Session 1

ABAC'18, March 21, 2018, Tempe, AZ, USA

An Attribute-Based Access Control Model for
Secure Big Data Processing in Hadoop Ecosystem

Maanak Gupta, Farhan Patwa and Ravi Sandhu
Institute for Cyber Security (ICS),
Center for Security and Privacy Enhanced Cloud Computing (C-SPECC),
Department of Computer Science, University of Texas at San Antonio
Email: gmaanakg@yahoo.com, farhan.patwa@utsa.edu, ravi.sandhu@utsa.edu

ABSTRACT

Apache Hadoop is a predominant software framework for dis-
tributed compute and storage with capability to handle huge
amounts of data, usually referred to as Big Data. This data collected
from different enterprises and government agencies often includes
private and sensitive information, which needs to be secured from
unauthorized access. This paper proposes extensions to the cur-
rent authorization capabilities offered by Hadoop core and other
ecosystem projects, specifically Apache Ranger and Apache Sentry.
We present a fine-grained attribute-based access control model,
referred as HeABAC, catering to the security and privacy needs
of multi-tenant Hadoop ecosystem. The paper reviews the current
multi-layered access control model used primarily in Hadoop core
(2.x), Apache Ranger (version 0.6) and Sentry (version 1.7.0), as
well as a previously proposed RBAC extension (OT-RBAC). It then
presents a formal attribute-based access control model for Hadoop
ecosystem, including the novel concept of cross Hadoop services
trust. It further highlights different trust scenarios, presents an
implementation approach for HeABAC using Apache Ranger and,
discusses the administration requirements of HeABAC operational
model. Some comprehensive, real-world use cases are also discussed
to reflect the application and enforcement of the proposed HeABAC
model in Hadoop ecosystem.

CCS CONCEPTS

« Security and privacy — Access control; Authorization; Se-
curity requirements; Formal security models;

KEYWORDS

Access Control; Hadoop Ecosystem; Big Data; Data Lake; Role
Based; Attributes Based; Authorization; Trust;

ACM Reference Format:

Maanak Gupta, Farhan Patwa and Ravi Sandhu. 2018. An Attribute-Based
Access Control Model for Secure Big Data Processing in Hadoop Ecosystem.
In ABAC’18: 3rd ACM Workshop on Attribute-Based Access Control, March
19-21, 2018, Tempe, AZ, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3180457.3180463

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ABAC’18, March 19-21, 2018, Tempe, AZ, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5633-6/18/03...$15.00
https://doi.org/10.1145/3180457.3180463

13

1 INTRODUCTION

Big Data has become an essential asset for enterprises, which are
harnessing its potential for generating additional revenue, offering
better customer experience, and developing insights into their busi-
ness models. The data generated from diverse and varied sources
including Internet of Things, social platforms, health-care, system
logs, bio-informatics, etc. contribute and define the ethos of Big
Data which is volume, velocity and variety. Data lake formed by
the amalgamation of data from these sources requires powerful,
scalable and resilient, storage and processing platforms to reveal
the true value hidden inside this data mine.

Over the last several years, Apache Hadoop has emerged as a pre-
dominant platform for handling Big Data. Along with core Hadoop
2.x components including Hadoop Common, MapReduce, Hadoop
Distributed File System (HDFS) and Apache YARN, several projects
have contributed to make Hadoop ecosystem the prime choice as
a robust, resilient and fault-tolerant Big Data processing system.
Open source projects like Apache HBase, Apache Hive, Apache
Knox, Apache Storm, Spark etc. have made this framework avail-
able and usable to business and non-technical users also, making
it ubiquitous in enterprises, academia and elsewhere. Such wide
acceptance of this platform compels researchers and scientists to
make it more secure, considering the fact that it handles the most
precious asset of any enterprise, i.e. Data. In year 2017 alone sev-
eral instances of data breaches were brought to the notice of the
world [11] which amplifies and emphasises the need for better cyber
security and privacy mechanisms.

