
A Model for the Administration of Access Control
in Software Defined Networking using Custom

Permissions

Abdullah Al-Alaj
Institute for Cyber Security

C-SPECC
Department of Computer Science

UTSA, San Antonio

Texas, USA

abdullah.al-alaj@utsa.edu

Ravi Sandhu
Institute for Cyber Security

C-SPECC
Department of Computer Science

UTSA, San Antonio

Texas, USA

ravi.sandhu@utsa.edu

Ram Krishnan
Institute for Cyber Security

C-SPECC
Department of Electrical

and Computer Engineering
UTSA, San Antonio

Texas, USA

ram.krishnan@utsa.edu

Abstract—Role-based access control (RBAC) has been widely
studied and applied in many domains including Software De-
fined Networks (SDN). Because the motivation behind adopting
RBAC for SDN is to simplify the administration of network
app authorizations, having an administrative model is a key
component for managing the associations between different SDN
entities, and thus determining the access rights of network
apps. Currently, SDN environment is lacking such administrative
model. Moreover, the operations provided by SDN services are
coarse grained, which make it difficult to create administrative
units necessary for access control administration. To address
these problems, in this paper, we introduce an approach for
creating custom SDN operations to extend the capabilities of SDN
services and provide fine grained custom permissions specialized
for the administration of access control in SDN. Then, with these
extended features, we present SDN-RBACa, an administrative
model to manage access control actions that define authorizations
of network apps.

Through proof of concept prototype and use cases, we demon-
strate the usability of custom permissions and show how custom
permissions enable and facilitate the administration of access
control in SDNs.

Index Terms—Software Defined Networking, Security and
privacy, Access control, Formal models, Network security.

I. INTRODUCTION

The centralized SDN controller in conjunction with net-

work operations provided by controller services result in a

programmable network. This programmability allows network

administrators to provide network services that enable more

flexible, customized, and intelligent networking through apps.

SDN offers the possibility for SDN apps to further extend the

functionality of the network. These features and more make

SDN suitable for technologies like Cloud Computing [1] and

IoT [2].

Access rights of network apps must follow the minimum

privilege principle. Recently, various methods have been pro-

posed for adopting RBAC for the management of access rights

of network apps [3]–[6]. Thus, administration of access rights

of network apps is inevitable. In large SDNs and possibly

large number of network apps, and with the possibility of

an increased number of network services provided by the

controller, the number of roles can be in the hundreds or

thousands, and apps can be in the tens, hundreds or thousands.

Managing permissions, roles, apps, and their interrelationships

could be a tremendous task which need simplification.

In a prior work, we presented SDN-RBAC [3], a role based

access control model for SDN apps. Because the motivation

behind adopting RBAC [7], [8] for SDN is to simplify the

administration of app authorizations, and because the most

commonly carried out administrative activities in SDN-RBAC

are maintaining the app-role and permission-role relations, in

this paper we present an extension to SDN-RBAC operational

model by introducing tasks, and then we present an adminis-

trative model, referred to as SDN-RBACa, for administering

app-role and task-role relations. To the best of our knowledge,

this is the first time in the literature a model is presented for

the administration of access control in SDN.

For designing our administrative model, we adopt concepts

from Uni-ARBAC [9] administrative model because it com-

bines many of the administrative principles and novel concepts

from many administrative models in the literature [10]–[16].

So, in our model, instead of administering individual permis-

sions, permissions are combined into tasks which are assigned

to roles as a unit. Moreover, roles and tasks are partitioned

and assigned into administrative (or admin) units. Apps are

assigned to app-pools from where individual apps are assigned

to roles. Administrative users in an admin unit can assign apps

to roles only if these apps (via app pools) and these roles are

assigned to the admin unit in which this user is a member.

The rest of the paper is organized as follows. In Section II,

we discuss related work. Section III describes administrative

units in SDN. In Section IV, we describe an approach to create

custom and proxy operations to enable the administration of

access control in SDN. We discuss the concept of custom

169

2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA)

978-1-7281-8543-9/20/$31.00 ©2020 IEEE
DOI 10.1109/TPS-ISA50397.2020.00032

permissions in Section V. Section VI describes the conceptual

SDN-RBACa model and its formal definitions. In Section

VII, we describe tasks and roles engineering for SDN using

custom permissions. In Section VIII, we describe a proof-of-

concept use case and its configuration. In Sections IX and

X, we discuss implementation and performance evaluation of

the operational model of SDN-RBACa. Finally, Section XI

concludes the paper and outlines future work.

