
Safety and Consistency of Mutable Attributes
Using Quotas: A Formal Analysis

Mehrnoosh Shakarami and Ravi Sandhu
Institute for Cyber Security (ICS), Center for Security and Privacy Enhanced Cloud Computing (C-SPECC)

Department of Computer Science, University of Texas at San Antonio
San Antonio, Texas, USA

mehrnoosh.shakarami@my.utsa.edu, ravi.sandhu@utsa.edu

Abstract—Attribute-based Access Control (ABAC) systems
make access decisions utilizing attributes of subjects, objects and
environment with respect to a policy. Acquiring real-time values
of these attributes is not practical in distributed multi-authority
environments due to cost and performance considerations as well
as intrinsic delays of distributed systems. So it is possible to
make decisions based on outdated policy and attribute values
resulting in access violations. This is known as the safety and
consistency problem. This problem has been previously studied
in trust negotiation and ABAC context. Previous works have
assumed attributes to be immutable, to wit their values could be
changed only via administrative actions. However, so far there
is no research carried out in the context of mutable attributes,
values of which could be changed as a result of users access.

In this paper we investigate safety and consistency in the
context of mutable subject attributes which introduces additional
complexity to the problem. In particular, there might be multiple
concurrent sessions manipulating the same mutable attribute.
Therefore, in addition to exposure of the decision point to stale
attribute values, safety and consistency can be compromised
due to concurrent utilization of the same attribute. While the
general consistency problem has vast literature in distributed
systems arena, practical solutions are typically dependent on the
specific application domain. We identify two categories of use
cases of practical benefit in context of ABAC, which turn out
to be amenable to quota-based solutions. We provide a formal
analysis of the resulting solutions.

Index Terms—ABAC, safety, consistency, mutable attributes

I. INTRODUCTION

Attribute Based Access Control (ABAC) regulates subjects’

access to protected objects in the system using policies relying

on subject, object and environment attributes. These attributes

are typically supplied by multiple Attribute Authorities (AA)

in a distributed provider network. ABAC is rapidly emerging

as the preferred access control model since it subsumes tradi-

tional methods of access control (i.e., discretionary, mandatory

and role-based) while providing additional capabilities [1–3].

Usually more than one subject attribute is required by policy

to govern requested access. Attribute values are communicated

in attribute credentials, which could be cryptographically

signed (if obtained over an untrusted path) or unsigned (if ob-

tained over a trusted path). Incrementally assembling attribute

credentials with the inherent delays and network failures of

distributed environments, exposes the risk of stale information

to be provided to the decision point leading to access control

violations, known as safety and consistency problem.

There are previous studies to limit the exposure of the deci-

sion point to outdated attribute values in ABAC environments

through frequent attribute revocation checks [4] or attribute

freshness checks [5], with the frequency to be determined by

the system administrator based on tradeoff between tolerable

staleness and the burden of frequent updates of attribute values.

Common in previous studies is consideration of attributes

to be immutable in sense of UCONABC model [6], wherein

attribute values can be changed only via administrative actions.

A seminal contribution in UCONABC was the notion of mu-

table attributes, which change automatically as a consequence

of utilizing the granted access.

Our central goal in this paper is to investigate the safety

and consistency problem in the context of mutable attributes.

Mutability adds further complication to establish consistency

requirement and specifications, as it requires synchronization

mechanisms in place to update attribute values. There is a

rich body of literature in distributed environments dealing

with concurrency. However, practical solutions are typically

dependent on the specific application domain. We identify two

categories of use cases of practical benefit in context of ABAC,

which turn out to be amenable to quota-based solutions. More

general treatment of consistency beyond quota-based solutions

is beyond the scope of this paper. We develop a formal

characterization of required consistency using refresh [5] in

this context. We also observe that revocation is inappropriate

to be used in the context of mutable attributes (which has been

the traditional approach to attribute freshness for immutable

attributes).

The paper is organized as follows. A review of related works

and a review of UCONABC model is given in Section II. In Sec-

tion III, we explain the problem and our system assumptions

and definitions. Also, we give a classification of quota-based

approach and its variations studied in this paper. Practical use-

case scenarios based on this classification along with formal

specification of two of them are presented in Section IV.

In Section V, the contrast of refresh and revocation in our

problem context as well as some consistency considerations

are presented, followed by two proposed levels of consistency.

Section VI concludes the paper.