Hadoop framework security is very challenging considering its
distributed nature and broad attack surface. This multi-tenant plat-
form must be secure to prevent unauthorized access to sensitive
information and cluster resources used inside this system. Since
multiple users would be running different applications and jobs on
this platform, it is important that no data breach occurs and relevant
data is only revealed to authorized users. The confidentiality and in-
tegrity of information and resources can be compromised if attacks
like Hadoop service daemons (HDFS NameNode, DataNode, YARN
ResourceManager etc.) impersonation, denial of cluster resources,
killing or modifying of user applications by malicious user, unau-
thorized data access in HDFS etc. are orchestrated. For example, in
case of Hadoop daemons masquerading, once a malicious service
is registered as a part of the Hadoop cluster, unauthorized users
can access data blocks residing on data nodes or even consume all
cluster resources by running high resource demanding jobs, there-
fore, preventing other users to use the cluster. Such attacks can
be organized from inside and outside of the organization, which
makes it more difficult to detect and prevent them.

https://doi.org/10.1145/3180457.3180463
https://doi.org/10.1145/3180457.3180463
https://doi.org/10.1145/3180457.3180463

Session 1

Researchers have understood the need to embed security into
the Hadoop system and have proposed several security measures
to prevent cyber attacks. Access control plays a pivotal role to
restrict unauthorized access to data, services and resources in the
Hadoop cluster. Apache Hadoop core along with other security
projects like Apache Ranger [5] and Apache Sentry [6] offer multi
layer access controls across multiple Hadoop ecosystem projects
including Apache Hive, HBase, YARN etc. using Access Control
Lists (ACLs). These current authorization features (we refer to as
HeAC) have been presented and illustrated in our previous work [21,
22]. In this paper, we extend the current access control capabilities
and propose a fine-grained attribute-based access control model for
Hadoop ecosystem, which we call as HeABAC. We further introduce
the novel concept of cross Hadoop service trust to secure inter-
Hadoop services interaction in the framework. Attribute-based
access control (ABAC) [23, 30, 32] has received significant attention
in recent years because of the flexibility it offers in multi-user
distributed environment, which inspired us to use it in Hadoop
ecosystem authorization security controls, which is still primarily
based on ACLs. This work is a successor to our previous work [21]
which also proposed an extension to HeAC, the Object-Tagged Role
based access control model for the Hadoop ecosystem (OT-RBAC)
consistent with widely accepted RBAC [19, 38] definitions and
incorporating object attribute values called tags. To our knowledge,
this paper is the first work to define and formalize a pure attribute-
based access control model for Hadoop ecosystem with the concept
of cross Hadoop services Trust.

The remaining paper is organised as follows. Section 2 provides
an overview of multi-layer access control requirements and features
in Hadoop ecosystem. This section also briefly discusses the current
Hadoop ecosystem access control model (HeAC) and its OT-RBAC
extension. Section 3 proposes and presents the formal attribute-
based access control model for Hadoop ecosystem (referred as
HeABAC) and introduces the concept of cross Hadoop service trust.
This section also presents an implementation approach of HeABAC
using Apache Ranger and provides an overview of its administrative
requirements. Section 4 presents comprehensive real-world use-
cases to demonstrate the usage and application of HeABAC. Section
5 reviews some relevant previous works, followed by summary of
the paper in Section 6.

2 ACCESS CONTROL IN HADOOP
ECOSYSTEM

The authorization capabilities provided by Apache Hadoop and
relevant security projects embody the important security principle
of ‘Defense in Depth’ to secure the Hadoop cluster. The multi-layer
access controls offered restrict users and applications at different
levels including Hadoop daemon services, ecosystem services, data
or service objects and the cluster resources. In this section, we
discuss the authorization requirements and various access control
mechanisms provided in core Hadoop 2.x, Apache Ranger (version
0.6), Apache Sentry (version 1.7.0) and Apache Knox. We will fur-
ther briefly outline the Hadoop ecosystem access control model
(HeAC) and Object-Tagged Role based access control model (OT-
RBAC) which were discussed in our previous work [20-22] and are
predecessor to our work in this paper.

14

ABAC'18, March 21, 2018, Tempe, AZ, USA

Ecosystem

i Diata Object
Service

| USER |

1. operation request x

{]
1. cperation request

Figure 1: Data Object Access Flow in Hadoop Ecosystem

2.operation not
allowed

2 service accesg x

3. operation not allowed

allowed onobject

1. operation request (

= .

2. service access r
allowed

J.operation
allowed on object

2.1

The first line of check an authenticated user has to pass is the
perimeter security. Provided by the service layer authorization, it
checks if a user or its application is allowed to access ecosystem ser-
vices like Apache Hive, HBase etc. or Hadoop daemon services like
HDFS NameNode, DataNode, YARN ResourceManager etc. in the
cluster. Some capabilities to protect these daemon services are of-
fered by Hadoop core 2.x using Access Control Lists (ACLs), which
specify users or groups allowed to perform operations like submit-
ting applications, query application status or simply accessing a ser-
vice. Besides users, services also have controlled access to other dae-
mons services necessary for task updates or cluster resource status.
For example, ACL security.resourcetracker.protocol.acl is
used to restrict unauthorized communication between YARN Re-
sourceManager and NodeManager. Apache Knox also provides
perimeter security using a single access point gateway which sets
policies to protect ecosystem services from unauthorized users
making API calls. This layer checks and prevents users to access
these services much before their underlying data or service objects
are accessed, and as such is the earliest access control layer.