II. LITERATURE REVIEW

App authorization for SDN can be classified into two main

categories. Firstly, permission-based app authorization which

includes techniques wherein apps authorization is driven by

direct permission-app assignment [17], [18]. The management

of such authorization approach is a widely known prob-

lem. Secondly, role-based app authorization [3]–[6]. Because

SDN’s motivation is to simplify network management, and

because RBAC’s motivation is to simplify the administration

of authorizations, it is very important to think about the

administration of access control in SDN. However, none of the

previous works addressed the administration of access control

for SDN apps. To the best of our knowledge, this is the first

time the administration of access control in SDN is discussed

in the literature.

III. ADMINISTRATIVE UNITS IN SDN

A. The need for Administrative Units in SDN

Small SDN networks with small number of SDN apps and

roles could be managed easily by a single administrator or

a single admin unit that handles all network functions and

all traffic types. As SDN networks grow larger with more

apps, however, they become more complex and difficult to

centrally manage all access control components and their

associations by a single, fully-trusted administrative authority.

Thus, access control administration has to be decentralized into

multiple partially-trusted administrative authorities which are

assigned appropriate power to change portions of the access

control state. To satisfy this requirement, in our proposed

administrative model, rather than having administrative roles,

we adopt the concept of Administrative Units (AU) [9] to

decentralize access control administration for SDN-RBAC [3].

In large SDNs, the need for specialized apps to deal with

specific network traffic becomes more prominent. For exam-

ple, Web load balancer, Web Firewall, VoIP load balancer,

VoIP Firewall, etc. In order to be able to administer the

associations between these apps and their roles, we have to

engineer admin units based on the apps’ network functions

and the corresponding access rights. For example based on

traffic types or organizational entities (e.g., department in a

campus network, tenant’s network slice, etc.).

Engineering of admin units requires that each admin unit

manages an exclusive set of roles which is not under the

authority of another admin unit. If administration is divided

into multiple admin units, each specialized with one traffic

type, for example Web admin unit, VoIP admin unit, Email

admin unit, and FTP admin unit, this makes each admin

unit responsible for managing exclusive set of roles that

handle similar network functions. In this case, Web admin

unit exclusively manages roles related to network functions

that handle Web traffic. Similarly VoIP admin unit exclusively

manages roles related to network functions that handle VoIP

traffic. In another scenario, if admin units are divided based on

organizational entities, multiple tenants for example, then each

admin unit manages exclusive roles of one tenant. This admin

unit authorizes SDN apps of this tenant (via role assignment)

to independently operate on this tenant’s resources.

B. Granularity of SDN Network Operations

Practically, if a network operation provides access to a wide

range of network resources, and these resources need to be

managed by different admin units, this precludes the flexibility

in engineering appropriate admin units. The flexibility stems

from the presence of operations fine grained enough to provide

the convenience in engineering set of roles exclusive for each

admin unit.

Because engineering of admin units requires that each

admin unit manages an exclusive set of roles and, to some

extent, exclusive set of resources which can be accessed by

permissions in these roles, it is vital for the operations/APIs

exposed by the system under consideration to be fine grained

enough to the level necessary to engineer these roles. Other-

wise, engineering of such admin units will be infeasible.

Unfortunately, the currant state of the art SDN controllers

doesn’t provide such fine grained network operations. For

example, an app with the permission to add a flow rule can

insert a flow rule that manipulates any traffic type. Also,

it can insert the flow rule in any switch reachable by the

controller. From an administrative point of view, this precludes

the coexistence of different admin units for access control in

SDN. For example, to engineer Web AU and VoIP AU, it is

necessary to engineer roles that only handle web traffic and

other roles that only handle VoIP traffic. Each set of roles will

be exclusively managed by its respective AU. Such capability

is not possible by the native operations currently provided by

SDN controllers.

