)}),

((addFlow, FLOW-RULE), {(dept, ⊥), (traffic, ⊥)}), ((readPacketInPayload, PI-PAYLOAD), {(attachment point, ⊥)})}
– PROLES = {(Device Handler, {(vlan id, ⊥)}), (Bandwidth Monitoring, {(attachment point, ⊥)}),

(Flow Mod, {(dept, ⊥), (traffic, ⊥)}), (Packet-In Handler, {(attachment point, ⊥)})}
– PPA = {(((queryDevice, DEVICE), {(vlan id, ⊥)}), (Device Handler, {(vlan id, ⊥)})),

(((getBandwidthConsumption, PORT-STATS), {(attachment point, ⊥)}), (Bandwidth Monitoring , {(attachment point, ⊥)})),
(((addFlow, FLOW-RULE), {(dept, ⊥), (traffic, ⊥)}), (Flow Mod, {(dept, ⊥), (traffic, ⊥)})),

(((readPacketInPayload, PI-PAYLOAD), {(attachment point, ⊥)}), (Packet-In Handler, {(attachment point, ⊥)}))}.

– AA = {(Data Usage Cap Mngr, (Device Handler, {(vlan id, 1)})), (Data Usage Cap Mngr, (Bandwidth Monitoring, {(attachment point, {0x1:1, 0x1:2, 0x2:1,

0x2:2})})), (Data Usage Cap Mngr, (Flow Mod, {(dept, {CS}), (traffic, web)})), (Intrusion Prevention App, (Device Handler, {(vlan id, 2)}), (Intrusion Prevention

App, (Packet-In Handler, {(attachment point, {0x3:1})}), (Intrusion Prevention App, (Flow Mod, {(dept, {CE}), (traffic, web)}))}.

3. Derived Functions:
– assigned pperms((Device Handler, {(vlan id, ⊥)})) = {((queryDevice, DEVICE), {(vlan id, ⊥)})}.

assigned pperms((Bandwidth Monitoring, {(attachment point, ⊥)})) = {((getBandwidthConsumption, PORT-STATS), {(attachment point, ⊥)})}.
assigned pperms((Flow Mod, {(dept, ⊥), (traffic, ⊥)})) = {((addFlow, FLOW-RULE), {(dept, ⊥), (traffic, ⊥)})}.

assigned pperms((Packet-In Handler, {(attachment point, ⊥)})) = {((readPacketInPayload, PI-PAYLOAD), {(attachment point, ⊥)})}.

– app sessions(Data Usage Cap Mngr) = {DataUsageAnalysisSession, DataCapEnforcingSession}.

app sessions(Intrusion Prevention App) = {IntrusionPreventionSession}.

– session roles(DataUsageAnalysisSession) = {(Device Handler, {(vlan id, 1)}), (Bandwidth Monitoring, {(attachment point, {0x1:1, 0x1:2, 0x2:1})})}.
session roles(DataCapEnforcingSession) = {(Flow Mod, {(dept, {CS}), (traffic, web)})}.

session roles(IntrusionPreventionSession) = {(Device Handler, {(vlan id, 2)}), (Packet-In Handler, {(attachment point, {0x3:1})}), (Flow Mod, {(dept, {CE}),

(traffic, web)})}.

– avail session pperms(DataUsageAnalysisSession) = {((queryDevice, DEVICE), {(vlan id, 1)}),
((getBandwidthConsumption, PORT-STATS), {(attachment point, {0x1:1, 0x1:2, 0x2:1})})}.
avail session pperms(DataCapEnforcingSession) = {((addFlow, FLOW-RULE), {(dept, {CS}), (traffic, web)})}.

avail session pperms(IntrusionPreventionSession) = {((queryDevice, DEVICE), {(vlan id, 2)}), ((readPacketInPayload, PI-PAYLOAD), {(attachment point,

{0x3:1})}). ((addFlow, FLOW-RULE), {(dept, {CE}), (traffic, web)})}.

4.Parameter Verification Functions:
– VERIFIERS = {VDeviceVlan, VStatsAttachpoint, VRuleSwitch, VRuleTraffic, VPInAttchpoint}.