Once the user is authorized to access the ecosystem service, data
or service objects access control is considered. Hadoop Distributed
File System (HDFS) is responsible to store large files in a distributed
manner across different data nodes. HDFS mainly uses extended
ACLs and POSIX style permissions on files and directories to protect
from unauthorized access. With Hadoop 2.x and Apache YARN, var-
ious Hadoop ecosystem services can access the same data residing
in HDFS in different formats based on the data model supported. For
example, Apache Hive represents data in tables and columns, while
HBase supports column families etc. These data models support
different operations like select or drop in Apache Hive and read or
write in HBase. Apache Ranger and Apache Sentry provide plugins
which are attached to these services to enforce policy-based access

Multi-layer Authorization

Session 1

controls. Therefore, when data is accessed in ecosystem service like
Apache Hive, the authorization is checked at both Apache Hive and
HDFS objects besides making a prior perimeter check of service
access. As shown in Figure 1, when a user tries to access a data
object (like table) in an ecosystem service (say Apache Hive), access
control policy is first checked for user permission for service. If
that is denied, no further access is allowed; in case it is allowed, the
next check is at the object itself where the policy is defined for the
particular table. Therefore, two level check is done to access objects
in Hadoop ecosystem. Apache Ranger also introduces the notion of
object tags, where data objects are assigned certain attribute values
and access control is defined based on these tags. In such a case,
tag based policies are set where the value of tag associated with
the object will determine if a user is allowed to access the object.
Apache Ranger also allows policies to enable column masking and
row filtering in Apache Hive where certain data sets are concealed
or filtered from the users which are not allowed to access them.

In addition to protecting services and objects, user applications
and cluster resources are also needed to be protected from nefarious
users. Unauthorized user must not be able to delete or know the
status of any other user. Further, users must not be allowed to use
and consume all the resources of the cluster by running bulky jobs to
orchestrate denial of resource attacks. Apache YARN offers capacity
and fair scheduler queues which enable sharing of resources along
multiple users in the cluster. This prevents any malicious user from
using all the cluster resources, since each user will only have a
limited quota of resources assigned to the queue. These queues
have Access Control Lists (ACLs) attached which determine the
users who are allowed to submit applications in the queue and
who are allowed to modify or delete applications submitted to the
queue by the users. In general, each queue have administrators
who can kill or modify the jobs submitted in that particular queue.
These queues are hierarchial in nature where users allowed to
submit applications in parent queues are also allowed to submit
applications in children queues but not vice-versa. Hadoop also
support cluster node labels where users are only allowed to submit
jobs on limited cluster nodes with set labels based on the queues to
which they submit the job.

As mentioned above, a layered approach is applied to restrict
users from accessing resources, data and services inside the cluster
where a user is passed through multiple Policy Decision (PDP) and
Policy Enforcement Points (PEP) to ensure authorized access.

2.2 Access Control Models

This subsection reviews the current formal access control model
for Hadoop ecosystem, referred as HeAC. It also reviews the Object-
Tagged RBAC model [21] which is an extension to HeAC and a
precursor to the work in this paper. These models are primarily de-
veloped considering the authorization features provided in Hadoop
2.x and two dominant security projects, Apache Ranger (version
0.6) and Apache Sentry (version 1.7.0). Apache Ranger provides per-
missions to the users either directly or through group memberships,
whereas Apache Sentry uses roles which are assigned to groups to
which users are made members to get permissions. We will now
discuss the components of HeAC and OT-RBAC models as shown
in Figure 2 and Figure 3 respectively.