A solution for this problem is to create refined versions

of the the coarse grained operations in a way that satisfies the

needs of fine grained access control for SDN apps, and enables

engineering of various admin units necessary for access control

administration. The refined version of an operation is called

customized or custom operation as will be described in the

following section.

IV. CUSTOM AND PROXY OPERATIONS

In this context, an SDN controller operation is a java API

call submitted by an SDN controller apps to access network re-

sources. We call these operations as target operations OPTarget

since they are the current target by SDN apps and may be a

target for the refinement process. We call the refined version

as the custom operation OPcustom. So, a custom operation is

the refined version of a target operation.

170

Fig. 1. Target, custom, and proxy operations.

In its simplest form, a custom operation can be created by

first cloning the target operation, and then refining its code

by adding a fine grained check on the desired attributes based

on which an admin unit is defined. For example, because a

web admin unit manages web-related roles, this requires the

existence of network operations that handle only web traffic

and disallow treatment of other traffic types. Thus, the target

operation is refined by first creating a cloned custom operation

and then adding a check inside the custom operation to make

sure that accessed objects are web-related only.

However, in this approach, if each custom operation will

check for a specific type of traffic (e.g., web, voip, ftp, email),

then multiple custom operations must be created, one for each

traffic type. And because custom operations are exact copies

of target operations, plus a refinement code added to it, this

approach has some problems: i) it significantly increases the

number of lines of the native code in SDN controller, ii) it

requires extra effort in refining multiple very close custom

operations for one target operation, and iii) it increases the

compilation time of the controller’s code.

To avoid such problems, we create what we call proxy
operations OPProxy. Each proxy operation calls one custom

operation and passes a parameter value based on which the

refinement will be done. The general process for creating cus-

tom and proxy operations and their interaction is schematically

depicted in Fig. 1. The process starts by cloning the target

operation OPTarget that need to be refined. The new resulted

operation OPCustom is modified first by adding a new formal

parameter to its parameter list. Then it is further modified by

adding statements to either check the accessed object against

the refinement parameter value or adding statements to filter

out unauthorized objects based on the refinement parameter

value. Then multiple proxy operations OPProxyi
can be created.

Each OPProxyi
contains a simple call to OPCustom, and is

designed to pass a hard coded refinement parameter value. This

call passes a parameter value to the custom operation based

on which the refinement will be done and specific objects will

be accessed. For ease of reference and access control review,

the name of the proxy operation should reflect the parameter

value passed to its custom operation. Proxy Operations can be

considered as abstractions of custom operations.

By customizing the operations in such a way, a proxy

operation becomes not only fine-grained, but also expressive,

which makes the design of access control policy and its admin-

istration simpler. Fig. 2 shows an example of creating a custom

operation addFlow(.., traffic) for addFlow operation and then

creating three proxy Operations addWebFlow, addVoIPFlow,

and addFtpFlow. Using proxy operations makes OPCustom and

its refinement parameter abstract from the app.

Fig. 2. Example of custom and proxy operations for the target operation
addFlow .

V. CUSTOM PERMISSIONS

Custom permissions are those permissions that are created

using proxy operations. For example, as depicted in Fig. 2,

instead of using the coarse-grained target operation addFlow

to create the permissions (addFlow, FLOW-RULE), we create

the custom operation addFlow(traffic) and its proxy operations

addWebFlow and addVoIPFlow, then we create the custom

permissions (addWebFlow, FLOW-RULE) and (addVoIPFlow,

FLOW-RULE) for adding flow rules that handle Web and VoIP

traffic, respectively.

A proxy group is the group of all operations that invoke the

same custom operation and pass different refinement parameter

values. Members in a proxy group allow access to different

set of objects. Therefore, permissions composed of different

proxy operations in one proxy group allows for the creation

of specialized roles. This enables exclusive role management

by different admin units.

VI. SDN-RBACA MODEL

In this section, we describe the SDN-RBACa administrative

model, along with its formal definitions. The overall structure

of SDN-RBACa is illustrated in Fig. 3. We consider SDN-

RBACa in two parts: the operational model for SDN-RBAC

with respect to regular roles and permissions as well as tasks

which will be introduced shortly, and the administrative model

for administering the app role and task-role relations of the

former. These are discussed in the following subsections.