1

2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA)

978-1-7281-6741-1/19/$31.00 ©2019 IEEE
DOI 10.1109/TPS-ISA48467.2019.00010

II. BACKGROUND AND RELATED WORK

A. Related Work

We define consistency problem informally as updating de-

cision point with most recent values of required attributes

in the soonest possible time. Lee and Winslett pioneered

investigation of safety and consistency in trust negotiation

systems [7, 8]. They propose four levels of consistency to

avoid insecure decision making in policy-based authorization

systems. Lee and Winslett extended their work in [9] and

proposed three consistency levels for distributed proof con-

struction in context-sensitive environments in which parts of

the decision tree need to remain hidden for the sake of privacy.

Another related research is reported in [10, 11] in which

authors determine the concept of stale-safety which concen-

trates on safe use of stale attributes by refreshing subject

and object attributes in a way which limits the exposure of

access decisions to outdated information. Authors try to limit

the risk of utilizing the outdated information by relying on

the latest time the attributes have known to be valid (refresh

time). Their model only applies to a single attribute authority

environment. Closest to our study is [4, 5], where [4] uses

revocation check to possibly invalidate attribute values that

change, while refresh is proposed in [5] to acquire the freshest

attribute values.

Common to all prior works, attributes have been considered

to be immutable in sense of UCONABC [6, 12]. Immutable

attribute values can be updated only by administrative actions.

Mutable attribute values, on the other hand, change as the

consequence of access utilization by subjects. Usage of target

object may result in updates of object or subject attributes be-

fore, during or after usage. Mutability is a crucial requirement

of history-based systems or those with consumable attributes.

One of the challenging issues regarding mutable attributes in

distributed environments is using one attribute in concurrent

accesses to the system, each of which might result in attribute

value change. Concurrency control in distributed systems has

been well studied in the literature [13–15], however there are

very limited research works specifically regarding consistency

problem of access control in distributed systems.

B. Background: UCONABC Model

UCONABC
1 [6, 12] has been proposed as a family of

reference models for usage control in which authorizations

are based on attributes of involved parties. UCON extends

traditional access control models by introducing three decision

factors, namely Authorization, Obligation and Conditions.

Authorizations regulate access to objects in the system based

on attributes of involved parties and predefined access control

policies. Obligations are requirements to be fulfilled by the

subject in order to be conferred with the requested access.

Conditions are environmental and system-wide prerequisites

which need to be satisfied for the access to be granted.

UCON further extends access control with decision con-

tinuity and attribute mutability. Continuity provides ongoing

1We call it UCON hereafter

authorization which re-evaluates granted access while being

utilized by the subject. So, in addition to pre-authorization

models which make access decisions once before granting

access, there is ongoing control during access utilization.

Mutability deals with the attribute changes as the side effect

of subject’s access. So instead of being admin-controlled,

attributes are system-controlled which means updates are done

by the system without involving any administrative actions.

For instance, account balance decreases after each time it

is used to buy an item. In this paper we focus on the pre-

authorization models of UCON and do not consider continuity

of enforcement during access.

III. PROBLEM STATEMENT AND ASSUMPTIONS

Assuming an ABAC model is in place, we discuss the

safety and consistency problem for mutable attributes in this

research. We assume attribute credentials are provided through

different attribute authorities and there is a single decision

point in the system. The main goal is to propose a practical

approach to limit the exposure of the decision point to outdated

attribute values. We concentrate on subject’s attribute consis-

tency supposing that policy as well as attributes of objects and

environment are known with high assurance to the decision

point.

Administrative changes of attribute values are always done

at the AA for both mutable and immutable attributes. It

is worth reminding that we consider attributes mutable if

their changes are the consequence of access utilization by

subjects. So, if any administrative change happens that should

be managed administratively. As an example if the user’s credit

line changes, that change has to be managed and take effect

via AA whereas using the credit line to purchase services

is done automatically by the system. It is also possible to

check the most recent values of mutable attributes with AA for

each utilization, for example after each credit card utilization.

However, it makes AA as a single point of failure and is as

inefficient as any centralized approach.

There is a big space of analysis to deal with consistency

problem in distributed environments with mutable attributes.

Our analysis focuses on a quota-based approach in which every

mutable attribute value would be treated as a quota and AA

would delegate the quota to some predetermined distributed

servers and those servers take care of utilization of delegated

quotas and update them locally.

