
SDN-RBAC: An Access Control Model for SDN
Controller Applications

Abdullah Al-Alaj
Institute for Cyber Security

C-SPECC
Department of Computer Science

UTSA, San Antonio
Texas, USA

abdullah.al-alaj@utsa.edu

Ram Krishnan
Institute for Cyber Security

C-SPECC
Department of Electrical and Computer Engineering

UTSA, San Antonio
Texas, USA

ram.krishnan@utsa.edu

Ravi Sandhu
Institute for Cyber Security

C-SPECC
Department of Computer Science

UTSA, San Antonio
Texas, USA

ravi.sandhu@utsa.edu

Abstract—The architecture of Software-defined Networks pro-
vides the flexibility in developing innovative networking applica-
tions for managing and analyzing the network from a centralized
controller. Since these applications directly and dynamically
access critical network resources, any privilege abuse from
controller applications could lead to various attacks impacting
the entire network domain. As a result, the security concern is
ranked one of the top issues that prevent enterprise and data
center networks from adopting SDN. Since access control is a
natural solution to the over-privilege problem and to address this
critical security issue, we propose and implement a formal role-
based access control model (SDN-RBAC) for SDN applications
that helps in applying least of privilege principle at the level
of applications and their sessions. We also identify different
approaches in which the system can handle application sessions
in order to reduce exposure to the network attack surface in case
of application being compromised, buggy, or malicious.

Through proof-of-concept prototype, we implemented our
model with multi-session support in Floodlight controller and
used hooking techniques to enforce the security policy without
any change to the code of the Floodlight framework. The
implementation verifies the model’s usability and effectiveness
against unauthorized access requests by controller applications
and shows how the framework can identify application sessions
and reject unauthorized operations in real time.

Index Terms—Software Defined Networking, Security and
privacy, Access control, Formal models, Network security.

I. INTRODUCTION

Software Defined networking (SDN) has emerged with the
crucial mission to provide high-level network abstraction and
programmability. Therefore, SDN promises to provide the
scale and versatility necessary for different fields including
data centers, Internet of Things (IoT) [1], cloud computing
and virtualization [2]. SDN gets more popularity due to the
flexibility in developing controller applications (apps) for
extending the capabilities of the SDN controller. However,
the actual orchestration of dynamically allocating underlying
resources to SDN apps with ensuring least of privilege is not
trivial. So, a natural solution is building access control models
for SDN apps.

SDN apps that are residing in the SDN controller and
written in the same language of the controller are of a major
security concern. This is because they are compiled as part
of the controller and have direct access to various controller
native classes, their methods and data. Intuitively, the more
permissions available to an app the more resources accessible
through these permissions, the more exposed the network
attack surface. As a result, applying the principle of least
privilege is vital in access control for SDN apps. The key
idea is to minimize the amount of operations available to an
app at a given time.

In SDN, it is most likely that one controller app performs
several networking tasks, either sequentially or concurrently.
If the app executes all these tasks in one session this means
higher exposure to the network attack surface in case of app
being compromised, buggy, or malicious. This ensures that
cooperation of multiple sessions is required to perform all
the tasks of a complete SDN app process, either sequentially
or concurrently, so that accountability can be enforced and
damage caused by either a session mistake, or an accident or
deception can be avoided or minimized.

This initiates the need for serious efforts in creating access
control models for SDN controllers where, usually, human
being has no direct control of the running apps. To address
this issue we propose a Role-based Access Control Model for
the apps residing in the SDN controller.

In this context the concept of a session has several motiva-
tions. It supports the least privilege principle in the sense that
an app can delay the activation of roles currently unused in
a session until they really required [3], [4]. Also, it permits
delaying the creation of particular sessions until they really
required. All these serve to reduce the amount of operations
executable by an app at a given time which reduces the amount
of resources accessible by these operations and thus the attack
surface.

To address the above problems, we propose and implement
a formal role-based access control model (SDN-RBAC) for
SDN applications that helps in applying least of privilege
principle at the level of applications and their sessions. We
also identify different approaches in which the system can978-1-7281-0875-9/19/$31.00 ©2019 IEEE

handle application sessions in order to reduce exposure to the
network attack surface.

Our contributions in this paper include the following:
• We present a formal role-based access control model

(SDN-RBAC) for SDN controller apps.
• We provide the functional system specifications required

for app session management and for making access
control decisions at the session level.