A. Introducing Tasks

We view a task as a named set of several related permissions

that represent a unit of network function for SDN apps.

Adopting tasks for SDN-RBAC [3] has some administrative

motivations. i) Because custom permissions (see section V)

increase the number of total permissions currently available in

the SDN controller, using tasks reduces the extra management

171

Fig. 3. Conceptual model of SDN-RBACa.

overhead entailed from these newly resulted custom permis-

sions. ii) In role engineering process, task-to-role assignment

is a more convenient abstraction than assigning individual

permissions, especially when these permissions are related.

Therefore, adopting tasks as a basic component in SDN-

RBAC reduces administration overhead typically associated

with managing fine-grained permissions. In the next subsection

we show the SDN-RBACa operational model with tasks as a

basic component.

B. SDN-RBACa Operational Model

The sets and relations in the top part of Fig. 3 represent the

SDN-RBACa operational model, which is slightly different

from the SDN-RBAC model [3]. The most distinguished

difference is that there is a level of indirection in role-

permission assignment, so permissions are assigned to tasks

and tasks are assigned as units to roles. Adopting tasks

has several motivations, as discussed in Section VI-A. App-

role assignment remains unchanged from SDN-RBAC. For

simplicity, we have not considered the SDN-RBAC concepts

of sessions and role activation.

The SDN-RBACa operational model is formalized in Table

I. The first six components from item 1 specify the basic

sets carried over from SDN-RBAC. TASKS is the set of

tasks added to SDN-RBAC. The last three sets belong to the

administrative model (see section VI-C). Item 2 specifies the

assignment relations in the operational model including the

additional components which effect the additional indirection

between permissions and roles via tasks. Item 3 shows the type
derived function and shows the authorized perms function

which formalizes the interaction between the permission-task

and task-role assignments. The authorization function in item

4 specifies the authorization required for an app to exercise a

permission and access an object, which is that the permission

must be authorized to at least one role assigned to the app.

C. SDN-RBACa Administrative Model

In this section we describe the SDN-RBACa administrative

model illustrated in the lower part of Fig. 3, and formalized

in Table I. First we use the notion of app-pools. Examples of

app-pool include ’Web Load Balance Pool‘ and ’Web Security

Pool‘ as will be described in the use case in Section VIII.

Adopting app-pool facilitates the allocation of several apps

that achieve similar network functions to an admin unit. The

set of app-pools is denoted as AP. Apps are assigned to app-

pools via the AAPA app to app-pool assignment relation which

is formally specified in item 5 of Table I.

The set of administrative units is denoted as AU. SDN-

RBACa requires that roles are partitioned into different admin

units and each role is allocated to exactly one unit for

administration. In other words, each admin unit manages an

exclusive set of roles which is not under the authority of

another admin unit. This roles partitioning is formally specified

using the roles function in item 6 of Table I. The partitioning

concept is further applied to tasks and app-pools via the tasks
and app pools functions in item 6 of Table I.

The result of roles, tasks, and app-pools partitioning is that

an admin unit manages an explicitly assigned partition of roles,

to which it can assign apps from an assigned partition of

app-pools and tasks from an assigned partition of tasks. The

outcome of this partitioning directly impacts the results of

administrative user authorization functions specified in item 8

of Table I.

Assignment of administrative users to admin units can

be done via the TA admin or the AA admin relation. An

administrative user in TA admin is authorized to perform the

administrative actions which assign tasks to roles, while a

user in AA admin is authorized to perform the administrative

actions which assign apps to roles. It should be mentioned

that these capabilities can be separately assigned to two

different administrative users, even though they assigned to

one administrative unit. Such administrative actions bring apps

172

TABLE I
FORMAL DEFINITION OF SDN-RBACA ADMINISTRATIVE MODEL.

and permissions together and, in some critical SDN networks,

they are best to be done by different network administrators.

Item 8 of Table I specifies the authorization functions

for administrative users. The function can manage task role

returns whether a given admin user can assign/revoke a given

task to/from a given role. The requirement is that this user must

be assigned as TA Admin to the unique admin unit which has

exclusive authority over this role and this task.