A. Quota-Based Approach

Quota for reusable resources could be considered as re-

imbursable deposit which is refunded after usage has fin-

ished [16]. There is another type of resources known as

consumable which would decrease in amount at each access

without being refunded. A system that allows a user up to five

concurrent sessions for content streaming is an example of the

former, since termination of a session enables another one to

be initiated. A system that allows a total of five uses is an

example of the latter; once consumed, the quota would not be

refunded.

2

Access quota has been previously used in risk-based access

control. Authors in [17] assigned quota to users and obliga-

tions in order to regulate access risks. Access quota has been

used in [18] to specify a threshold on tolerable risk by the

system through assigning quotas based on estimation of access

needs during a specific period of time.

We assume each mutable attribute has a global limit known

to the corresponding AA. This global limit can be managed

in a centralized way by AA to be distributed and managed

among users whose access requires utilizing that attribute. In

another approach, the global limit could be delegated to local

servers which would be responsible to distribute the global

limit as local quotas to be manipulated through different access

utilizations. The totality of local quotas distributed in this

manner cannot exceed the global quota.

In any case, we recognize two approaches to apportion the

global limit as follows.

1) Service-Based: In this approach AA assigns portions of

the global limit to each service point, regardless of the

users who are utilizing access to the service. So, a global

limit would be set on concurrent number of service

usage by all users. It is notable that provided global

limit would be set for each service instance of a service.

As an example, an Internet Service Provider supplies

internet connection to hotel rooms. Each room’s internet

connection would be a service instance. Regardless of

which users/devices are connected to the service, an

overall internet usage limit would be set for all provided

service instances.

2) User-Based: In this approach a subscriber (user) to a

service would be assigned limited number of concurrent

sessions to use the service. As an example, assign a

specific amount of storage to every user on the cloud or

put an upper limit on the number of concurrent sessions

that each subscriber to a TV channel can have. Note that

attribute-based access control could be done either id-

less (anonymous) as proposed in Idemix [19] or non-

anonymous as we address it in user-based global limit

assignment.

In both approaches a global count limit would determine the

upper bound of usage which restrains the number of concurrent

usage number of the service objects. Upper bound could be

set either as a countdown which is consumable and non-

refundable after each usage or it can be restored after access

utilization has been completed.

B. Definitions and Assumptions

We examine the safety and consistency problem from the

perspective of a single access decision point within a larger

distributed ABAC authorization system (which would include

multiple such decision points amongst other distributed com-

ponents). Attributes of objects and environment and the policy

are presumed to be known with high assurance to the decision

point. Our focus is on subject attributes in this paper.

As previously discussed subject attributes could be either

mutable or immutable. Regardless decision point is the entity

which checks the policy and determines the set of attributes

whose values should satisfy policy requirements. We call this

set relevant attributes set or relevant attributes for short,

following previous studies [4, 5, 7], which could be distributed

over multiple attribute providers.

The set of relevant attributes might change over time as

the decision point examines the policy expression which

we assume is expressed in Disjunctive Normal Form. If an

attribute’s value does not fulfil policy requirements, it would

be replaced with next conjunct in the same clause, so the set

of relevant attributes changes.

Definition 1. We call the set of relevant attributes to the policy

P at time t determined by decision point DP , the view of the

decision point at time t and denote it as V P,t
DP .

IV. USE CASE SCENARIOS

In this section we discuss two sets of practical use case

scenarios to illustrate how utilizing the conferred access may

require updating mutable subject attributes. These use cases

are provided in the context of ABAC and are amenable to

quota-based approach. Throughout use case explanations we

use quota-based solution to manage concurrent accesses of

users to service instances which is a well-established approach

to handle concurrency in distributed environments.

We consider pre-authorization and pre-obligation models

with respect to UCON. In order to explain each use case we

follow UCON notation of [6]. Moreover, we define following

symbols to describe our use cases. U and S represent the

set of all users and services in the system respectively. Each

concurrent session of the user is shown as a User Instance

(UI) (a.k.a subject). Considering the service as the object in

our system, we represent each service instance as a Service

Instance Object (SIO). The number of existing sessions is

treated as a user’s attribute which ought to appropriately

change as new sessions are created or terminated while using

the service.

ATT (.) indicates the set of attributes for the entity en-

closed in parenthesis. X.Y denotes attribute Y of the entity

X. preUpdate(.) and postUpdate(.) indicate functions which

have to be done to update attribute values before usage is

started and after usage is terminated respectively. The notation

allowed(s, o, a) ⇒ indicates necessary requirements for subject

s to be allowed to do action a on object o.