15

ABAC'18, March 21, 2018, Tempe, AZ, USA

subject-rdles

es-operations

++—»» manytomany «——»» one tomany

I + implicit assignment

OBJECT-PRMS

Figure 2: The Conceptual HeAC Model [21]

es-operations

«¢——>p many to many +—p 0ne to many

——— # implicit assignment

OBJECT-PRMS

Figure 3: The Conceptual OT-RBAC Model [21]

The basic components of HeAC and OT-RBAC models include:
Users (U), Groups (G), Roles (R), Subjects (S), Hadoop Services (HS),
Operations on Hadoop Services (OPys), Ecosystem Services (ES),
Data and Service Objects (OB) belonging to Ecosystem Services,
Operations on Objects (OP), and Object Tags (Tag).

e Users, Groups, Roles and Subjects: A user is human in-
teracting directly with the computer system to access data
objects and services in a Hadoop cluster. Users can have
similar characteristic and requirements which are bundled
to form groups. A role as defined in [38] is a collection of
permissions which are assigned to various users in the sys-
tem. A subject represents an application running on behalf

Session 1

of the user to perform actual operations on the objects and
services in Hadoop ecosystem.

e Hadoop Services: These are daemon services running in
the background to provide the core functionalities in Hadoop
2.x platform. Some examples of these services are Hadoop
NameNode, DataNode, YARN ResourceManager, Applica-
tionMaster, Secondary NameNode etc. Users or applications
interact with these daemons to submit application or to view
the status of running jobs. These services also need interac-
tion among themselves for operations including task updates
or resource monitoring. These Hadoop daemon services do
not have any objects associated with them.

e Operations on Hadoop Services: These are the set of ac-
tions allowed on the Hadoop daemon services, predomi-
nantly including access operation performed by users or
other daemon services. For example, NameNode accessing
DataNode, or ResourceManager accessing ApplicationMas-
ter are common Hadoop requirements in background.

e Ecosystem Services: Hadoop ecosystem support several
projects or services (Apache HBase, Apache Hive, Apache
Kafka etc.) which have underlying data or service objects
operated upon by users. Any user or application must be
allowed to access the service first before its object can be
accessed. For example, Apache Hive ecosystem service must
be first allowed to be accessed by user before any operation
on its table object is performed.

e Data and Service Objects: Different ecosystem services
support various data and service objects which are operated
upon by the users or users’ subjects. These are the actual
resources which are secured from unauthorized access in
the Hadoop cluster besides computational resources. For
example, YARN has queue objects, Apache Kafka has topics,
Apache HBase support column family and Apache Hive has
tables etc.

e Operations on Objects: Different objects in ecosystem ser-
vices support various operations inside the Hadoop cluster
based on data model supported. Operations vary from select
or drop in Apache Hive, read or write in HDFS, and submit
or administer on YARN queue objects etc.

o Object Tags: These are attribute values attached to various
objects in the system. Such values can help defining tag-
based policies where a user is permitted or denied to perform
operation on a resource based on the tag associated with the
resource. Each object can have multiple tags associated with
it which is done primarily under Apache Atlas service.

In both HeAC and OT-RBAC models, as shown in Figure 2 and
Figure 3 respectively, two types of permissions exist in the system
— Hadoop service permissions (HS-PRMS) and Object permissions
(OBJECT-PRMS). HS-PRMS defines the operations on Hadoop ser-
vices and is formally stated as a power set of the cross product
of HS and OPys. OBJECT-PRMS define the set of permissions to
perform operations (OP) on the objects (OB) in ecosystem services
(ES). These permissions either include the object or the tag (Tag)
associated with the objects (shown by object-tag) to create tag-
based policies. It should be noted that access to ecosystem service
is first required before performing operation on its objects, which

16

ABAC'18, March 21, 2018, Tempe, AZ, USA

is incorporated in OBJECT-PRMS by using ecosystem service (ES)
as its component. It may be required for a user to have one or
both the types of permissions to perform operations in cluster.
Cross Hadoop service communication requirements is expressed
by PAps-Hs permission assignment (shown as self-loop).

HeAC model and OT-RBAC models are primarily different in
terms of permission assignments. In HeAC, HS-PRMS are assigned
to both users and groups (shown as many to many PAys), whereby
a user can get permission directly or through group membership.
OBJECT-PRMS are assigned to users, groups and roles also (reflected
by dotted circle in Figure 2 and shown as PAgs). These assignments
are very different in OT-RBAC model which proposes to assign
HS-PRMS and OBJECT-PRMS only to roles, thereby inheriting the
benefits of role based access control model [38]. Also with the
notion of group hierarchy in OT-RBAC, shown as GH in Figure
3, roles are inherited from junior to senior groups. Therefore, a
user assigned to a senior group g; gets all the roles of its junior
groups besides the roles of group g1. This group hierarchy offers
the advantage of easy administration where several roles can be
assigned or removed from a user just by assigning or removing it
from groups. The importance of group hierarchy will be further
reflected in the next section which will describe its use in attribute
based models. It should be noted that a user will need multiple PAgg
and PAys assignments based on the type of operation requested.
Finally, a subject created by user will inherit all or some of the
permissions assigned to its creator user to perform operations in
Hadoop cluster.