• We provide different approaches in which the SDN
controller can handle session instances of an app.

• We show how an app can be configured in the model
via a use case scenario in which an app functionality and
its assigned roles are distributed into two tasks which run
simultaneously in independent sessions; thus, minimizing
the exposure to surface attack in case of any security
problem occurs.

• We implement our model, as proof-of-concept prototype,
in Floodlight platform using hooking techniques without
any change to the code of Floodlight native modules.

• We show the system’s usability using a test app with
multi-session execution and how it can effectively filter
out unauthorized accesses from misbehaving sessions.

This paper is organized as follows. In Section II, we
discuss related work. In Section III, we present SDN-RBAC
formal definition and its functional specifications. Different
approaches for handling app sessions are discussed in Section
IV. Section V describes a use case configuration with a multi-
session app. In Section VI we demonstrate the implementation
of our RBAC system in Floodlight platform and show the
system’s usability using a test app. Section VII discusses
performance evaluation of the framework. Finally, Section VIII
presents conclusion and outlines future work.

II. RELATED WORK

Several proposals on access control for SDN apps exist in
the literature. [5]–[7] described the access control system in
terms of the set of operations (APIs) as the basic unit for
restricting app’s activities. Although in works like [8]–[10],
roles were assigned to apps, nevertheless, the operation (API)
was the basic construction block of roles. However, we think
that, in access control systems, especially role-based ones, it is
vital to describe which combinations of operation and object
(or object type) exist in the system and constrain their actual
use from unauthorized entities.

We classify SDN apps authorization into two main cat-
egories: Firstly, Permission-based app authorization which
includes techniques wherein apps authorization is driven by di-
rect permission-app assignment. Secondly, role-based app au-
thorization in which app authorization is driven by permission-
to-role followed by role-to-app assignment.

PermOF [5] proposed a permission system in which a
permission set is directly granted to apps. The authors of
[6] adopted the concept of PermOF. Inspired by Android
permission system, [7] proposed a permission system based
on OpenFlow messages’ states that can be used as the unit
to which the permission details can be applied. SDNShield

[11] presented a permission system with two-level permission
abstraction comprised of permission tokens assigned directly
to apps and permission filters for limiting token’s effective
scope. The authors in [12] introduced AEGIS using security
access rules with API hooking to intercept app’s execution
flow to protect the controller.

Managing the aforementioned permission-based authoriza-
tion systems is a tremendous task which needs simplification.
We propose a role based authorization system for SDN to
facilitate the administration of app authorization.

FortNOX [8] implements a role-based authorization system
with three roles. FortNOX is extended and improved in SE-
Floodlight [9]. In our previous work [13], we proposed a
formal access control model for SDN apps based on SE-
Floodlight as a reference controller and discussed some secu-
rity aspects based on the model. Tseng et al [10], inspired by
[9], proposed Controller-DAC with API request threshold and
a priority for each app assigned either directly or via the role.
SM-ONOS [14] proposed a permission system at four-level
granularity. Based on API-level permissions from SM-ONOS,
[15] proposed information flow control among apps for the
ONOS controller.

None of the previous role-based approaches build on the
concept of sessions for SDN apps which is an remarkable
part of standard RBAC model [4]. However, in our work
we describe different approaches for handling and deploying
sessions in the context of SDN.

III. THE SDN-RBAC MODEL

A. Formal Model

In this section we introduce SDN-RBAC with its basic
element sets and functions. Being able to create roles for SDN
apps, which contain optimum number of permissions, is one of
the challenges in SDN environment. We believe that deciding
which permissions to assign to which roles is completely up
to the app’s function. Currently, there is no any reference
standard that states which kinds of controller apps should use
which kind of permissions. There is also no satisfactory system
that can identify the permissions appropriate for the different
categories of apps. We believe that this topic by itself is a
research area that needs further study.

SDN-RBAC has the following five basic components : Con-
troller Apps (APPS), Roles (ROLES), Operations (OPS),
Objects (OBS), and Object Types (OBTS). The conceptual
model and the relations between the components of SDN-
RBAC are shown in Fig.1, and discussed below.

• Apps (APPS): The set of OpenFlow apps residing in
the SDN controller.

• Roles (ROLES): The authorization roles assigned to
apps.

