
A Formal Access Control Model for SE-Floodlight Controller
Abdullah Al-Alaj

Institute for Cyber Security,
Center for Security and Privacy
Enhanced Cloud Computing,

Department of Computer Science,
UTSA, San Antonio, Texas
abdullah.al-alaj@utsa.edu

Ravi Sandhu
Institute for Cyber Security,

Center for Security and Privacy
Enhanced Cloud Computing,

Department of Computer Science,
UTSA, San Antonio, Texas
ravi.sandhu@utsa.edu

Ram Krishnan
Institute for Cyber Security,

Center for Security and Privacy
Enhanced Cloud Computing,
Department of Electrical and

Computer Engineering,
UTSA, San Antonio, Texas
ram.krishnan@utsa.edu

ABSTRACT
Software defined networking (SDN) offers a promising approach
for the next generation of networking technology. However, at
present there is no widely accepted model for network applica-
tions authorization. One reason for lack of access control system is
the absence of clear definition of an authorization model in SDN.
Porras et al [9] recently developed SE-Floodlight for this purpose.
They partly employed the notion of the well-known role-based
access control (RBAC) model. They informally presented a role-
based authorization system to manage applications access rights to
network operations, submitted during the interaction between the
application layer and the switch-side infrastructure. In this paper
we develop a formal role-based authorization model in SDN using
SE-Floodlight as a reference controller. Based on the formal model
we discuss security aspects and propose some extensions. We also
provide an administrative model for the authorization system. We
show a configuration of the formal model for a use case scenario
and discuss the security aspects of the authorization model and
describe some security issues related to over-privileged apps, lim-
itations of role hierarchy, app upgrading, and app downgrading
problem. Finally, we propose a refined role hierarchy to address
these problems.

CCS CONCEPTS
• Security and privacy→ Access control; Authorization; For-
mal security models; • Networks → Network security;

KEYWORDS
Security; Software Defined Networks; Access Control; Role Based
Access Control

ACM Reference Format:
Abdullah Al-Alaj, Ravi Sandhu, and Ram Krishnan. 2019. A Formal Access
Control Model for SE-Floodlight Controller. In ACM International Workshop
on Security in Software Defined Networks & Network Function Virtualization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6179-8/19/03. . . $15.00
https://doi.org/10.1145/3309194.3309195

(SDN-NFVSec ’19), March 27, 2019, Richardson, TX, USA. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3309194.3309195

1 INTRODUCTION
Currently, SDN controllers [18–21] act as the interaction point
between OpenFlow applications (apps) and the network infrastruc-
ture (data plane). Verifying apps’ operations sent to the data plane
is an absolute prerequisite for maintaining a consistent network
security policy which is the responsibility of the controller. Thus,
the absence of methods for controlling app’s access rights on the
infrastructure allows buggy or malicious apps to run arbitrary com-
mands which makes SDN network vulnerable to various attacks
from apps. Therefore, SDN OSs require an effective authorization
mechanisms to ensure secure network operations [2, 10, 12].

The SDN controller is required to maintain the integrity of the
network state and so the access control system has to ensure that
the tasks carried out by apps preserve such integrity. Generally, net-
work apps perform tasks including traffic engineering, monitoring,
security services, etc., via executing network operations to pro-
gram accessible OpenFlow-enabled switches within their controller
domain. Network apps dynamically access network resources via
generating network operations like flow rule insertion, network
state inquiry, port configuration, etc. These operations are received
by the controller which submits them to the switch. The switch, as
a forwarding device, has no means to verify app operations and so
absolutely trusts them and operates accordingly.

Prior studies have addressed access rights of SDN apps to protect
against insecure access to data plane resources [2, 3, 5, 9, 14, 22].
SE-Floodlight [9, 17] is a security extension for Floodlight in which
Porras et al informally proposed Role-based access control (RBAC)
to enforce the security policy on the data exchange operations
between network apps and the forwarding switches in addition to
flow rule conflict resolution strategy driven by roles.