In the following section, we will discuss the proposed attribute-
based access control model for Hadoop Ecosystem, referred as
HeABAC. Both the aforementioned HeAC and OT-RBAC models
are precursors to the eventual and desired fine grained HeABAC
model for multi-tenant Hadoop environment.

3 ABAC MODEL FOR HADOOP ECOSYSTEM

Attribute based access control is known to offer flexible fine grained
authorization capabilities by introducing the characteristics of sub-
jects, objects, environment or context in access control decision.
Such mechanisms are required in complex distributed systems like
Hadoop where multi-tenant data lake is being accessed at varied
data granularity levels by multiple users at different time, loca-
tions and conditions. Real-world use-cases like a user allowed to
access data only from a particular location or IP address or at a
specific time are very common and most conveniently addressed
by attribute based systems.

3.1 The HeABAC Model

We will now define the attribute based access control model for
Hadoop ecosystem, referred as HeABAC and shown in Figure 4.
The complete formalization of HeABAC model is given in Table 1.

The basic sets of HeABAC model involve the previously defined
access control components — Users (U), Groups (G), Subjects (S),
Hadoop Services (HS), Ecosystem Services (ES), Data and service
objects (OB), Operations on objects in Ecosystem Services (OP),
Operations on Hadoop Services (OPys), as elaborated in Section 2
and stated in Table 1. Some of these entities have characteristics
which are used in access control decision and are expressed as

Session 1

GH

subjects

ABAC'18, March 21, 2018, Tempe, AZ, USA

A
!
1
1
1
1
1
1
1

trusted-
services

Authorization
Function

‘Authorization
Function

service-
ohjects

Figure 4: The Conceptual Attribute Based Access Control Model for Hadoop Ecosystem (HeABAC)

their attributes. User attributes (UA) is the set of user attributes
for users, groups and subjects. Object attributes (OA) is the set of
object attributes assigned to data and service objects (OB). Ecosys-
tem service attribute (ESA) and Hadoop service attribute (HSA)
are the set of attribute functions which can be assigned to Ecosys-
tem services (ES) and Hadoop Services (HS) respectively. Users,
groups, Hadoop or ecosystem services and objects can be assigned
attribute values directly for an attribute function att (in their re-
spective sets) from the set of atomic values in the range, denoted
by Range(att). Attribute functions in UA are required to be only
set valued whereas for other sets OA, ESA and HSA both set and
atomic valued functions are allowed. Each attribute function in UA,
denoted by atty, will map a user or group to a set of values in power
set of Range(att,). Similarly, attribute functions in OA, ESA and
HSA map OB, ES and HS respectively to one or subset of attribute
values from the range depending on atomic or set valued attribute
type as shown in Table 1.

Users are assigned to multiple groups (defined by many to many
function directUG) to achieve simplified administration of attributes.
When a user is made member to a group, the user inherits all at-
tributes of the group, whereby multiple attributes can be assigned
or removed from a user by just a single administrative action. Fur-
ther, group hierarchy (GH) also exists in the system (shown as self
loop on G), defined using a partial order relation on G and denoted
by >g, where g1 > g2 signifies g; is senior to gz and g; will inherit
all the attributes of gy. Therefore, for attribute atty, the effective
values for group g; is the union of values directly assigned to g;
for atty and the effective values of att, for all the junior groups to
g1, as defined by effectiveGat, (g91). The effective attribute values of
a user for attribute att, will then be the directly assigned values
to user for att, and the effective attribute values of attribute atty

17

for all the groups to which user is directly assigned. For exam-
ple, if group g; has attribute role with value Chair, and a junior
group gz has role with value Faculty, then the effective values of
attribute role for group g; will be Chair and Faculty. Further, when
a user is assigned to group g, it will inherit all values of attribute
role (i.e. Chair and Faculty) besides the values directly assigned
to user, as further elaborated in [23, 41]. A subject which is cre-
ated by the user (denoted by function userSub) inherits subset or
all the values of effective attributes of the creator user as stated
by effectiveU,y, (s) C effectiveUyyt, (userSub(s)). These values can
change with time but must not exceed values of the creator user.