• Objects (OBS): Data and objects (resources) managed
by the controller and should be protected from unautho-
rized access. The controller manages these resources to
maintain a consistent state of the network infrastructure.
A specific port instance in a particular switch instance,
and a device instance are examples of objects.

Fig. 1. Conceptual SDN-RBAC Model.

TABLE I
FORMAL DEFINITIONS OF SDN-RBAC.

- Model Element Sets:
- APPS, ROLES, OPS, OBS and OBTS, a finite set of OpenFlow apps, roles, operations, objects and object types, respectively.
- PRMS = 2OPS×OBTS , the set of permissions.
- SESSIONS, a finite set of sessions.
- Assignment Relations:
- PR ⊆ PRMS ×ROLES, a many-to-many mapping permission-to-role assignment relation.
- AR ⊆ APPS ×ROLES, a many-to-many mapping app-to-role assignment relation.
- OT ⊆ OBS ×OBTS, a many-to-one relation mapping an object to its type.
- Mapping Functions
- assigned−perms(r : ROLES)→ 2PRMS , the mapping of role r into a set of permissions. Formally,

assigned−perms(r) ⊆ {p ∈ PRMS|(p, r) ∈ PR}.
- app−sessions(a : APPS)→ 2SESSIONS , the mapping of an app into a set of sessions.
- session−app(s : SESSIONS)→ APPS, the mapping of session into the corresponding app.
- session−roles(s : SESSIONS)→ 2ROLES , the mapping of session into a set of roles. Formally,

session−roles(s) ⊆ {r ∈ ROLES|(session−app(s), r) ∈ AR}.
- type : OBS → OBTS, a function specifying the type of an object, where (o, t1) ∈ OT ∧ (o, t2)∈OT ⇒ t1 = t2

- avail−session−perms(s : SESSIONS)→ 2PRMS , the permissions available to an app in a session =⋃
r∈session−roles(s)assigned−perms(r).

• Object Types (OBTS): The type under which a specific
object instance or group of object instances are catego-
rized. For example, all port instances within the authority
of (V LANid = 10) can be associated to the type ‘PORT-
VLAN-5’ and all ports within (V LANid = 10) can be
associated to the type ‘PORT-VLAN-10’. Also, ‘LINK-
ACC’ could be the type of all link instances attached to
the hosts in the Accounting Department.

• Operations (OPS):. Operations performed on objects
and exposed by the controller as a service. For example,
the Device Service exposes operations to query the list
of devices/hosts based on one of Mac Address, VLAN
id, IPv4 Address, IPv6 Address, or a combination of
them. Inserting flow rules and reading switch statistics
are another examples of operations.

• Sessions (SESSIONS): A mapping between an app
and an activated subset of app roles. An app can have
multiple sessions and a session belongs to only one app.

As shown in Table I, permissions PRMS is the set of all

possible combinations between the set of operations OPS and
object types OBTS. The function type returns the type of an
object that was associated to it via the OT relation.

A role can be assigned multiple permissions as expressed
by the PR relation. An app might need to have multiple
permissions to access different network resources which may
result in requiring multiple roles. This is expressed by the AR
relation. The function assigned perms is used by the system
to get the set of permissions attached to a role.

An app may have multiple session instances running at the
same time. Each session may have different combinations of
active roles adequate for accomplishing its task. It is important
for authorization purposes to identify all instances of an app
sessions, the system uses the function app sessions for this
purpose.

Each session executes on behalf of only one app which is
constant during the session’s lifetime. The system uses the
function session app to identify this app. Generally, at the
time of session establishment and during the lifetime of a

TABLE II
SPECIFICATIONS OF SYSTEM FUNCTIONS.

Function Authorization Condition Update
createSession(a : APPS, s :
SESSIONS, ars : 2ROLES)

ars ⊆ {r ∈ ROLES | (a, r) ∈ AR}∧
s /∈ SESSIONS

SESSIONS′ = SESSIONS∪{s}, app−sessions′(a) =
app−sessions(a) ∪ {s}, session−roles′(s) = ars

deleteSession(a : APPS, s :
SESSIONS)

s ∈ app−sessions(a) app sessions′(a) = app sessions(a)\{s},
SESSIONS′ = SESSIONS\{s}

addActiveRole(a : APPS, s :
SESSIONS, r : ROLES)

s ∈ app−tsessions(a) ∧ (a, r) ∈ AR∧
r /∈ session−roles(s)

session−roles′(s) = session−roles(s) ∪ {r}

dropActiveRole(a : APPS, s :
SESSIONS, r : ROELS)

s ∈ app−sessions(a)∧
r ∈ session−roles(s)

session roles′(s) = session roles(s)\{r}

checkAccess(s : SESSIONS, op :
OPS, ob : OBS)