Rigorous conceptual modeling in the context of access control
is important because it facilitates early detection and correction
of system vulnerabilities and shortcomings before actual deploy-
ment. Since the SE-Floodlight authorization system is informally
presented, in this paper we address this issue and formalize the
system, show the key elements of the access control model and
discuss the security aspects to facilitate searching for modifications
and alternatives. Building a formal access control model helps in
supporting the communication between researchers, developers
and users for better understanding of the access control domain
and for initiating further study.

Session: SDN/NFV Security Architecture SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA

1

https://doi.org/10.1145/3309194.3309195
https://doi.org/10.1145/3309194.3309195

Table 1: Types of data exchange operations along with the
minimum authorization role [9].

Although SE-Floodlight authorization system doesn’t adopt RBAC
sessions, it adopts the concept of role hierarchy, inheritance rela-
tion between roles which, compared to other authorization systems
[3, 5, 15], make it the reference for our work in this paper for for-
malizing and analyzing apps authorization in SDN. Because the
proposed formal model relies on data exchange operations between
apps and the data plane that are driven by OpenFlow protocol, it
can be adopted by other controllers.

The paper is organized as the following. Section 2 presents a
background about SE-Floodlight authorization system. The for-
mal access control model of SE-Floodlight is presented in Section
3. In section 4 we propose a formal administration model for SE-
Floodlight. Section 5 shows the model configuration for an example
use case. Possible extensions to the authorization model are pre-
sented in Section 6. Related work is presented in Section 7. Section
8 concludes the paper and highlights the future work.

2 APP AUTHORIZATION IN SE-FLOODLIGHT
The SE-Floodlight authorization system aims to control access to all
OpenFlow messages exchanged between apps and the data plane.
Each data exchange operation is abstracted using an OpenFlow
operation type. For example, operations like insertion, deletion,
and update of a flow rule are all of type ‘Flow rule mod’. In SE-
Floodlight, types of data exchange operations are assigned to roles
and then roles are assigned to apps.

The authorization system identifies three authorization roles,
namely, ADMIN, SEC, and APP with a total order role hierarchy.
For instance, apps in SEC role indirectly have permission to receive
packet-in notifications which is originally assigned to the lower
role APP. This is analogous to role inheritance relation in RBAC
model [16, 23].

Table 1 identifies the types of data exchange operation types
that alternate between apps and OpenFlow switches along with

Figure 1: SE-Floodlight conceptual authorization model 1.

the minimum role that must be assigned to an app to perform an
operation of that type. The table also shows, for each operation
type, the corresponding OpenFlow message type required to carry
the operation.

With app co-existence, an app may insert a flow rule that causes
a conflict with another pre-existing flow rule in the switch. For
resolving conflicts, SE-Floodlight associates each role with a prior-
ity limit that represents the maximum priority value that can be
assigned to flow rules produced by apps of this role. Flow rules pro-
duced by an app of a specific role have higher precedence than rules
produced by apps in a lower role. An app also uses this value to
prioritize its own set of flow rules within the sub-range of priorities
corresponding to its role.

3 FORMALIZED SE-FLOODLIGHT ACCESS
CONTROL MODEL

In this sectionwe formalize the authorizationmodel of SE-Floodlight
[9] and describe its components.

3.1 Overview
The basic components of SE-Floodlight authorizationmodel include:
Apps (A), Roles (R), Data Exchange Operations (DXOP), and types
of DXOPs. We also discuss the credential entity which is implicitly
included in the model. The model and the relations between the
components are shown in Figure 1, and discussed below.
Apps (A): The local and remote OpenFlow apps.
Roles (R): Roles in SE-Floodlight are used for two main purposes:
app permission authorization and rule-based conflict resolution.
Data Exchange Operations (DXOP) and Operation types (T):
These operations represent OpenFlow messages exchanged be-
tween the dataplane and the apps. These operations belong to differ-
ent operation types. For example, flow table modification messages
add, modify, modify_strict, delete, and delete_strict are grouped
under the type ‘Flow rule mod’, represented by OFPT_FLOW_MOD
message type. Also, operations that query the system for statistical
information about flows, ports, tables, queues, etc, are all of type
‘Switch stats request’, represented by OFPT_STATS_REQUEST mes-
sage type. Table 1 summarizes all these data exchange operations
1Arrows denote binary relations with the single arrowhead indicating the one side
and double arrowheads the many side.