A. Centralized Approach

AA distributes attribute values among entities to be used

during access evaluation and utilization, so dissemination is

done in a centralized way under a single authority. This

strategy makes the AA as the single point of failure which

monitors and tracks assigned limits.

Attribution of assigned portion could be done for all users

of a specific service, a.k.a service-based, or it could be user-

centric, a.k.a user-based, as follows. Either of following two

approaches could also be changed to be processed as a global

countdown limit, which means the global limit would be

consumable and would not be refunded after each usage.

3

Fig. 1. Centralized Approach to Manage Global Limit: a) service-based b) user-based

1) Service-Based Distribution: In this type of distribution

a global limit is assigned for all users of a service. The

AA would manage sharing the service among different users

scattered throughout local or distributed locations. Formal

specification of this method is shown in Figure 1a. As an

example, an Internet Service Provider supplies internet con-

nection to hotel rooms. Regardless of which users/devices are

connected to the internet, the central server would set a usage

global limit on the service it provides to the hotel.
2) User-Based Distribution: This strategy disseminates the

global limit between different users of a service. The global

limit can determine the maximum number of service usage

per user. As an example a subscriber to a service could have

up to M concurrent sessions for using that service. Each time

a user wants to start/end utilization of the service, AA would

check the prerequisites (if any) and update mutable attributes

accordingly. Formal specification is given in Figure 1b.

B. Distributed Quota-Based Approach
Although centralized approach provides the benefit of

avoiding inconsistency because of its central management, it

presents scalability and fault tolerance difficulties. To provide

a system with better fault tolerance and to avoid AA from

becoming the single point of failure, a distributed approach

could be exploited. In this approach, a global limit which has

been assigned to every mutable attribute would be distributed

among some local servers which delegate their assigned share

as quotas to each service/user throughout access assessment

and practice. Furthermore, this limit could be allocated using

a service-centric or user-centric approach as follows.
1) Service-Based Quota Distribution: A global limit would

be set per service to be used by different users. This limit

would be delegated to different service providers in the dis-

tributed environment which then could be allocated to different

users of the system per request. As an example, consider a

Software as a Service (SaaS) [20] which provides all users

from a university’s IP address up to a total of M concurrent

sessions to use the software. Then the global limit could be

further distributed among Service Instance Objects (SIO) as

quotas to be assigned to different colleges and departments

which could be managed locally. Formal specification is

provided in Figure 2a.
2) User-Based Quota Distribution: In this approach a

global limit would be allocated to local servers for each

user. The global limit determines the maximum number of

simultaneous service usage a user can have. A user (U) can

have multiple concurrent user instances (UI) which is created

with a predetermined share (ui .Quota) of its parents (the user

who created that UI) global limit. The sum of all assigned

quotas to different user instances cannot exceed their parent

global limit. As an instance, a subscriber to a TV channel can

have up to 5 concurrent live sessions and then this global limit

can be used on different devices to watch that channel. Formal

specification is provided in Figure 2b.
To delete one of the user’s user instances, we enforce one

of the two following approaches to ensure assigned quota to

deleted user instance would be set free for further utilization.

• user instance which the user wants to be deleted, should

have no service utilization (ui .usageCount = 0).

• terminate all services which are being practiced by to-

be-deleted user instance. To satisfy this requirement, we

enforce an obligation to be fulfilled by the user to first

discontinue all user instance services and then proceed to

delete the user instance. This approach has been used in

Figure 2b.

The quota upper limit could also be set as a countdown limit

which conveys that the quota is non-refundable after usage

termination.

C. Distributed vs. Centralized Quota Management
Each of centralized and distributed quota management ap-

proaches discussed in Section IV has its own advantages

and drawbacks. In the rest of this section, we provide some

properties of each method of quota management to compare

their pros and cons.

Property 1. Centralized quota management provides correct

access control decision.

Proof. In the centralized approach, all required attribute cre-

dentials are kept in one place which is a highly assured AA.

4

Fig. 2. Distributed Approach to Manage Global Limit: a) service-based b) user-based

As long as there is no network failure and post updates could

succeed, this would result in granting access only when it is

correct based upon the policy.

Property 2. Distributed quota management approach provides

less availability and less utilization, comparing to the central-

ized approach.