– param verifier((DEVICE, vlan id)) = VDeviceVlan.
param verifier((PORT-STATS, attachment point)) = VStatsAttachpoint.
param verifier((FLOW-RULE, dept)) = VRuleSwitch.
param verifier((FLOW-RULE, traffic)) = VRuleTraffic.

param verifier((PI-PAYLOAD, attachment point)) = VPInAttchpoint.

Fig. 4. Topology for proof of concept use case in section VIII.

Usage Cap Mngr’ is authorized on resources of CS dept and

‘Intrusion Prevention App’ is authorized on resources of CE

dept. The basic sets and assignment relations of the use case

configuration is shown in Table VII.

The app ‘Data Usage Cap Mngr’ is designed to protect

web server on host-3 from any denial-of-service. It needs

to monitor bandwidth consumption on attachment points in

the switches of CS dept. Thus, is assigned the parameter-

ized role (Bandwidth Monitoring, (attachment point, 0x1:1,

0x1:2, 0x2:1, 0x2:2)). When this application notices high

transmission of packets destined to the web server, it inserts

flow rules to block sender’s traffic. This app is authorized to

handle web traffic only. For that reason it is assigned to to

the parameiretized role (Flow Mod, (dept, CS), (traffic, web)).

‘Data Usage Cap Mngr’ is allowed to read information about

hosts with vlan id = 1 only. For this reason it is assigned

106

TABLE VIII
CONFIGURATION OF PARAMETER ENGINE FUNCTIONS FOR PROOF OF CONCEPT USE CASE OF SECTION VIII (PART 2).

A. Verifiers:
A.1. VDeviceVlan(s: SESSIONS, op: OPS, ob: OBS, pvpair : PVPAIRS){

//assume a request from app Data Usage Cap Mngr via DataUsageAnaly-
sisSession with the following:

//ob = host tagged with vlan id=1
//pvpair = (vlan id, 1)
(ob.vlan id = pvpair.val); //will return true

}
A.2. VStatsAttachpoint(s: SESSIONS, op: OPS, ob: OBS, pvpair : PV-
PAIRS){

//assume a request from app Data Usage Cap Mngr via DataUsageAnaly-
sisSession with the following:

//ob = 0x1:1
//pvpair = (attachment point, {0x1:1, 0x1:2, 0x2:1: 0x2:2})
(ob ∈ pvpair.val); //will return true

}
A.3. VRuleSwitch(s: SESSIONS, op: OPS, ob: OBS, pvpair : PVPAIRS){

//assume a request from app Data Usage Cap Mngr via DataCapEnforc-
ingSession with the following:

//ob = flow rule[switch id=0x2,tcp dst=80,...]

//pvpair = (dept, {CS})
//switches(CS) = {0x1, 0x2}
(∃d ∈ pvpair.val : ob.switch id ∈ switches(d)); //will return true

}

A.4. VRuleTraffic(s: SESSIONS, op: OPS, ob: OBS, pvpair : PVPAIRS){
//assume a request from app Data Usage Cap Mngr via DataCapEnforcingSession

with the following:
//ob = flow rule[switch id=0x2,tcp dst=80,...]

//pvpair = (traffic, web)
(ob.tcp dst ∈ protocol ports(pvpair.val)); //will return true

}
A.5. VPInAttchpoint(s: SESSIONS, op: OPS, ob: OBS, pvpair : PVPAIRS){

//assume a request from Intrusion Prevention App via IntrusionPreventionSession
with the following:

//ob = packet-in message with source switch id = 0x3
//and out port = 1
//pvpair = (attachment point, {0x3:1})
(attachment point(ob.switch id, ob.out port) ∈ pvpair.val); //will return true

}
B. CandidateVerifiers(ot: OBTS, pvpairs : 2PVPAIRS){

verifiers = {};
For each pi ∈ {dept, traffic} do

V1 = param verifier(FLOW-RULE, dept); //V1=VRuleSwitch.
verifiers := verifiers ∪ VRuleSwitch;
V2 = param verifier(FLOW-RULE, traffic); //V2=VRuleTraffic.
verifiers := verifiers ∪ VRuleTraffic;

return verifiers; //verifiers = {VRuleSwitch, VRuleTraffic}.