Similarly, can manage app role is an authorization func-

tion that returns true or false. This function specifies the

conditions for a given user to assign/revoke a given app

to/from a given role. The requirement is that this user must

be assigned as AA Admin to the unique admin unit which

has exclusive authority over this role and over an app-pool to

which this app is directly assigned via AAPA relation.

The last item in Table I formalizes the four administrative

actions to assign/revoke a task to/from a role or an app

to/from a role. This supports the reversibility principle which

requires that administrative actions should be reversible. If an

administrative user makes a mistake, they can go back.

VII. TASK AND ROLE ENGINEERING FOR SDN USING

CUSTOM PERMISSIONS

In the following two subsections, we discuss the process of

engineering tasks and roles using custom permissions. The

abstract process is illustrated in Fig. 4 and an example is

described in Section VII-B.

A. Engineering Tasks and Roles using Custom Permissions

Because each custom permission is created using a proxy

operation, it enables access to a specific fine grained resource

known prior to the task or role engineering process. Now, lets

compare the use of target operations with proxy operations

in creating a permission. As shown in Fig. 4, the three proxy

operations (x11, x12, x13) are resulted from refining the target

operation op1, and each one provides access to a resource

with higher granularity compared to the target operation op1.

This makes the custom permission p1 = (x11, ot) more fine

grained compared to using op1 to create the same permission,

i.e., (op1, ot), where ot is the object type. In turn, because

we assign the custom permission p1 to task t1, this makes

t1 a fine grained, or more specialized, task. Again, this is

compared to using op1 in the first place to engineer the same

task. As shown in Fig. 4, task t1 is engineered with the three

custom permissions p1, p4, and p7 created using the proxy

operations x11, x21, and x31, respectively. Each one provides

more fine grained access, and thus makes task t1 more fine

grained compared to using the target operations op1, op2, and

op3 to create the same task. Notably, this process allows for

the creation of more specialized tasks like t2 and t3 in the

same way.

The granularity of access resulted from using proxy op-

erations to create custom permissions escalates to roles. For

example, roles r1, r2 and r3 in Fig. 4 provide more fine grained

173

Fig. 4. Conceptual representation of the associations between custom permissions, tasks, roles, and apps.

and specialized access to network resources. Now, imagine

that we want to engineer three admin units au1, au2, and au3,

each specialized with managing resources accessed by t1, t2,

and t3, respectively, then we simply assign each task and to

its respective admin unit, and do the same thing with roles

r1, r2, and r3. On the contrary, starting the process with op1,

op2, and op3 to engineer these roles and tasks preclude the

possibility of creating the required admin units.

B. Custom Permissions with ‘Flow Mod’ Role
In this section, we use the ‘Flow Mod’ SDN role as an

example to illustrate the creation of nine proxy operations

for three target operations, namely, addFlow, deleteFlow, and

readFlow. The example is depicted in Fig. 5. These target

operations allow network apps to access flow rules that handle

any type of traffic. However, if it is required to have three

admin units, each specialized with one type of traffic, namely,

Web, VoIP, and FTP, and if users in these three admin units

assign the three target operations to apps (via permissions,

tasks, and roles), this means that an app, specialized with Web

flows for example, might unauthorizedly access flow rules that

handle non-Web traffic, and thus cause threats to the network.
To solve this problem, we refine the three target operation

addFlow, deleteFlow, and readFlow and create nine proxy

operations classified into three proxy groups addFlowTraffic,

deleteFlowTraffic, and readFlowTraffic as shown in Fig. 5.

Each proxy operation in a proxy group can handle only one

traffic type. Now, for the ‘Web Admin Unit’, which is special-

ized with Web traffic, three custom permissions, namely, (ad-

dWebFlow, FLOW-RULE), (deleteWebFlow, FLOW-RULE),

and (readWebFlow, FLOW-RULE), will be created by picking

the web-related proxy operation from each proxy group. These

three custom permissions contribute to the engineering of the

web-related tasks ‘Web Traffic Forwarding’ and ‘Web Flow

Viewing’, which will be under exclusive authority of ‘Web

Admin Unit‘. These two tasks will be assigned to the role

‘Web Flow Mod’, which also will be under exclusive authority

of the same admin unit. This role can be assigned only by

administrative users who are members in ‘Web Admin Unit‘

to apps that handle web traffic and can be managed, via

app-pools, by the same admin unit, such as ‘Web Intrusion

Prevention’ app. The same idea applies to ‘VoIP Flow Mod’

and ‘FTP Flow Mod’ roles.