In Hadoop ecosystem, several Hadoop services interact or access
other Hadoop services for task updates or cluster resource status
(like HDFS NameNode and DataNode or YARN ResourceManager
and ApplicationMaster). We refer to this type of interaction as
Cross Hadoop Service Trust in Table 1 (stated as trusted-services),
determining which Hadoop services are allowed to access other
services. In this cross service relation, we introduce the notion of
Cross Hadoop service trust as a many to many relation where HSp
< HSp denotes that HSp is a trusted service by HS4 and therefore,
HSg is allowed to access or interact with HS . In this case HSg is
a trustee service and HSp is a trustor service, and trust relation
existence is controlled by HS 4. This trust relation obviates the need
to specify ACLs as done in HeAC model. For example, a service level
authorization ACL security.datanode.protocol.acl controls
which DataNodes are allowed to communicate with NameNodes.
In such cases, a DataNode running as datanodel can access service
NameNode namenodel, if cross service trust relation is established
between them i.e. namenodel < datanodel. Different types of cross
Hadoop service trust relations can exist in the system which are
discussed further in the next subsection.

Session 1 ABAC'18, March 21, 2018, Tempe, AZ, USA

Table 1: Formal ABAC Model Definitions for Hadoop Ecosystem

Basic Sets and Functions

- U, G, S are finite sets of users, groups and subjects respectively.

— HS, ES are finite sets of Hadoop services and ecosystem services respectively.

- OB, OP are finite sets of objects and object operations respectively.

— OPys is a finite set of operations on Hadoop services.

— UA, OA are finite sets of user and object attribute functions respectively.

- ESA, HSA are finite sets of ecosystem and Hadoop service attribute functions respectively.

- For each attribute att in UA U OA U ESA U HSA, Range(att) is a finite set of atomic values.

- attType: UA = {set}, defines user attributes to be set valued only.

- attType: OA U ESA U HSA = {set, atomic}, defines remaining attributes to be set or atomic valued.

~ For each attribute att, in UA, att, : UU G — 2Range(attu) mapping each user or group to a set of attribute values in Range(atty,).
Range(atty,) if attType(att,},) = atomic

— Each attribute att,}, in OA maps objects in OB to attribute values. Formally, att., : OB — Range(attyy)

if attType(att,,) = set
Range(attes) if attType(attes) = atomic

- Each attribute attes in ESA maps services in ES to attribute values. Formally, attes : ES — JRange(atte;)

if attType(attes) = set

Range(atty) if attType(atty) = atomic

- Each attribute atty,; in HSA maps services in HS to attribute values. Formally, att,, : HS — {zRange(at‘ths)

if attType(atty) = set
— directUG : U — 26, mapping each user to a set of groups, equivalently UGA C U x G
- GH C GXG, a partial order relation >, on G

Effective Attributes of Users (Derived Functions)
- For each attribute att, in UA,

o cffectiveGay, : G — oRange(attu) defined as effectiveGagt, (gi) = attu(gi) U (U effectiveGatt, (g))

g € {glei =g g}

- For each attribute atty, in UA,

o cffectiveUyy, : U — oRange(attu) defined as effectiveUs,y, (u) = atty(u) U (U effectiveGatt, (g))

g € directUG(u)
Effective Attributes of Subjects
— userSub : S— U, mapping each subject to its creator user.
- For each attribute att, in UA, effectiveUyy, : S — oRange(atty) mapping of subject s to a set of values for its effective
attribute atty. It is required that : effectiveUyy, (s) C effectiveUyy, (userSub(s)).

Cross Hadoop Services Trust

- trusted-services : HS — 25 is a required function to map Hadoop services to a set of trusted Hadoop services.
Equivalently, relation service trust written as < C HS X HS, where hs, < hsy, iff hsy, € trusted-services(hs,), meaning
trustee service hsy, is trusted by trustor service hs, and Hadoop service hs, can access service hs,.

Authorization Functions
~ Service Authorization Function: For each op € OPys, Authorizationgp(s : S, st : HS U ES) is a propositional logic formula
returning true or false, which is defined using the following policy language:
e agx=aAa|laVal|(a)|-a|ITxeset.a|V xecset.a | set A set| atomic € set | atomic ¢ set

eAx=cCc|C|Z|N]U
o set = effectiveyy, (s) | atts(sr) for att, € UA, sr € ES U HS, attType(att) = set
e atomic = attg(sr) | value sr € ES U HS, attType(att) = atomic

- Data or Service Objects Authorization Function: For each op € OP on objects ob € OB belonging to ecosystem service es € ES,
Authorizationgp(s : S, es : ES, ob : OB) is a propositional logic formula returning true or false, which is defined using
the policy language stated above with following changes
o set = effectivey, (s) | attes(es) | attyp(ob) for att, € UA, attType(att) = set
e atomic := atteg(es) | attyp(ob) | value attType(att) = atomic

Access Operation Decision

- A subject s € S is allowed to perform an operation op € OPyg on a service sr € ES U HS if the effective attributes of subject s and
attributes of services satisfy policies stated in Authorizationgp(s : S, sr : HS U ES).