∃r ∈ ROLES : r ∈ session−roles(s)∧
((op, type(ob)), r) ∈ PR

session, an app can activate any subset of the roles attached
to it that is suitable for the session’s task to be accomplished.
The function session roles is used by the system to identify
all roles currently active for a particular session. The effective
permissions available to a session will then be the permissions
assigned to all the effective roles activated by the app for that
session.

The function avail session perms returns the union of
all permissions assigned to sesssion’s active roles. It should
be noted that object access requests from an app’s session is
authorized based on the type of the requested object. The type
function is used for this purpose.

B. System Functions Specifications

System functions in SDN-RBAC define features for the
creation and deletion of app sessions, role activation and
deactivation in a session, and for calculation of an access
decision. The specifications of system functions are shown in
Table II, and discussed below.

• createSession: The system function CreateSession cre-
ates a new session s ∈ SESSIONS for a given app a ∈
APPS as owner and an active role set ars ∈ ROLES
to be used during the session lifetime. The function is
valid if and only if the active role set is a subset of
the roles assigned to that app. The system updates the
set SESSIONS by adding s to it. This also updates
app sessions and the session roles mappings.

• deleteSession: The function deleteSession deletes a
given session s ∈ SESSIONS for a given app a ∈
APPS. The function is valid if and only if the ses-
sion is owned by the given app. The system updates
the set SESSIONS by removing s. The mapping
app sessions is also updated by this removal.

• addActiveRole and dropActiveRole: For repairing the
network security policy at runtime, adding or doping
of session’s active roles might be also required. The
activation and deactivation of a roles during a session
is done by the system functions addActiveRole and
dropActiveRole, respectively. Adding an active role is
valid if and only if the role is assigned to the app, and
the session is owned by that app. Drop an active role is

valid if and only if the session is owned by the app and
the role is an active role of that session.

• checkAccess: The function checkAccess returns whether
an app’s session is or is not allowed to perform a given
operation on a given object. The session has the privilege
to perform the operation on that object if and only if a
permission that combines that operation to the object type
is assigned to (at least) one of the session’s active roles
set.

IV. SESSION HANDLING APPROACHES

In a multi-session SDN app, app sessions can have an
independent existence and run sequentially or simultaneously
without reference to each other. An atomic session instance is
the one which has a self-contained task definition and is not
dependent on other session instances (i.e., a session that is not
described in terms of other sessions and has no interaction with
other session instances). See Fig. 2 (a).

In other cases, it is possible to have inter-session depen-
dency and the execution of one session affects another one.
Inter-session dependency initiates the need for inter-session
interaction at runtime as will as functions and conditions
for session creation/deletion, nomination of session’s active
role set, and adding/dropping an active role to a session.
Fig. 2 shows several cases for multi-session apps and various
methods for inter-session interaction. The relations between
different sessions from different apps is beyond the scope of
this discussion.

An executing session instance may, conditionally, initiate
the creation of one or several session instances. In other cases,
a session is created when another session completes. Given a
system with a complete view of an app’s entire functionality,
all possible sessions, the task that should be achieved by
each session, and inter-session dependencies among them,
then a complete view of session-to-session relations can be
represented using a directed graph. For example, if session
creation happens conditionally based on another session, a
directed edge between these two sessions, starting from the
initiating instance, may indicate the condition and the active
role set required for session creation as indicated in Fig. 2(c)
and (e), respectively.

The management of inter-session dependency and inter-
session interaction can be done either by the developer
(developer-driven approach), the app system (system-driven
approach), or the sessions themselves (session-driven ap-
proach). We believe that the interaction among app sessions
should be well defined and managed. In this section we discuss
different approaches for handling session instances of an SDN
controller app.

A. Developer-driven Session Handling

This approach requires that the developer has full and prior
knowledge of all possible sessions and roles required for each
one to achieve its task. This information is provided to the
controller before app execution and the system is configured
accordingly. i.e., the controller knows before app execution
what session instances will be created, the tasks that will
execute in each session, and the set of roles required for it
to execute correctly.