VIII. PROOF OF CONCEPT USE CASES

A. Basic Use Case - Web Admin Unit

In this section we discuss a proof-of-concept use case to

demonstrate the use of custom permissions in enabling the

administration of SDN-RBAC. The use case is configured in

the SDN-RBACa administrative model as shown in Table II.

The use case describes a scenario in which we have one

admin unit, called ‘Web Admin Unit’. This admin unit is

specialized in managing web resources. It exclusively manages

five web-related roles as listed in the set ROLES in item

1 of Table II. It also exclusively manages ten web-related

tasks listed in the set TASKS. All these roles and tasks

provide access to web resources, such as flow rules that handle

web traffic, packet-in headers and payloads that contain web

traffic, web pool servers, statistics about web flows, etc. These

resources can be accessed via twenty six custom permissions

as listed in the set PRMS. All these custom permissions are

created using the proxy operations listed in the set OPS. The

admin unit ‘Web Admin Unit’ manages the two web-related

app-pools ‘Web Load Balance Pool’ and ‘Web Security Pool’

listed in the set AP. Members in these two pools are the three

network apps, ‘Web Intrusion Prevention’, ‘Web Application

Firewall’, and ‘Web Load Balancer’, specialized in web traffic,

and thus require access to web resources. The apps are listed

in the set APPS. The relation between the two app-pools and

the three apps are specified in the AAPA relation shown in

item 3 of Table II.

The functions roles, tasks, and app pools in item 4 show the

partitioned assignment of the five web-related roles, ten web-

174

TABLE II
CONFIGURATION OF THE ADMINISTRATIVE MODEL FOR THE USE CASE DESCRIBED IN SECTION VIII-A.

175

Fig. 5. Example of creating three roles using custom permissions and their associations with tasks and apps.

related tasks, and two web-related app-pools to the admin unit

‘Web Admin Unit’. This admin unit has two administrative

users, web functions admin user and web apps admin user.

The former is authorized, via TA admin relation, to as-

sign/revoke tasks to/from roles, and the later is authorized,

via AA admin relation, to assign/revoke apps to/from roles.

These two relations are specified in item 5 of Table II.

Fig. 6. ‘Web Admin Unit’ and ‘VoIP Admin Unit’ (gray) along with tasks,
roles, and app pools they exclusively manage. The figure also shows apps that
admin units can manage via app-pools.

B. Extended Use Case - Multiple Administrative Units

In this section, we describe an extension to the use case

of Section VIII-A and show how we can use multiple proxy

operations from each proxy group to engineer multiple admin

units. The use case is depicted in Fig. 6 with the two admin

units ‘Web Admin Unit’ and ‘VoIP Admin Unit’.

The VoIP-related tasks in Fig. 6 are engineered in the

same way Web-related tasks are engineered. VoIP-related

tasks are engineered using custom permissions which are

created using VoIP-related proxy operations. For example,

three custom permissions, namely, (addVoIPFlow, FLOW-

RULE), (deleteVoIPFlow, FLOW-RULE), and (readVoIPFlow,

FLOW-RULE) will be used to engineer the tasks ‘VoIP Traffic

Viewing’ and ‘VoIP Traffic Forwarding’. Both of these tasks

will contribute to the engineering of ‘VoIP Flow Mod’ role.

Using the same approach, we can create other admin units,

for example, ‘Ftp Admin Unit’ and ‘Email Admin Unit’. It is

clear that, by the power of proxy operations and the custom

permissions created from them, it becomes more flexible to

create more admin units, each one specialized with different

type of traffic.

Table III shows examples of administrative user authoriza-

tions corresponding to some administrative actions based on

the extended use case in this section. The table shows the

results of the authorization function. The use case assumes

the existence of four administrative users assigned to the two

admin units as specified in Table IV.