Session: SDN/NFV Security Architecture SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA

2

and their corresponding messages within an OpenFlow v1.0 stack.
Credentials: Credentials are used for both authorization and au-
thentication. Each app is uniquely identified by an administrator-
assigned credential which also contains the authorization role as-
signed to the app. The credential is added to each message sent by
the app. When a message submitted, the role embedded within the
credentials is extracted to identify the app and its role.

3.2 Formal SE-Floodlight Access Control Model
For this model, we assume the SDN infrastructure has multiple
switches controlled by a single controller within the same slice. For
simplicity and easier reference, we created a basic formal model
without flow rule conflict resolution in Table 2 and an extended
model including the conflict resolution in Table 3.

As shown from the definition in Table 2, an app can be assigned
to only one role denoted by AR relation. TR relation denotes that
an operation type can be assigned to one role. The type of each
data exchange operation can be specified using type function. The
Authorization Rule is stated based on all the previously defined
relations and functions considering the effect of role inheritance.

The authorization model is extended in Table 2 in which the
rule conflict algorithm contributes to authorizing ‘add flow rule’
operations. The function priorityLimit assigns a natural number to
each role. This number represents the maximum priority an app
in this role can assign to new flow rules submitted with ‘add flow
rule’ operation. It is used to resolve conflicts between different
flow rules. Authorization_ruleop=′add alow rule ′ checks, using the
RCA function, whether an app has the right to insert a new flow
rule . Finally, Authorization_ruleop∈DXOP−′add f low rule ′ checks
whether an app has the right to perform all operations other than
‘add flow rule’ operations that are not mediated by the RCA function.

It should be noted that if Authorization_ruleop=′add alow aule ′

returns true, which means a successful addition of new flow rule,
then the access control model updates the set FT of the target switch
by adding the new flow rule and removing the conflicting rule, if
any. This happens only if the result of rule conflict algorithm RCA
returns ‘Add’ or ‘Exchange’. Also, the model registers the flow rule
priorities so that they can be used in future authorization decisions.

4 ADMINISTRATIVE MODEL
Next we discuss the administrative model that is used for the cre-
ation and maintenance of the system’s basic element sets, functions,
and relations. It is assumed that all administrative functions are per-
formed by a network operator user with enough privileges. Table 4
formally specifies the administration functions to manage the apps,
roles, operations, and operation types. The second column shows
the condition required to perform the function and the third column
shows the corresponding updates to the authorization system.

As shown in Table 4, administration functions for managing
registration and de-registration of apps are addApp and deleteApp,
respectively. Roles are created and removed from the system using
addRole and deleteRole functions. Types are created and removed
from the system using addType and deleteType functions. When a
role is deleted, all assignment relations between the deleted role
and any app or operation type must be found and deleted from the
system as shown in the third column.

Functions assignApp and revokeApp are used to create and delete
a relation between apps and roles. Operation types are assigned
to roles using assignType and revoked using revokeType function.
Operations are assigned to their types using assignOp function and
revoked using revokeOp function.

5 USE CASE SCENARIO
Applying this formal model by network operators depends on the
use case under implementation. In this section we configure the
formal model for a use case scenario and show the relevant autho-
rization aspects.

In this use case we have five OpenFlow apps, namely Learning
Switch (LS), Load Balancer (LB), Network Intrusion Prevention
(NIP), Firewall (FW), and Operator Console (OC) app.

LS app requires insertion of flows in switches that routes packets
of all devices in the topology after they have been learned using
Packet-In messages, so it needs permission to operation types ‘Flow
rule mod’ and ‘Packet-In return’.