}
C. ParamCheck(s: SESSIONS, op: OPS, ob: OBS, pvpairs: 2PVPAIRS){

//Example for flow rule insertion by DataCapEnforcingSession.
verifiers = CandidateVerifiers(type(flow rule[switch id=0x2,tcp dst=80,...]), {(dept, {CS}), (traffic, web)}).
VRuleSwitch(DataCapEnforcingSession, addFlow, flow rule[switch id=0x2,tcp dst=80,...] , (dept, {CS}));
VRuleTraffic(DataCapEnforcingSession, addFlow, flow rule[switch id=0x2,tcp dst=80,...] , (traffic, web));
return true;

}

to the parameterized role (Device Handler, (vlan id, 1)). The

relations between theses apps and their parameterized roles

are specified in AA relation in item 2 of table VII.

The function of ‘Intrusion Prevention App’ is to inspect

packets destined to the web server in host-5. It inserts flow

rules to block any malicious activity destined to this server.

Because it is authorized for switch 0x3 only, the app is as-

signed the parameterized roles (Flow Mod, (dept, CE), (traffic,

web))) and (Packet-In Handler, (attachment point, 0x3-1).

When access requests are submitted by these apps, ParaSDN

checks each access request using the CheckAccess function

described in Table IV. The Parameter Engine calls the verifiers

to verify if apps requests are legitimate based on parameter

values. Examples of verifiers are shown in item A of Table

VIII. For example, the verifier VRuleSwitch Will be called

to make sure that the flow rule is inserted in a switch under

the authority of the requesting app. If the ‘Data Usage Cap

Mngr’ app tries to insert a flow rule in switch 0x2. The

verifier VRuleSwitch will be elected as a candidate verifier

based on the object type and the parameter. It will receive

the object and the parameter (dept, CS) and verify, based on

the condition, that the flow rule will be inserted in switches

of CS department. Otherwise, a false is returned and access

will be denied. The verifiers in item A of Table VIII gives

some assumed access requests based on the use case and the

corresponding verifier’s decision. The two Apps achieve these

tasks via sessions. These sessions and their parameterized roles

are shown in item 3 of Table VII via the function session roles.

IX. IMPLEMENTATION AND EVALUATION

In order to demonstrate our proof-of-concept prototype,

we developed and ran the framework in Floodlight platform

v1.2 release [15]. The Floodlight platform is deployed on a

virtual machine that has 8GB of memory and runs on Ubuntu

14.04 OS installation. We created a topology with three virtual

switches (Open vSwitch v2.3.90) connected to each other and

each switch is connected to two hosts. Switches are connected

to the controller and hosts are virtual machines that has 2GB

and run Ubuntu 14.04 OS server.

We implemented our ParaSDN authorization framework in

Floodlight platform and used hooking techniques without any

change to the code of Floodlight modules. We implemented

hooking for all operations exposed by Floodlight services to

controller apps. We used AspectJ [16], which is a seamless

aspect-oriented extension to Java. Our system intercepts all

operations before execution. When a session issues a request

the hooked API invokes the ParaSDN components for per-

forming access verification and reply back. This system can

be deployed to all other Java-based SDN controllers.

App requests are intercepted by our framework before

reaching to the SDN service. Access will be provided by

the service only after successful authorization check. During

the lifetime of the app, our access control system keeps

mediating all sessions access requests for performing security

authorizations. It can identify each session, mediate each

access request and send it for authorization check based on

ParaSDN configuration.

To evaluate the performance of ParaSDN, we created a test

app and assigned the app fifty network operations. The purpose

107

Fig. 5. Average execution time required to finish the tested operations.

is to perform a pressure test on ParaSDN by executing these

operations with different security configurations. Each security

configuration is characterized by the number of parameterized

roles assigned to the app and number of parameters associated

with each of them. We created test parameters and associated

them with parameterized roles and created corresponding test

verifiers. For each security configuration, the test is repeated

for hundred times.

In the first configuration, the fifty operations are executed

with one fixed parameterized role and varying number of test

parameters. The total authorization time is reported for these

fifty operations as shown in Fig. 5. Each subsequent test is

performed by assigning one more parameterized role to the

app and repeating the same previous test with varying number

of parameters until ten roles. The execution time for all tests

is reported as shown in Fig. 5.