Proof. It is possible to block an access in the distributed

approach due to lack of available quota, while it would be

conferred in the centralized approach. In distributed approach,

the global limit of every attribute is dispersed between local

distributors (servers) as quotas. If an access permission re-

quires assessing a specific attribute, access would be granted

provided a spare quota is available. If not, access would be

denied. This could happen even if there are some spare quotas

for the same attribute sitting unused on other servers. If this

request was delivered to a system with a centralized quota

management, access would not be denied as long as there is

any available spare quota and it would be allocated as the

global limit is managed centrally by the AA. So, even while

post updates succeed, distributed approach could be deficient

in availability and resource utilization comparing to centralized

approach.

Property 3. Distributed quota management access provision

is correct.

Proof. Based on Property 2, distributed approach would pro-

vide less availability compared with centralized approach.

This conveys less access would be granted while applying

distributed approach. In other words, granted accesses in dis-

tributed method is a subset of accesses granted in centralized

one, which are correct based on Property 1.

V. CONSISTENCY LEVELS FOR DISTRIBUTED

QUOTA-BASED DISTRIBUTION METHODS

In this section we only look at refresh-based solution as

revocation is not applicable that which we discuss in Subsec-

tion V-A. Subsection V-B accentuates the fact that consistency

problem would arise only when multiple (more than one)

attributes are included in the view of decision point. Two

consistency levels in Subsection V-C are provided to reduce

decision point exposure to outdated values while its view

contains both mutable and immutable attributes, recognizing

that mutable attributes would increase the risk of exposure to

stale values, a.k.a safety and consistency problem.

A. Revocation vs. Refresh

Authors in [5] compared the two possible ways to obtain

latest attribute values as shown in Figure 3. While in revoca-

tion it is only possible to check if attribute credential is either

valid or revoked, in refresh scenario new values of attributes

could be returned in case of any changes other than revocation.

5

Fig. 3. Revocation vs. Refresh [5]

So instead of only invalidating the old value, the new value

would be communicated to the requesting party.

Taking mutability into account, decision point needs to

be updated by recent values of relevant attributes. Since

revocation check only evaluates the validation of previous

attribute values, it is appropriate only for immutable attributes

which solely could be updated by administrative actions. If

used for mutable attributes, revocation check is useful only if

the attribute value has been revoked, but any changes in the

value would not be reflected in revocation check response.

Both revocation and refresh scenarios are considered as

pulling approaches, in which the recent attribute value in-

formation will be recovered via querying AA. We consider

refresh scenario to be appropriate to obtain the freshest values

of attributes in this work. However, if the global limit changes,

there should be a pushing mechanism from AA to distributing

servers to make them aware of the change. Consideration of

this latter mechanism is out of scope for this paper.

B. Consistency Considerations For Mutable Attributes

Consistency problem arises when the decision point needs

more than one attribute value to make an access decision. We

call the set of required attributes to make an access decision

relevant attributes as speccified in Definition 1. Practical use

cases compliant to quota-based approach have been discussed

in Section IV, all of which consider only one mutable attribute.

When relevant attributes include more than one attribute,

there is always the risk of some attribute values to be outdated

while the decision point trying to acquire other attributes’ val-

ues from distributed attribute authorities. Previous research has

been done toward definition of different consistency levels by

imposing restrictions on timeliness of attribute checks [4, 5],

but all attributes presumed to be immutable.

The following example demonstrates that the consistency

problem when the set of relevant attributes include more than

one attribute including mutable attributes as well.

Example 1. A user tries to create a backup of his phone

contents on Apple iCloud. To grant the access to iCloud

storage, decision point needs to confirm the validity of Apple

ID which is considered as an immutable attribute as well as

remaining storage assigned to that ID as a mutable attribute.

Suppose a scenario in which the Apple ID has been vali-

dated previously and the decision point tries to check the

remaining iCloud storage. It is possible that Apple ID has

been invalidated while trying to acquire remained storage,

which indicates an inconsistency situation. The reverse order

of checks is also possible to cause consistency problem where

TABLE I
SUMMARY TABLE OF SYMBOLS

Symbol Meaning

treq request time
td decision time

cmi ithcredential which is mutable

cimi ithcredential which is immutable

ci ithcredential, regardless of being mutable/immutable

tiref,k time of k-th refresh of cimi
tiupdate,k time of k-th refresh of cmi
tistart,k attribute start time of ci after k-th refresh

tiend,k attribute expiration time of ci after k-th refresh

kmax(t) latest refresh of ci before time t (ci is determined
by context)

vali
kmax(t)

the value of ci after kmax(t)-th refresh

ti
ref,kmax(t)

time of kmax(t)-th refresh of cimi
ti
update,kmax(t)

time of kmax(t)-th refresh of cmi
ti
start,kmax(t)

attribute start time of ci after kmax(t)-th refresh

ti
end,kmax(t)

attribute expiration time of ci after kmax(t)-th re-
fresh

iCloud storage has been consumed up with content from other

devices connected to the same Apple ID, while checking the

authenticity of the ID.