The LB app requires permission to collect flow statistics from
the switches and to distribute traffic among deferent servers/links
accordingly. It requires permission to operation of type ‘Flow rule
mod’, ‘Switch stats request’ , and ‘Switch stats report’ so it is enough
to be assigned the APP role.

The NIP app detects and blocks intrusion attempts on the net-
work. In order to do so, it requires permission to receive packet-in
notifications for performing packet inspection to drop malicious
traffic and it needs permission to insert flow rules for forwarding
sanitized traffic to the correct destination [24]. The Operation types
required by this app are ‘Flow rule mod’ and ‘Packet-In return’.
Despite that it is enough to assign it to the APP role, this app is
intended to enforce security policy and so should be assigned to
the SEC Role in order to replace conflicting flow rules inserted by
apps in APP role.

The FW app [24] that performs basic firewall tasks such as en-
forcing Access Control List (ACL) on OpenFlow switches. For each
incoming Packet-Inmessage, the firewall compares the header fields
against each rule in the sorted list sequentially from the highest pri-
ority. The app matches every single packet against the firewall rules.
Hence, the Forwarding app uses Packet-Out messages to forward
each packet. It forwards a packet through sending a Packet-Out
message with an appropriate action for an ALLOW decision, while
it drops a packet through sending a Packet-Out message without
specifying an Output action for a DROP decision. So this app needs
permission to ‘Packet-In return’ and ‘Packet-Out’ operation types.

Finally, the (OC) app is capable of performing all operation types
and to configure and read network state, so its assigned the ADMIN
role. The configuration of the formal access control model for this
use case scenario is given in Table 5.

6 DISCUSSION AND POSSIBLE EXTENSIONS
In this section we discuss some of the issues that may violate access
control principles and call for modifications in the model.
-Over-privileged apps: SDN apps should be confined to the prin-
ciple of least privilege. However, following the fixed set R and the
TR relation as shown in Table 1 may grant an app the permission to
one or more operations. All apps in the lowest role APP will have

Session: SDN/NFV Security Architecture SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA

3

Table 2: SE-Floodlight Authorization Model Definitions without Flow Rule Conflict Resolution.

- Basic Sets and Functions:
A: a finite set of OpenFlow apps.
T: a finite set of types of data exchange operations.
R = {ADMIN, SEC, APP}: a fixed set of three roles.
>: a total order on R where ADMIN > SEC and SEC > APP.
AR ⊆ A × R, a many-to-one relation, i.e., (a,r1)∈AR ∧ (a,r2)∈AR ⇒ r1 = r2, mapping each app to one role.
TR ⊆T×R, a many-to-one relation, i.e., (t,r1)∈TR ∧ (t,r2)∈TR ⇒ r1 = r2, mapping each operation type to one role.
DXOP : a set of possible data exchange operations where each operation op ∈DXOP contains a flow rule and a priority if o = ′add flow rule′.
type: DXOP → T, a function specifying the type of each operation. Equivalently viewed as a many-to-one relation OT ⊆ DXOP × T , where
(o,t1)∈OT ∧ (o,t2)∈OT ⇒ t1 = t2.
- Authorization Rule:
Authorization_rule: A × DXOP → {T, F }, checks whether a ∈ A has the right to perform an operation o ∈ DXOP.
Authorization_rule (a : A, o : DXOP) ≡(∃r1, r2∈ R· (a, r1) ∈ AR ∧ (type(o), r2) ∈ TR ∧ r1 ≥ r2).

Table 3: SE-Floodlight Authorization Model Definitions with Flow Rule Conflict Resolution.