The results in Fig. 5 demonstrates that the latency overhead

of ParaSDN increases linearly with the number of parameters

and the number of roles, thus ParaSDN is highly scalable even

if the number of parameters and the complexity of security

configuration grow in the future.

To compare the overhead imposed by parameters in

ParaSDN with the one without using Parameters, i.e, the

SDN-RBAC system [4], we repeated the same test on SDN-

RBAC. We computed the average times required to finish all

parameters with fixed number of roles and aligned the results

of with that of SDN-RBAC. The results are shown in Fig.

6. The overall results show that ParaSDN adds negligible

overhead to the Floodlight controller which doesn’t impact

the whole controller’s performance.

X. CONCLUSION AND FUTURE WORK

In this paper, we proposed ParaSDN, an access control

model that provides fine grained capabilities for SDN using

the concept of parameterized roles and permissions. We im-

plemented a proof of concept prototype in an SDN controller

to demonstrate the applicability and feasibility of our pro-

posed model in identifying and rejecting unauthorized access

requests submitted by controller apps. As a future work,

we plan to extend our model to suit the needs for multi-

controller environments in SDN-Enabled technologies like IoT

and Cloud infrastructures.

Fig. 6. Overhead imposed by parameters in ParaSDN compared to SDN-
RBAC system.

ACKNOWLEDGMENT

This work is partially supported by NSF CREST Grant

HRD-1736209 and CNS-1553696.

REFERENCES

[1] P. Porras et al., “A security enforcement kernel for openflow networks,”
in Proceedings of the first workshop on Hot topics in software defined
networks. ACM, 2012, pp. 121–126.

[2] P. A. Porras et al., “Securing the software defined network control layer.”
in NDSS, 2015.

[3] Y. Tseng et al., “Controller dac: Securing sdn controller with dynamic
access control,” in Communications (ICC), 2017 IEEE International
Conference on. IEEE, 2017, pp. 1–6.

[4] A. Al-Alaj, R. Krishnan, and R. Sandhu, “Sdn-rbac: An access control
model for sdn controller applications,” in 2019 4th International Con-
ference on Computing, Communications and Security (ICCCS). IEEE,
2019, pp. 1–8.

[5] X. Wen et al., “Towards a secure controller platform for openflow
applications,” in Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking. ACM, 2013, pp. 171–
172.

[6] S. Scott-Hayward et al., “Operationcheckpoint: Sdn application control,”
in Network Protocols (ICNP), 2014 IEEE 22nd International Conference
on. IEEE, 2014, pp. 618–623.

[7] J. Noh et al., “Vulnerabilities of network os and mitigation with
state-based permission system,” Security and Communication Networks,
vol. 9, no. 13, pp. 1971–1982, 2016.

[8] H. Padekar et al., “Enabling dynamic access control for controller
applications in software-defined networks,” in Proceedings of the 21st
ACM on Symposium on Access Control Models and Technologies.
ACM, 2016, pp. 51–61.

[9] A. Al-Alaj, R. Sandhu, and R. Krishnan, “A formal access control model
for se-floodlight controller,” in Proceedings of the ACM International
Workshop on Security in Software Defined Networks & Network Func-
tion Virtualization. ACM, 2019, pp. 1–6.

[10] C. Yoon et al., “A security-mode for carrier-grade sdn controllers,”
in Proceedings of the 33rd Annual Computer Security Applications
Conference. ACM, 2017, pp. 461–473.

[11] B. Ujcich et al., “Cross-app poisoning in software-defined networking,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018, pp. 648–663.

[12] L. Giuri and P. Iglio, “Role templates for content-based access control,”
in Proceedings of the second ACM workshop on Role-based access
control, 1997, pp. 153–159.

[13] M. Ge and S. L. Osborn, “A design for parameterized roles,” in Research
Directions in Data and Applications Security XVIII. Springer, 2004,
pp. 251–264.

[14] A. E. Abdallah and E. J. Khayat, “A formal model for parameterized
role-based access control,” in IFIP World Computer Congress, TC 1.
Springer, 2004, pp. 233–246.

[15] Floodlight-Project. (2020) http://www.projectfloodlight.org/.
[16] AspectJ. (2020) Aspectj: A seamless aspect oriented extension to java.

https://www.eclipse.org/aspectj/.

108