C. Formal Specification Of Consistency Levels

Before defining formal consistency levels, we emphasize

that mutable attributes would be updated more frequently than

immutable ones. As a justification, we remind the reader of the

definition of each category of attributes. Immutable attributes

are assigned and only could be changed by administrative

actions, however mutable attribute values could change as a

side effect of each access utilization. Since any access could

change the relevant mutable attributes values, it is reasonable

to assume mutable attribute changes more frequent.

Based on previous statement, unlike what has been defined

in previous works to define consistency levels based on dif-

ferent recommended freshness/validity overlaps, we would not

assume the same degree of freedom for system administrators

to decide lower levels of freshness overlap to be provided to

the decision point. So, at least all of mutable attributes have

to be refreshed after the request is submitted to the decision

point. It is notable that we consider the request time as the

anchor point in that it is the closest recognizable point in time

to the decision time and we want to check the value of mutable

attributes at the closest possible point to the decision time.

Nonetheless for immutable attribute we could rely on re-

fresh results which have been done before the request time. In

contrast to mutable attribute values which are available locally

at local distributors in distributed approach and so could be

updated at any arbitrary time, immutable attributes updates re-

quire the decision point to consult the AA which might not be

possible at any desired time in distributed environments. That

said we can give more freedom about timeliness of immutable

attributes. However, simultaneous freshness of mutable and

immutable attributes might not necessarily be provided.

6

Fig. 4. Lifetime Overlap Consistency Level

We propose two levels of consistency assuming the set

of relevant attributes includes both mutable and immutable

attributes as the most general case. Following [5], Table I

shows required symbols with a brief explanation of each.

1) Lifetime Overlap Level: This level of consistency guar-

antees that all relevant credentials would be overlapping in

their lifetimes. It also provides the decision point with the

freshest value of relevant mutable attributes at the decision

time. However immutable attributes freshness cannot be as-

sured as it may not be possible to refresh them after the request

time. So, immutable attribute values might be outdated but

correct in the past.

Decision point would rely on values of latest available

refresh results for immutable attribute credentials whenever

refresh after request is unfeasible. Yet, refreshing mutable

attribute credentials after request time is indispensable, in that

their values could have been altered since last refresh as the

usage side effect.

The decision point in Figure 4 relies on three attributes,

the first of which is mutable and two others are immutable.

As depicted the mutable attribute has been refreshed after the

access request, however for mutable attributes the latest refresh

results, which have been acquired before the request time, have

been used. Formal specification of this level is as follows.

Specification. Every immutable attribute has to be refreshed

at least once before the decision time and found to be fresh.

Every mutable attribute has to be refreshed at least once after

the request time and before the decision time and found fresh

based on the latest refresh results.

Fig. 5. Freshness Overlap Consistency Level

LifetimeOverlap(V
P,td
DP) ⇐⇒

(∀cimi ∈ V
P,td
DP)(∃t t ≤ td)

[(max
∀ci∈V

P,td
DP

tistart,kmax(t) ≤ tiref,kmax(t) < min
∀ci∈V

P,td
DP

tiend,kmax(t))

∧ Fresh(ci, t
i
ref,kmax(t))]

∧ (∀cmi ∈ V
P,td
DP)(∃t′ treq ≤ t′ ≤ td)

[(max
∀ci∈V

P,td
DP

tistart,kmax(t′) ≤ treq ≤ tiupdate,kmax(t′)

< min
∀ci∈V

P,td
DP

tiend,kmax(t′)) ∧ Fresh(cmi , tiupdate,kmax(td)
)]

∧ max
∀ci∈V

P,td
DP

tistart,kmax(td)
< td < min

∀ci∈V
P,td
DP

tiend,kmax(td)

(1)

Property 1. All relevant attributes lifetime intervals would

overlap.