IX. IMPLEMENTATION

To demonstrate the effectiveness of custom permissions with

our access control model, we implemented a prototype on

Floodlight, a Java based SDN controller. We developed and

ran the prototype in Floodlight SDN controller v1.2 release

[19]. The Floodlight platform is deployed on a virtual machine

that has 8GB of memory and runs on Ubuntu 14.04 OS

installation. We created a topology with three virtual switches

(Open vSwitch v2.3.90) connected to each other and each

switch is connected to two hosts. Switches are connected to the

Fig. 7. Screenshot of authorization check result for addWefFlow proxy
operation requested by WebTestApp - Access denied because of incorrect
tcp port number.

176

TABLE III
EXAMPLES OF ADMINISTRATIVE USER AUTHORIZATION FUNCTIONS CORRESPONDING TO SOME ADMINISTRATIVE ACTIONS. EXAMPLES BELONG TO

EXTENDED USE CASE IN SECTION VIII-B

TABLE IV
ADMINISTRATIVE USER ASSIGNMENT RELATION FOR USE CASE IN SECTION VIII-B

controller and hosts are virtual machines that has 2GB and run

Ubuntu 14.04 OS server. We implemented the access control

using AspectJ [20], a seamless aspect-oriented extension to

Java. AspectJ ensures that all access requests (i.e., calls to

proxy operations) from apps are intercepted by our access

control components. This system can be deployed to all other

Java-based SDN controllers.

We created a simple test app, WebTestApp and assigned

it to the role ’Web Flow Mod’. Thus, it can access web

flow rules only. We designed the app to insert a flow rule

with the matching field TCP DST equals to the SMTP port

25. Our refined custom operation addFlow is designed to

consider ports 80 and 443 for web traffic. As a result,

the proxy operation addWebFlow allows only ports 80 and

443 to be used for flow rule insertions and denies any

rule with other ports. The purpose of this test app is to

demonstrate how our access control system checks custom

permissions and rejects unauthorized access. We created a

flow rule and set the TCP DST match field to 25 using the

java instruction: matchbuilder.setExact(MatchField.TCP DST,

TransportPort.of(25));. This causes an access violation since

the TCP port number failed the refinement check in the custom

permission addFlow. A screen-shot of the output console is

shown in Fig. 7.

X. PERFORMANCE EVALUATION

To evaluate the effectiveness of our access control system

utilizing custom permissions, we created a test app and se-

lected fifty proxy operations, from which we created fifty

custom permissions. These custom permissions are assigned

to eighteen tasks and ten different roles. We incrementally

assigned these roles to the test app which runs in one session.

Despite the fact that this app doesn’t require all these roles,

the purpose of this test is to check the overhead caused by

our access control on the system’s performance by reporting

177

Fig. 8. Average authorization time in SDN-RBAC and SDN-RBACa Opera-
tional Model.

the execution time with different security policies. We change

the security policy by changing the active role set of the app’s

session. In the first security policy one role is assigned to the

session’s active role set, in the second policy two roles where

assigned, and so on until ten roles.

For each security policy, the session executes all fifty proxy

operations. The system is set to compute the authorization

delay imposed by the access control components to finish

execution and make an access control decision for each proxy

operation submitted by the session. The timer starts when

the call is intercepted by AspectJ hook, and stops when the

access decision is calculated based on the available custom

permissions for the session. The total time is calculated for all

fifty proxy operations. We repeated this test hundred times for

each security policy. For overhead comparison, we performed

the same test on SDN-RBAC, but without custom operations.

The average elapsed authorization times calculated for SDN-

RBACa operational model and the SDN-RBAC model are

reported as shown in Fig. 8. It should be noted here that delay

times does not include floodlight’s boot-up time, the time for

loading the policy and creating the corresponding relations.

This evaluation shows that the authorization check of the

SDN-RBACa operational model takes an average of 0.0252

ms on the floodlight controller while SDN-RBAC takes 0.0245

ms on average. As a result, the SDN-RBACa operational

model adds an overhead of around 2.9% to the authorization

framework. This observed latency is negligible. Therefore,

we believe that the operational model of SDN-RBACa with

custom permissions introduces acceptable overhead to the

controller for the sake of access control administration.

XI. CONCLUSION AND FUTURE WORK

In this paper, we introduced an approach for creating custom

SDN operations to extend the capabilities of SDN services and

provide fine grained custom permissions specialized for the

administration of access control in SDN. Then, we presented,

SDN-RBACa, an administrative model to manage the associ-

ations between network applications and other access control

entities. Through proof of concept prototype implementation

and use cases, we demonstrated the usability of custom

permissions and showed how custom permissions enable and

facilitate the administration of access control in SDNs.