For each session instance, the developer should specify at
design time different session handling aspects: First, the task
that will be achieved by each session. Second, the condition
(or precondition) under which a particular session may be
created/deleted (e.g., after exceeding a bandwidth consumption
cap, after new device detected, at system start-up, etc.). It
should be noted here that the developer knows in advance the
condition/criteria of a particular session creation as it is fixed
and hard coded in the application and cannot be configured at
runtime by the administrator or the controller. Example, create
Data Cap Enforcing session if a host exceeded a bandwidth
consumption cap. So, this session will start only after this
condition is met. Creating this session cannot happen under
any other circumstances. Third, the active role set that should
be activated during session creation (e.g., Packet-inHandler
and FlowMod roles for a one-hour deep packet inspection
session that will temporarily inspect traffic payload incoming
from black-listed hosts). Finally, adding or dropping an active
role for a session (e.g., add DeviceTracking role to the
transmission rate monitoring session).

B. System-driven Session Handling

In this approach, the controller has full control on session
handling. The developer only provides the set of roles required
by the app and then she has no discretion on determining any
of other sessions’ properties at runtime. Shipped with adequate
capabilities, the controller should have the ability to specify
at runtime what session instances will be created and how to
handle them. Given an app and the set of roles required by
the app, the controller should figure out each task that might
execute in a separate session and the set of roles required for
it to execute correctly. This approach is challenging and the
hardest to implement.

For each session instance, the controller should specify
dynamically at runtime the various properties: First, the set
of sessions required to achieve the entire app’s functional-
ity. Second, the condition under which a particular session
instance may be created/deleted (e.g., after attack detected,

Fig. 2. Multi-session apps and methods for inter-session interaction. (a) App
with atomic sessions. (b) Two sessions access shared data. (c) Conditional
session creation. (d) Interaction via inter-session interaction APIs. (e) Active
role set sent from master session to slave sessions.

completion of another session, change of risk value, etc.).
It should be noted here that, in contrast to the developer-
driven approach, the developer doesn’t know why a particular
session could be created/terminated. The criteria for creating
a session could be computed dynamically by the controller
or configured by the administrator at runtime. For example,
creating intrusion prevention session based on the outcome of
statistical analysis or risk assessment. Third, the active role set
that should be activated during session creation (e.g., Routing
and LinkHandler roles for a session that recomputes shortest
path after a new link discovery), and Finally, adding or
dropping an active role for a session.

C. Smart Sessions

For deploying this category of session handling, inter-
session interaction should be conducted via a well defined
set of session interaction APIs designed specifically for this
purpose and managed by the system. The app developer should
comply to these APIs during app design. These APIs allow
sessions to get information about other sessions like names of
currently active sessions, their active roles, their status (e.g.,
idle, up time, etc.) as will as they provide a way for passing
information and notifications between sessions (e.g., results of
calculations) as indicated in Fig. 2 (d).

A session is smart in the sense that it can take deci-
sions based on the result of communications via inter-session
interaction APIs. Thus, it can adjust its behavior to take
knowledgeable decisions on future session interaction API
calls and on different session handling aspects: First, the
condition under which a particular session instance may be
created/deleted (e.g., start traffic redirection session after an
alarm is fired by packet inspection session). Second, the
active role set that should be activated during session creation
(e.g., Packet-inHandler role and FlowMod role for a
deep packet inspection session if web-traffic filtering session
detected malicious payloads.), Third, adding or dropping an
active role for a session (e.g., add Device Tracking role to
the transmission rate monitoring session).

TABLE III
ROLES ASSIGNED TO DataUsageCapMngr APP AND OTHER SELECTED

ROLES FROM SDN-RBAC.

Role General Functionality
Device Handler permissions for querying the controller about devices
Bandwidth
Monitoring

permissions to read the bandwidth consumption for
switch ports.

Flow Mod permissions to insert/update/delete flow rules into a
switch’s flow tables.

Link Handler permissions to get information about network links
Device
Tracking

permissions to get notifications about changes on
network devices (added, removed, Moved, Address
Changed, etc.)