Proof. Based on Equation 1, all credentials would be refreshed

when other credentials are in their lifetimes. Moreover, deci-

sion time lies in the last known lifetime interval for all relevant

credentials at the decision time, as stated in the last part of

Equation 1. This conveys at least one point (td) lies in intersec-

tion of all credentials lifetimes. So, all lifetimes would overlap

in [max∀ci∈V
P,td
DP

tistart,kmax(td)
,min∀ci∈V

P,td
DP

tiend,kmax(td)
]. Al-

though there is no guarantee for simultaneous freshness of all

relevant credentials, Figure 4 depicts a lucky situation in which

all credentials are fresh during [t1start,1, t
2
ref,2]. But even in this

case there is no simultaneous freshness of all attributes after

the request time.

2) Freshness Overlap: This level of consistency guarantees

that all relevant credentials would be fresh simultaneously

after the access request turned into the system. It requires all

relevant credentials, including both mutable and immutable, to

be refreshed after request time.

As depicted in Figure 5, three attributes have been con-

sidered to be relevant, first of which is mutable and two

others are immutable. All three relevant attributes have been

refreshed after the request time which supplies decision point

7

with the freshest values of each relevant credential while all

freshness intervals are guaranteed to overlap after the request

time. Following is the formal specification of this level.

Specification. Every credential has to be refreshed after re-

quest time and before the decision time. It is required for

all relevant credentials to be started at or before the request

time. So, simultaneous freshness of all relevant attributes is

guaranteed. If some credentials start time fall after the request

time, both mutable and immutable attributes would be assured

to be fresh at some time interval after the request time but

simultaneousness of freshness intervals is not assured. So, we

restrict the start times to fall at/before request time.

FreshnessOverlap(V
P,td
DP) ⇐⇒ (∃t treq < t ≤ td)

[(∀cimi ∈ V
P,td
DP)(tistart,kmax(t) ≤ treq < tiref,kmax(t))

∧ (max
∀ci∈V

P,td
DP

tistart,kmax(t) ≤ tiref,kmax(t)

< min
∀ci∈V

P,td
DP

tiend,kmax(t)) ∧ Fresh(cimi , tiref,kmax(t))]

[(∀cmi ∈ V
P,td
DP)(tistart,kmax(t) ≤ treq < tiupdate,kmax(t))

∧ (max
∀ci∈V

P,td
DP

tistart,kmax(t) ≤ tiupdate,kmax(t)

< min
∀ci∈V

P,td
DP

tiend,kmax(t)) ∧ Fresh(cmi , tiupdate,kmax(td)
)]

∧ max
∀ci∈V

P,td
DP

tistart,kmax(td)
< td < min

∀ci∈V
P,td
DP

tiend,kmax(td)

(2)

Property 1. All relevant credentials would be simultaneously

fresh during a time interval before the decision time which

includes the request time.

Proof. All credentials have to be refreshed after request

time and before decision time. Also latest start time of

all credentials should happen before/at the request time.

So all credentials would be simultaneously fresh during

[max∀ci∈V
P,td
DP

tistart,kmax(t),min∀ci∈V
P,td
DP

tiref,kmax(t)] time in-

terval which includes the request time.

Property 2. Every view at Freshness Overlap level would be

at Lifetime Overlap level as well.

Proof. This property is obvious, since freshness interval for

every credential is a subinterval of its lifetime interval. There-

fore, when there is freshness overlap, lifetime overlap is self-

evident.

Property 3. Not every view at Lifetime Overlap level is at

Freshness Overlap level as well.

Proof. As presented before, at the Lifetime Overlap level it is

possible to have some immutable attributes with refresh time

even before the request time. On the contrary, to be at Fresh-

ness Overlap level, every immutable credential requires to be

updated at least once after the request time. Thus although the

lifetimes would overlap based on the last condition stated in

Eq. 1, freshness overlap could not be guaranteed.

Tip. It is significant to note that enforcing the start time of re-
freshed attributes to lie before the request time (tistart,kmax(t) ≤

Fig. 6. Start Time Has Fallen After Request Time

treq < tiref,kmax(t)) is the key requirement in this level.
Otherwise it is possible to have non-overlapping freshness
intervals although all credentials have been found fresh after
the request time. For example, as seen in Figure 6, latest start
time of cim2 has fallen after request time (t2start,3 > treq) and
its freshness does not overlap with freshness interval of other
two credentials.

VI. CONCLUSION

Safety and consistency problem in the context of mutable

attributes in distributed ABAC environments has been studied

in this paper for the first time to the best of our knowledge. To

tackle concurrent usage of mutable attributes in a distributed

environment we propose two categories of practical scenarios,

from which we justified the distributed approach to be a better

match with modern system environments and requirements.