In future work, the custom permissions can be further

refined and demonstrated in practical use cases and imple-

mentations of the administrative model.

ACKNOWLEDGMENT

This work is partially supported by NSF CREST Grant

HRD-1736209 and CNS-1553696.

REFERENCES

[1] S. Azodolmolky, P. Wieder, and R. Yahyapour, “Sdn-based cloud
computing networking,” in 2013 15th International Conference on
Transparent Optical Networks (ICTON). IEEE, 2013, pp. 1–4.

[2] M. Ojo, D. Adami, and S. Giordano, “A sdn-iot architecture with nfv
implementation,” in 2016 IEEE Globecom Workshops (GC Wkshps).
IEEE, 2016, pp. 1–6.

[3] A. Al-Alaj, R. Krishnan, and R. Sandhu, “Sdn-rbac: An access control
model for sdn controller applications,” in 2019 4th International Con-
ference on Computing, Communications and Security (ICCCS). IEEE,
2019, pp. 1–8.

[4] A. Al-Alaj, R. Sandhu, and R. Krishnan, “A formal access control model
for se-floodlight controller,” in Proceedings of the ACM International
Workshop on Security in Software Defined Networks & Network Func-
tion Virtualization. ACM, 2019, pp. 1–6.

[5] P. Porras et al., “A security enforcement kernel for openflow networks,”
in Proceedings of the first workshop on Hot topics in software defined
networks. ACM, 2012, pp. 121–126.

[6] Y. Tseng et al., “Controller dac: Securing sdn controller with dynamic
access control,” in Communications (ICC), 2017 IEEE International
Conference on. IEEE, 2017, pp. 1–6.

[7] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed nist standard for role-based access control,” ACM
Transactions on Information and System Security (TISSEC), vol. 4, no. 3,
pp. 224–274, 2001.

[8] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” Computer, vol. 29, no. 2, pp. 38–47, 1996.

[9] P. Biswas, R. Sandhu, and R. Krishnan, “Uni-arbac: A unified adminis-
trative model for role-based access control,” in International Conference
on Information Security. Springer, 2016, pp. 218–230.

[10] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The arbac97 model for
role-based administration of roles,” ACM Transactions on Information
and System Security (TISSEC), vol. 2, no. 1, pp. 105–135, 1999.

[11] R. Sandhu and Q. Munawer, “The arbac99 model for administration
of roles,” in Proceedings 15th Annual Computer Security Applications
Conference (ACSAC’99). IEEE, 1999, pp. 229–238.

[12] S. Oh and R. Sandhu, “A model for role administration using organiza-
tion structure,” in Proceedings of the seventh ACM symposium on Access
control models and technologies, 2002, pp. 155–162.

[13] J. Crampton, “Understanding and developing role-based administrative
models,” in Proceedings of the 12th ACM conference on Computer and
communications security, 2005, pp. 158–167.

[14] J. Crampton and G. Loizou, “Administrative scope: A foundation for
role-based administrative models,” ACM Transactions on Information
and System Security (TISSEC), vol. 6, no. 2, pp. 201–231, 2003.

[15] N. Li and Z. Mao, “Administration in role-based access control,” in
Proceedings of the 2nd ACM symposium on Information, computer and
communications security, 2007, pp. 127–138.

[16] H. Wang and S. L. Osborn, “An administrative model for role graphs,”
in Data and Applications Security XVII. Springer, 2004, pp. 302–315.

[17] X. Wen et al., “Towards a secure controller platform for openflow
applications,” in Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking. ACM, 2013, pp. 171–
172.

[18] S. Scott-Hayward et al., “Operationcheckpoint: Sdn application control,”
in Network Protocols (ICNP), 2014 IEEE 22nd International Conference
on. IEEE, 2014, pp. 618–623.

[19] Floodlight-Project. (2020) https://floodlight.atlassian.net.
[20] AspectJ. (2020) Aspectj: A seamless aspect oriented extension to java.

https://www.eclipse.org/aspectj/.

178