Port Handler permissions to read information about ports and
their status

Routing permissions to get and compute routes between
various source and destination nodes

D. Master-Slave Sessions

In this approach, a master session initiates the creation of
one or several slave sessions and provides the system with
the required roles to be activated for each one, as indicated in
fig. 2(e). Slave sessions help the master session in achieving
a subtask. So this approach has two restrictions: First, the
active role set of any slave session should be a subset of the
master session’s active role set. Second, the master session
cannot terminate during the life of a slave session. During its
execution, master session passes control to slave sessions and
waits until completion. When completed, each slave session
passes results and control back to the master session. This
approach can be considered a special case of smart-sessions
approach as it can use inter-session interaction APIs. App
developer should be aware of what sessions should be master
and which ones should be slave and design the app to apply
this dominance via these APIs.

V. USE CASE SCENARIO: A MULTI-SESSION APP

In this section we describe a use case scenario in which
an SDN app has two tasks that run in two separate sessions.
Table IV shows the configuration of the use case in SDN-
RBAC. The app’s main functionality is to limit the amount of
traffic that any particular host transfers within a period of time.
In order to achieve this, the app requires access to bandwidth
consumption statistics of all hosts’ attachment points. When
a device exceeds the data usage cap, the app inserts a flow
rule to rate-limit or temporarily quarantine a host who has
exceeded the cap. We called the app DataUsageCapMngr.

To be able to get the required permissions, we associate
the app with three roles described in the first three rows in
Table III. These three roles are composed totally of eleven
permissions. So, for space limitation and convenience, we
avoid showing all permissions in the use case configuration
in table IV. We show only selected permissions enough to
understand the app’s use case and its model configuration
aspects.

Instead of executing the app in one monolithic process with
all three roles active at once, we separate its functionality

Fig. 3. Overview of SDN-RBAC architecture.

into two main tasks each to be running in a different session
instance. We moved the sensitive task of inserting flow rules
into a separate session.

We called one session DataUsageAnalysisSession which
probes for statistics on a regular basis (every 5 seconds).
This session reads the bandwidth consumption for switch
ports, analyzes the data and stores the results into an object
‘usageCapBlackList’ managed by the system. This session is
created with an active role set composed of two roles as shown
in session roles function in Table IV. The other session is
called DataCapEnforcingSession which requires inserting
flow rules and so its active role set is composed of the
FlowMod role as shown in session roles function in Table
IV.

VI. FRAMEWORK IMPLEMENTATION

In order to demonstrate our proof-of-concept prototype,
we developed and ran the framework in Floodlight platform
v1.2 release [16]. The Floodlight platform is deployed on a
virtual machine that has 8GB of memory and runs on Ubuntu
14.04 OS installation. We created a topology with three virtual
switches (Open vSwitch v2.3.90) connected to each other and
each switch is connected to two hosts. Switches are connected
to the controller and hosts are virtual machines that has 2GB
and run Ubuntu 14.04 OS server.

We implemented our RBAC system in Floodlight platform
and used hooking techniques without any change to the
code of Floodlight modules. We implemented hooking for
all operations exposed by Floodlight services to controller
apps. We used AspectJ [17] which is a seamless aspect-
oriented extension to Java. Our system intercepts methods
before execution. When a session issues a request the hooked
API invokes the RBAC policy engine for performing access

TABLE IV
THE CONFIGURATION OF THE DataUsageCapMngr AND ITS TWO SESSIONS AS A USE CASE IN SDN-RBAC1 .

- Use case sets:
- APPS = {DataUsageCapMngr}.
- ROLES = {DeviceHandler,BandwidthMonitoring, F lowMod} .

D = set of all network devices. FT = set of all flow tables in all switches, PS = set of all port statistics in all switches.
- OBS = {D,FT, PS}.
- OBTS = {DEV ICE,PORT -STATS, FLOW -TABLE}.
- OT = {(D,DEV ICE), (PS, PORT -STATS), (FT, FLOW -TABLE)}.
- Permissions:
- PRMS = {p1, p2, p3}1 with

p1 = (getAllDevices,DEV ICE), p2 = (getBandwidthConsumption, PORT -STATS), p3 = (InsertRule, FLOW -TABLE)}.
- Permissions assignment:
- PR = {(p1, DeviceHandler), (p2, BandwidthMonitoring), (p3, F lowMod)}.
- assigned−perms(DeviceHandler) = {p1}1, assigned−perms(BandwidthMonitoring) = {p2}1, assigned−perms(FlowMod) =
{p3}1