Formally, Authorizationgp(s : S, sr : HS U ES) = True.

— A subject s € S is allowed to perform an operation op € OP on an object ob € OB in ecosystem service es € ES if subject is allowed
to access services es and the effective attributes of subject s, the attributes of object ob and service es satisfy policies in
Authorizationop(s :S,es : ES, ob : OB).

Formally, Authorizationgccess(s : S, es : ES) = True A Authorizationgp(s : S, es : ES, ob : OB) = True.

18

Session 1

We specify two separate authorization functions, one for Hadoop
or ecosystem service authorization and other for ecosystem data
or service objects authorization, for operations in OPyg and OP
respectively. A common policy language is defined for both autho-
rization functions using propositional logic formula, which de-
fine the conditions to approve or deny operation on an object
by a subject, as stated in Table 1. In case of service authoriza-
tion, each operation op € OPys has an authorization function
Authorizationgp(s : S, sr : HS U ES) specifying the conditions un-
der which subject s € S is allowed to perform operation op € OPys
on any service sr in Hadoop service HS or Ecosystem service ES
in the Hadoop cluster. Here the effective attributes of the user and
the direct attributes of the service in question are used to make the
access control decision. Another authorization function is defined
for data or service objects for each operation op € OP as stated by
Authorizationgp(s : S, es : ES, ob : OB). This authorization function
specifies the conditions under which subject s € S is allowed to
perform an operation op € OP on an object ob € OB in service es
€ ES. In this function, the policy conditions are allowed to use the
effective attributes of user but only the direct attributes assigned
to the service and objects requested for access. Since a subject
must first be checked if allowed to access the service before its
object is allowed to operate, therefore, a subject s € S is allowed
to perform operation op € OP on an object ob € OB in service
es € ES if and only if both Authorizationaccess(s : S, sr : ES) and
Authorizationgp(s : S, es : ES, ob : OB) evaluate to True.

The proposed HeABAC model presents a pure attribute based
access control model for Hadoop ecosystem to offer flexible and fine
grained access to different objects in the cluster. Since the cluster
and Hadoop data lake is multi-tenant system used by several entities
with different access requirements, ABAC will play an important
role to maintain confidentiality and integrity of data and cluster
resources. Other contextual and environment attributes can be also
introduced into the system to offer more complex access control
policies, but are considered out of scope of this paper to solely
present the prime essence, i.e. the use of attributes for access control
in Hadoop ecosystem. It should be noted that data ingestion security
is out of scope and we assume data is already present in the system
before access control mechanisms come into play.

3.2 Concept of Cross Hadoop Services Trust

Cross Hadoop service trust determines which two Hadoop services
can interact with each other. Our definition of trust relations are
primarily unidirectional and involves only two Hadoop services, a
trustor and trustee. We assert that trust is established unilaterally
by the trustor, and can only be revoked or modified by the trustor.
The cross Hadoop trust relation < is a binary relation established
between trustor and trustee services. A service can be a trustor in
one relation and trustee in another. This relation has the following
defining properties, for Hadoop services hsy, hsp, hs. € HS:

o Reflexive: A Hadoop service must always trust itself, mean-
ing hs, < hs,.

e Non Transitive: The Cross Hadoop service trust relation is
always defined by the trustor and cannot be inferred from
any indirect combinations of other trust relationships i.e.
hsy < hsy A hspy < hse # hsy < hse.

19

ABAC'18, March 21, 2018, Tempe, AZ, USA

e Non Symmetric and Non Asymmetric: This characteris-
tic states that the trust relation is always unidirectional and
is also independent in each direction i.e.
hs, < hsy # hs, < hs, and
hsy < hsp A hsy, < hs, # hs, = hsy,.

We will now identify and discuss four potential types of trust
relations to enable cross Hadoop services access control. The type
of relation is determined by who controls the existence of trust
relation and who controls access to the service. These types of
relations are analogous and adapted from the trust relation types
discussed in [36, 45-47].

Type-a. In this relation, trustor grants access to trustee and the
relation is controlled (exists or created) by the trustor. For example,
if hs, <4 hsy, then Hadoop service hs, authorizes service hsy, to
access hs,, and the relation is controlled by hs, and service access
is also controlled by hs,. This type of relation are most intuitive
and for simplicity, is used in our HeABAC model.