- Basic Sets and Functions:
All basic sets and functions from Table 2.
FR: a set of all possible flow rules where for each f ri∈ FR there should be a priority.
priority_limit: R → N, the mapping of role to the highest priority an app in r ∈ R may assign to its flow rules, where priority_limit(ADMIN)
> priority_limit(SEC) > priority_limit(APP).
S: Set of switches in the network slice.
FT : S → 2FR , the set of flow rules currently in a switch’s flow table.
rule: DXOP → FR, a function that returns the flow rule f rc∈FR of an operation op ∈ DXOP given that type(op) =′Flow Rule Mod′.
priority: FR → N, the mapping of a flow rule f rc∈FR to its priority.
RCA(frc : FR, prc :N, st :S) → {Reject, Add, Exchange}, a function uses rule-based conflict analysis described in [9] that returns the result of a
request to add of new flow rule frc into FT(st) submitted with priority prc . ‘Reject’, ‘Add’, or ‘Exchange’ indicates whether f rc is rejected,
added without removing pre-existing rules, or exchanged with a conflicting flow rule f ri ∈ FT (st), respectively.
- Authorization Rules:
Authorization_ruleop=′add f low rule ′ : A × S → {T, F }, checks whether a ∈ A has the right to insert a flow rule rule(op) into FT(st ∈ S).
Authorization_ruleop=′add f low rule ′ (a : A, st :S) ≡ (∃r1, r2∈ R· (a, r1) ∈ AR ∧ (type(op), r2) ∈ TR ∧ r1 ≥ r2) ∧
(RCA(rule(op),priority(rule(op)), st)∈{Add, Exchanдe}).
Authorization_ruleop∈DXOP−′add f low rule ′ : A × S → {T, F }, checks whether a ∈ A has the right to perform a non-flow-rule-insertion
operation.
Authorization_ruleop∈DXOP−′add f low rule ′ (a : A, st :S) ≡ (∃r1, r2∈ R· (a, r1) ∈ AR ∧ (type(op), r2) ∈ TR ∧ r1 ≥ r2)

the permission to add flow rules whereas some apps don’t require
this permission. For example, a billing app requires only to read
statistics of the port connected to a host’s device (NIC). It computes
a monthly bill for a customer based on the sent and received bytes.
APP role grants this app the permission to insert flow rules which
violates the least privilege principle and this could be maliciously
exploited to attack the controller or other apps. The network state
can be modified and then the controller and other apps might take
decisions based on this inconsistent state.
-App upgrading problem: To satisfy network security needs and
respond to security threats, flow rules inserted by security apps
should have higher priority than those of traffic engineering apps.
Therefore, based on the SE-Floodlight access control model, such
apps will be upgraded from APP to SEC role only to satisfy the
priority requirement. As a result, they will be granted permission to
‘packet-Out’ operation type. This is a violation of the least privilege
principle of access control. The NIP app, discussed in Section 5, is

an example of this case.
-Limitations of role hierarchy: Some appsmight need to perform
different set of operations and the network operator wants to assign
them the same priority limit. This is impossible in SE-Floodlight
authorization system due to the total order relation between roles.
Furthermore, assigning roles to apps based on the tasks they achieve
is limited with the existence of only three role levels and the way
operation types are assigned to roles in Table 1.
-App downgrading problem:When a role r is assigned to an app
a, it provides the permission to possibly multiple operation types. If
the network operator later wants to downgrade a, by revoking only
one operation type t from a for example. Revocation of t cannot
be directly applied to a, it should be done through revokeType(t,r)
function. However, this kind of revocation doesn’t work because
r is most likely shared by multiple apps and this will downgrade
all apps in r. This can be done only by creating a new role r ′ that

Session: SDN/NFV Security Architecture SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA

4

Table 4: Administrative Model for SE-Floodlight.

Function Condition Update
addApp(a) a<A A’=A∪{a}
deleteApp(a) a∈A∧(a,r)∈AR AR’=AR\{(a,r)},