We further discuss two types of service-based and user-based

subcategories. Both subcategories of distributed approach are

amenable to quota-based approach. Formal specification of use

cases have been proposed relying on nomenclature of UCON

paper.

We assert that revocation check is inappropriate given

mutable attributes values would be changing frequently and

new values of them have to be sought and utilized in decision

making process. Therefore, refresh should be used to pull

recent values of attributes from attribute authorities. We pro-

posed two levels of consistency well adapted to specifications

in distributed ABAC environments.

ACKNOWLEDGEMENT

This work is partially supported by NSF CREST Grant

HRD-1736209 and DoD ARL Grant W911NF-15-1-0518.

REFERENCES

[1] S. Das, B. Mitra, V. Atluri, J. Vaidya, and S. Sural, “Policy engineering
in RBAC and ABAC,” in Database to Cyber Security, 2018.

[2] X. Jin, R. Krishnan, and R. Sandhu, “A unified attribute-based access
control model covering DAC, MAC and RBAC,” in DBSec XXVI, 2012.

[3] V. C. Hu, D. R. Kuhn, D. F. Ferraiolo, and J. Voas, “Attribute-based
access control,” IEEE Computer, vol. 48, no. 2, pp. 85–88, 2015.

8

[4] M. Shakarami and R. Sandhu, “Safety and consistency of sub-
ject attributes for attribute-based pre-authorization systems,” in NCS.
Springer, 2019.

[5] ——, “Refresh instead of revoke enhances safety and availability: A
formal analysis,” in IFIP Annual Conference on Data and Applications
Security and Privacy. Springer, 2019, pp. 301–313.

[6] J. Park and R. Sandhu, “The UCONABC usage control model,” in ACM
TISSEC, 2004.

[7] A. J. Lee and M. Winslett, “Safety and consistency in policy-based
authorization systems,” in CCS. ACM, 2006.

[8] ——, “Enforcing safety and consistency constraints in policy-based
authorization systems,” in TISSEC. ACM, 2008.

[9] A. J. Lee, K. Minami, and M. Winslett, “Lightweight consistency
enforcement schemes for distributed proofs with hidden subtrees,” in
ACM SACMAT, 2007.

[10] R. Krishnan, J. Niu, R. Sandhu, and W. H. Winsborough, “Stale-safe
security properties for group-based secure information sharing,” in ACM
FMSE, 2008.

[11] R. Krishnan and R. Sandhu, “Authorization policy specification and
enforcement for group-centric secure information sharing,” in ICISS.
Springer, 2011.

[12] J. Park, X. Zhang, and R. Sandhu, “Attribute mutability in usage
control,” in Research Directions in Data and Applications Security

XVIII. Springer, 2004, pp. 15–29.
[13] P. A. Bernstein, P. A. Bernstein, and N. Goodman, “Concurrency control

in distributed database systems,” ACM Computing Surveys (CSUR),
vol. 13, no. 2, pp. 185–221, 1981.

[14] X. Yu, Y. Xia, A. Pavlo, D. Sanchez, L. Rudolph, and S. Devadas, “Sun-
dial: harmonizing concurrency control and caching in a distributed OLTP
database management system,” Proceedings of the VLDB Endowment,
vol. 11, no. 10, pp. 1289–1302, 2018.

[15] R. Harding, D. Van Aken, A. Pavlo, and M. Stonebraker, “An evaluation
of distributed concurrency control,” Proceedings of the VLDB Endow-
ment, vol. 10, no. 5, pp. 553–564, 2017.

[16] B. C. ord Neuman, “Scale in distributed systems,” ISI/USC, 1994.
[17] Q. Ni, E. Bertino, and J. Lobo, “Risk-based access control systems built

on fuzzy inferences,” in ASIACCS. ACM, 2010, pp. 250–260.
[18] Q. Wang and H. Jin, “Quantified risk-adaptive access control for patient

privacy protection in health information systems,” in ASIACCS. ACM,
2011, pp. 406–410.

[19] J. Camenisch and E. Van Herreweghen, “Design and implementation
of the Idemix anonymous credential system,” in Proceedings of the 9th
ACM conference on Computer and communications security. ACM,
2002, pp. 21–30.

[20] M. Turner, D. Budgen, and P. Brereton, “Turning software into a
service,” Computer, vol. 36, no. 10, pp. 38–44, 2003.

9