- Role assignment:
- AR = {(DataUsageCapMngr,DeviceHandler)

(DataUsageCapMngr,BandwidthMonitoring), (DataUsageCapMngr, F lowMod)} .
- Sessions:
- SESSIONS = {DataUsageAnalysisSession,DataCapEnforcingSession}.
- app−sessions(DataUsageCapMngr) = {DataUsageAnalysisSession,DataCapEnforcingSession}.
- session−app(DataUsageAnalysisSession) = {DataUsageCapMngr},

session−app(DataCapEnforcingSession) = {DataUsageCapMngr}.
- Active role sets:
- session−roles(DataUsageAnalysisSession) = {DeviceHandler,BandwidthMonitoring}.
- session−roles(DataCapEnforcingSession) = {FlowMod}.
1Sets with this mark in the table include minimum elements enough to understand the use case. Remaining elements are avoided for more convenience and readability.

verification and reply back. This system can be deployed to
all other Java-based SDN controllers.

An overview of SDN-RBAC framework architecture is
shown in Fig. 3. It contains three main components: in-
terception component which represents the system’s policy
enforcement point (PEP), request evaluation component which
represents the policy decision point (PDP), and SDN-RBAC
policy which represents the policy information point (PIP) in
the system.

We developed the DataUsageCapMngr app described in
Section V and configured in the SDN-RBAC model as shown
in Table IV. The first session DataUsageAnalysisSession
is designed to probe for port bandwidth statistics on a regular
basis (every 5 seconds). After reading the bandwidth consump-
tion for switch ports and analyzing the data to find cap limit
violations, it stores the list of hosts who has exceeded the cap
limit into a list ‘usageCapBlackList’ managed by the system.
The second session DataCapEnforcingSession is designed
to check periodically (every 60 seconds) for black listed hosts
in order to insert flow rules to isolate them from the network.
It reads the object ‘usageCapBlackList’ for this manner.

It should be noted that there is no direct interaction be-
tween these two sessions. They are running simultaneously
and not directly dependent on each other. i.e., one won’t
crash/stop/start based on the state of the other. Also, the active
role set is not provided by either one to the other and neither
of them adds/drops an active role for the other. The tasks and
roles associated with each session is determined at design time.
This deployment is compliant with the ‘Developer-driven’
session handling approach described in Section IV-A and uses

Fig. 4. Snapshot of authorization check result for getAllLinks() operation
requested by DataUsageAnalysisSession - Access Denied.

the inter-session interaction method indicated in Fig. 2 (b).
During the lifetime of the app, our access control system

keeps mediating all sessions access requests for performing
security authorizations. It can identify each session, mediate
each access request and send it for authorization check based
on SDN-RBAC configuration. To show that our system can
identify and reject any unauthorized operations submitted at
the session level, we forced DataUsageAnalysisSession
to practice the permission (getAllLinks, LINK) which is
assigned to the role LinkHandler. This role is not a member
of the active role set of DataUsageAnalysisSession. Thus,
(getAllLinks, LINK) it is not a member of the available ses-
sion permissions. A snapshot of the execution result is shown
in Fig. 4. It shows how our system can identify and reject this
unauthorized access from this session. On the other hand, Fig.
5 shows how DataUsageAnalysisSession was able to pass
the authorization check when getBandwidthConsumption
operation was called.

VII. PERFORMANCE EVALUATION

For evaluating the performance of our proposed system, we
selected fifty operations covered by nineteen different roles

Fig. 5. Snapshot of authorization check result for getBandwidthConsumption()
operation requested by DataUsageAnalysisSession - Access Granted.

Fig. 6. Average execution time required to finish the tested operations,
including and excluding SDN-RBAC.

and we incrementally assigned these roles to one test app.
Despite the fact that this app doesn’t require all these roles, the
purpose of this test is (1) to check the difference in execution
time between Floodlight with and without SDN-RBAC and
(2) to check the effect of the increased number of roles on
Floodlight performance.

In each test we executed the same fifty operations thousand
times and measured the average execution time with different
number of roles. For each test we changed the number of
roles assigned to the app. It should be noted that the more
roles assigned to the test app, the more operations passed the
authorization check, the more time required to finish execution.