A’=A\{a}
addType(t) t<T T ’=T∪{t}
deleteType(t) t∈T∧(o,t)∈OT∧

(t,r)∈TR
OT’ =OT \{∀(o,t)∈OT },
TR’=TR\{(t,r)},T ’=T \{t}

addRole(r) r<R R’ = R ∪{r}
deleteRole(r) r∈R∧(a,r)∈AR∧

(t,r)∈TR
AR’=AR\{∀(a,r)∈AR},
TR’=TR\{∀(t,r)∈TR},
R’=R\{r}

assignApp(a,r) a∈A∧r∈R∧(a,r)<AR AR’=AR ∪ {(r,a)}
revokeApp(a,r) a∈A∧r∈R∧(a,r)∈AR AR’=AR \ {(a,r)}
assignType(t,r) t∈T∧r∈R∧(t,r)<TR TR’=TR ∪ {(t,r)}
revokeType(t,r) t∈T∧r∈R∧(t,r)∈TR TR’=TR \ {(t,r)}
assignOp(o,t) o∈DXOP∧t∈T∧(o,t)<OT OT’=OT ∪{(o,t)}
revokeOp(o,t) o∈DXOP∧t∈T∧(o,t)∈OT OT’=OT \ {(o,t)}

has all operation types in r except t then applying assiдnApp(a, r ′).
This scenario calls for a more flexible role hierarchy.

For addressing the above problems, we refine the total order
hierarchy and propose a partial order role hierarchy as shown in
Figure 2. We modify the AR relation to be many-to-many relation
to allow for assigning multiple roles to one app. Types of opera-
tions are assigned to roles based on the task they achieve taking
into consideration inherited permission types. In this hierarchy we
consider only app interactions with the forwarding infrastructure
and omit app requests to read and write controller data stores that
maintain information about end hosts, network topology, etc.

Also, roles are organized based on the sensitivity of operation
type set managed by this hierarchy. An operation type that may
alter the network state should be part of higher roles whereas lower
roles should encapsulate non-harmful operation types. The role
name indicates the general function achieved by operation types in
the role and its inherited permissions. For resolving rule conflicts,
higher roles should have higher priority limit as they have more
power in the authorization system. Incomparable roles should be
assigned same priority limit or based on the network operator’s
configuration.

App access rights can be managed by manipulating AR and TR
relations or by creating/deleting a role inheritance relation. Each
role in this partial order hierarchy encapsulates less permission
types compared to the roles of the total hierarchy of SE-Floodlight
and the application-level roles of [5]. We don’t propose direct as-
signment of permission types to apps since we believe it would be
a management burden for network operators.

This role hierarchy avoids the limitations of the total role hierar-
chy with a more flexible and finer grained operation type-to-role
assignment. Based on this hierarchy, apps can be assigned appropri-
ate roles and thus network operators can avoid over-privileged apps.
Also, as a result of this flexible app-role assignment, app upgrading
problem is fixed because priorities for incomparable roles can be

Figure 2: Proposed Role Hierarchy.

configured by network operator. In this case app upgrading will
not be conducted only for priority limit reasons.

App downgrading problem is solved by this hierarchy since each
role has a small number of strongly related operation types that
can be granted as all-or-none basis. As a result, for an app a that is
assigned role r, revoking type t from a can be done by invoking re-
vokeApp(a,r) followed by assiдnApp(a, r ′)where r ′ is the immediate
ascendant or r.

7 RELATEDWORK
A number of security issues have been identified concerning SDN
apps [1, 6, 11, 12] with specific issues related to app authorization.

Several approaches have been proposed to protect SDN resources
from unauthorized access by network apps. We classify SDN apps
authorization into two main categories: Firstly, Permission-based
app authorization which includes techniques wherein apps autho-
rization is driven by direct permission-app assignment. Secondly,
role-based app authorization in which app authorization is driven
by permission-to-role followed by role-to-app assignment.

PermOF [13] proposed a permission system in which a permis-
sion set is directly granted to apps. The authors of [2] adopted the
concept of PermOF and defined a permission set to which apps must
subscribe on initialization. Inspired by Android permission system,
[8] proposed a permission system based on OpenFlow messages’
states that can be used as the unit to which the permission details
can be applied. SDNShield [14] presented a permission system with
two-level permission abstraction comprised of permission tokens
assigned directly to apps and permission filters for limiting token’s
effective scope.

The permission system in [4] provides a registration service
which apps can use to register themselves. It incorporates app iden-
tification as well as a permission negotiation process. The authors
in [7] introduced AEGIS to prevent against malicious network apps.
Security access rules are defined based on the relationships between

Session: SDN/NFV Security Architecture SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA

5

Table 5: Configuration of the Formal Access Control Model defined in Table 2 for the Use Case Scenario in Section 5.

A = {LS, LB,NIP, FW ,OC},
R = {APP, SEC,ADMIN } with a total order > on R ,as defined in Table 2,
T = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15, t16, t17, t18}, as labled in Table 1,
AR = {(LS,APP), (LB,APP), (NIP, SEC), (FW , SEC), (OC,ADMIN)},
TR = {(ti ,APP), (t13, SEC), (tj ,ADMIN)|(ti ∈ T |1 ≤ i ≤ 12, tj ∈ T |14 ≤ j ≤ 18)),
DXOP = {′add f low rule ′,′packet in′,′ f low stats ′,′packet out ′},
Type(′add f low rule ′) =′ Flow rulemod ′, Type(′packet in′) =′ Packet − In return′,
Type(′ f low stats ′) =′ Switch stats request ′ =′ Switch stats report ′, Type(′packet out ′) =′ Packet −Out ′,
AuthorizationRule(LS,′ add f low rule ′) = true , AuthorizationRule(LB,′ add f low rule ′) = true ,
AuthorizationRule(FW ,′ add f low rule ′) = true ,
AuthorizationRule(LS,′ packet in′) = true , AuthorizationRule(LB,′ packet in′) = true , AuthorizationRule(NIP,′ packet in′) = true ,
AuthorizationRule(FW ,′ packet in′) = true AuthorizationRule(OC,′ packet in′) = true,
AuthorizationRule(LB,′ f low stats ′) = true , AuthorizationRule(FW ,′ packet out ′) = true .

apps and data in the SDN controller. Their system uses API hooking
to intercept the app execution flow to protect the controller. Prior to
SE-Floodlight, FortNOX [22] implements a role-based authorization
with three roles. SE-Floodlight [9] is an extension and improve-
ment of the FortNOX. Tseng et al [15], inspired by [9], proposed
Controller-DAC with API requests threshold and a priority for each
app assigned either directly or via the role.

SM-ONOS [5] proposed a permission system at four-level gran-
ularity. First, code packages are classified as either app or non-app
OSGi bundles. Next, app bundles are assigned either admin or
user role with the appropriate permissions. Non-administrative
API-permissions then granted to apps followed by network-level
permissions. Based on API-level permissions from SM-ONOS, [3]
proposed information flow control among apps for the ONOS con-
troller.

8 CONCLUSION AND FUTUREWORK
In this paper, we formalized a role-based authorization model for
SDN using SE-Floodlight as a reference controller and proposed
an administration model. Then we showed a configuration of the
formal model for a use case scenario. We then discussed the security
aspects of the authorization model and described some security
problems related to over-privileged apps, limitations of role hier-
archy, app upgrading, and app downgrading problems. Finally, we
proposed a solution to overcome the mentioned problems.

As a future work, first, we plan to design an access control model
that includes a wider set of SDN operations. Second, we plan to
present a sophisticated access control model using RBAC standard
and Attribute-based access control (ABAC) terminology in order
to achieve a fine-grained access control within a holistic view to
resources in SDN environment.

ACKNOWLEDGMENTS
This work is partially supported by NSF CREST Grant HRD-1736209
and DoD ARL Grant W911NF-15-1-0518.

REFERENCES
[1] Ijaz Ahmad, Suneth Namal, Mika Ylianttila, and Andrei Gurtov. 2015. Security in

software defined networks: A survey. IEEE Communications Surveys & Tutorials

17, 4 (2015), 2317–2346.
[2] Scott-Hayward el al. 2014. Operationcheckpoint: Sdn application control. In

Network Protocols (ICNP), 2014 IEEE 22nd International Conference on. IEEE.
[3] B. Ujcich et al. 2018. Cross-App Poisoning in Software-Defined Networking. In

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 648–663.