We started the timer at the beginning of the controller’s
main() function and it was ended after executing a loop with
thousand iterations with each iteration calling the set of fifty
operations. We repeated each test for 10 times and the average
elapsed time was reported for each test as shown in Fig. 6.
Each execution time, except for the first one, includes boot-up
time, the time for loading the SDN-RBAC policy and creating
the corresponding relations.

In the first test, we called all operations with Floodlight
only with SDN-RBAC framework inactive. Then we ran the
controller with our SDN-RBAC system activated and our test
app assigned different number of roles as shown in Fig. 6. Al-
though, it is required that any SDN app to be assigned at least
one role to operate in the controller, we ran the application
with zero roles for testing only. In this test all app requests
are rejected early. With the increasing number of roles, more
operations was executed and thus longer execution time was
required. This test shows that SDN-RBAC framework adds a
slight overhead on the performance of Floodlight controller.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed SDN-RBAC, a role-based access
control model for SDN controller apps to help in applying least
of privilege principle at the level of apps and their sessions.
We identified different approaches in which the system can
handle app sessions. We also, demonstrated our framework by
implementing a prototype and demonstrating its usability in a
popular SDN controller. As a future work, we plan to work
on extending SDN-RBAC to include other security aspects for
SDN apps like static and dynamic separation of duty and
conflict resolution between apps’ operations.

ACKNOWLEDGMENT

This work is partially supported by NSF CREST Grant
HRD-1736209 and CNS-1553696.

REFERENCES

[1] N. Bizanis and F. A. Kuipers, “Sdn and virtualization solutions for the
internet of things: A survey,” IEEE Access, vol. 4, pp. 5591–5606, 2016.

[2] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: a survey,” IEEE Communications
Magazine, vol. 51, no. 11, pp. 24–31, 2013.

[3] K. Z. Bijon, R. Krishnan, and R. Sandhu, “Risk-aware rbac sessions,”
in International Conference on Information Systems Security. Springer,
2012, pp. 59–74.

[4] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed nist standard for role-based access control,” ACM
Transactions on Information and System Security (TISSEC), vol. 4, no. 3,
pp. 224–274, 2001.

[5] X. Wen et al., “Towards a secure controller platform for openflow
applications,” in Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking. ACM, 2013, pp. 171–
172.

[6] S. Scott-Hayward et al., “Operationcheckpoint: Sdn application control,”
in Network Protocols (ICNP), 2014 IEEE 22nd International Conference
on. IEEE, 2014, pp. 618–623.

[7] J. Noh et al., “Vulnerabilities of network os and mitigation with
state-based permission system,” Security and Communication Networks,
vol. 9, no. 13, pp. 1971–1982, 2016.

[8] P. Porras et al., “A security enforcement kernel for openflow networks,”
in Proceedings of the first workshop on Hot topics in software defined
networks. ACM, 2012, pp. 121–126.

[9] P. A. Porras et al., “Securing the software defined network control layer.”
in NDSS, 2015.

[10] Y. Tseng et al., “Controller dac: Securing sdn controller with dynamic
access control,” in Communications (ICC), 2017 IEEE International
Conference on. IEEE, 2017, pp. 1–6.

[11] X. Wen, et al., “Sdnshield: Reconciliating configurable application
permissions for sdn app markets,” in 2016 46th annual IEEE/IFIP
international conference on dependable systems and networks (DSN).
IEEE, 2016, pp. 121–132.

[12] H. Padekar et al., “Enabling dynamic access control for controller
applications in software-defined networks,” in Proceedings of the 21st
ACM on Symposium on Access Control Models and Technologies.
ACM, 2016, pp. 51–61.

[13] A. Al-Alaj, R. Sandhu, and R. Krishnan, “A formal access control model
for se-floodlight controller,” in Proceedings of the ACM International
Workshop on Security in Software Defined Networks & Network Func-
tion Virtualization. ACM, 2019, pp. 1–6.

[14] C. Yoon et al., “A security-mode for carrier-grade sdn controllers,”
in Proceedings of the 33rd Annual Computer Security Applications
Conference. ACM, 2017, pp. 461–473.

[15] B. Ujcich et al., “Cross-app poisoning in software-defined networking,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018, pp. 648–663.

[16] Floodlight-Project. (2019) http://www.projectfloodlight.org/.
[17] AspectJ. (2019) Aspectj: A seamless aspect oriented extension to java.

https://www.eclipse.org/aspectj/.