[4] C. Banse et al. 2015. A secure northbound interface for sdn applications. In
Trustcom/BigDataSE/ISPA, 2015 IEEE, Vol. 1. IEEE, 834–839.

[5] C. Yoon et al. 2017. A Security-Mode for Carrier-Grade SDN Controllers. In
Proceedings of the 33rd Annual Computer Security Applications Conference. ACM.

[6] D. Kreutz et al. 2013. Towards secure and dependable software-defined networks.
In Proceedings of the second ACM SIGCOMM workshop on Hot topics in software
defined networking. ACM, 55–60.

[7] H. Padekar et al. 2016. Enabling dynamic access control for controller applications
in software-defined networks. In Proceedings of the 21st ACM on Symposium on
Access Control Models and Technologies. ACM, 51–61.

[8] J. Noh et al. 2016. Vulnerabilities of network OS and mitigation with state-based
permission system. Security and Communication Networks 9, 13 (2016).

[9] Porras P. A et al. 2015. Securing the Software Defined Network Control Layer..
In NDSS.

[10] R. Sherwood et al. 2010. Can the production network be the testbed?. In OSDI.
[11] Scott-Hayward et al. 2013. SDN security: A survey. In Future Networks and

Services (SDN4FNS), 2013 IEEE SDN For. IEEE, 1–7.
[12] Scott-Hayward et al. 2016. A survey of security in software defined networks.

IEEE Communications Surveys & Tutorials 18, 1 (2016), 623–654.
[13] X.Wen et al. 2013. Towards a secure controller platform for openflow applications.

In Proceedings of the second ACM SIGCOMM workshop on Hot topics in software
defined networking. ACM, 171–172.

[14] X.Wen et al. 2016. Sdnshield: Reconciliating configurable application permissions
for sdn app markets. In Dependable Systems and Networks (DSN), 2016 46th Annual
IEEE/IFIP International Conference on. IEEE, 121–132.

[15] Y. Tseng et al. 2017. Controller DAC: Securing SDN controller with dynamic
access control. In Communications (ICC), IEEE International Conference on. IEEE.

[16] David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and Ramaswamy
Chandramouli. 2001. Proposed NIST standard for role-based access control. ACM
Transactions on Information and System Security (TISSEC) 4, 3 (2001), 224–274.

[17] Security Enhanced Floodlight. 2018. https://www.sdxcentral.com/projects/
openflow-sec-security-enhanced-floodlight/.

[18] Floodlight-Project. 2018. http://www.projectfloodlight.org/.
[19] Ryu SDN Framework. 2018. http://osrg.github.io/ryu/.
[20] ON.Lab. ONOS. 2018. http://onosproject.org/.
[21] The OpenDaylight platform. 2018. https://www.opendaylight.org/.
[22] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson,

and Guofei Gu. 2012. A security enforcement kernel for OpenFlow networks. In
Proceedings of the first workshop on Hot topics in software defined networks. ACM.

[23] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. 1996.
Role-based access control models. Computer 29, 2 (1996), 38–47.

[24] Changhoon Yoon, Taejune Park, Seungsoo Lee, Heedo Kang, Seungwon Shin,
and Zonghua Zhang. 2015. Enabling security functions with SDN: A feasibility
study. Computer Networks 85 (2015), 19–35.

Session: SDN/NFV Security Architecture SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA

6

https://www.sdxcentral.com/projects/openflow-sec-security-enhanced-floodlight/
https://www.sdxcentral.com/projects/openflow-sec-security-enhanced-floodlight/
http://www.projectfloodlight.org/
http://osrg.github.io/ryu/
http://onosproject.org/
https://www.opendaylight.org/

	Abstract
	1 Introduction
	2 app Authorization in SE-Floodlight
	3 Formalized SE-Floodlight Access Control Model
	3.1 Overview
	3.2 Formal SE-Floodlight Access Control Model

	4 Administrative Model
	5 Use Case Scenario
	6 Discussion and Possible Extensions
	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