Type-p. In this relation, trustee grants access to trustor and the
relation is still controlled by trustor. For example, if hsy <g hsy,
then Hadoop service hsy, authorizes service hs, to access hsy,
and the relation is controlled by hs, and service access is also
controlled by hs, without the consent from service hsy,.

Type-y. In this relation, trustee controls access of trustor and the
relation is still controlled by trustor. For example, if hs, <y hsy,
then Hadoop service hs;, authorizes service hs, to access hsy,. Here
the relation is controlled by hs, but service access is controlled by
Hadoop service hsy,.

Type-S. In this relation, trustee takes access from trustor by
approving or denying access. For example, if hs, <5 hsy, then
Hadoop service hs, authorizes service hs, to access hs,, and the
relation existence is controlled by hs, but the service access is
controlled by the consent of hsy,.

3.3 HeABAC Implementation Approach

Apache Ranger and Apache Sentry are two dominant open-source
security projects in Hadoop ecosystem which are focussed in offer-
ing authorization and access control capabilities in several ecosys-
tem projects including Apache Hive, HBase, Kafka etc. Both Apache
Ranger and Sentry provides security plugins which are attached
to different ecosystem services which needs to be protected. Every
access request by a user is intercepted by these plugins which check
the security policies defined by the administrator using REST API
or user interface, to decide and enforce access control decisions.
Apache Ranger currently offers some fine grained extensions where
attributes of a user are embedded into the access request using con-
text enricher. These context enrichers are Java class which enriches
the request of the user with extra information which is used in
the security policy conditions to approve or deny request. These
conditions are evaluated using condition evaluators which are also
defined in Apache Ranger. For example, is a user Alice wants to
access an object obj1 but the policy specifies that user Alice can
only access resource objl if time is after 10 pm, then, the context
enricher will add on the current time into the access request of
the user Alice and the condition evaluator will check if the access
request complies with the time condition specified in the policy.

Session 1

ol
K855 ADMIN REST API
e
2"

RANGER POLICY
SERVER

LDAP

_>l

users/groups

€ - mmmmmmmmmm e |
diskread

user-attribute.txt
object-attribute.txt
service-attribute.txt

policy
caching

A

i
i
v |

@. oY
access "
.

-
RANGER ECOSYSTEM
request | service

USER

@ PAP, PIP @ PDF, PEP

Figure 5: Proposed HeABAC Implementation

Our proposed implementation of HeABAC extends the current
context enricher and condition evaluators in Apache Ranger. We
propose that context enricher will not only be used for enriching
user information but also for services and objects in the access re-
quest. As shown in Figure 5, the security administrator will add text
files for different users, objects and services into the system with
their relevant attributes. These files will then be used by context
enricher implemented, which will add attributes of users, services
and objects in the access request. Similarly, condition evaluators
also need to be extended to incorporate the attributes of objects and
services in policies, which will be also evaluated when the enriched
access request with attributes is checked against a defined security
policy. Here, the administration of policies is done through the
central policy server while the decisions and enforcement are made
by Apache Ranger security plugins attached with the individual
services as shown in Figure 5.

3.4 Administrative Realms of HeABAC

The intrinsic character of HeABAC model involves attributes, which
determine the permissions granted or denied to the user to operate
or access objects and services in the Hadoop system. The assign-
ment of attributes to these entities before the implementation and
enforcement of HeABAC model is very important. Also, the estab-
lishment and agreement of cross Hadoop service trust relations
are required to allow inter Hadoop service communication. In this
subsection, we will briefly highlight the administrative models nec-
essary to manage the HeABAC operational model.

As shown in Figure 4, the user side of HeABAC requires some
administrative models to manage user attribute assignment (UAA),
user group assignment (UGA), group attribute assignment (GA) and
group hierarchy (GH). The GURAG [23] and GURA [29] administra-
tive models proposed (inspired by [37]) discuss the administration
of these attributes via different administrative roles and relations.
These roles will be able to assign values to various attributes of user

20

ABAC'18, March 21, 2018, Tempe, AZ, USA

and groups based on different policy conditions specified in the
administrative models. Further, the assignment of user to groups
will also be managed by these administrative roles depending on
the current group membership of user or its attributes. Group Hier-
archy (GH) is assumed to be static in our model but can be dynamic
based on the changes in the attribute values of the groups. Similarly,
the addition or deletion of attributes for Hadoop services (HSAA),
Ecosystem service assignment (ESAA) and Objects attribute assign-
ment (OBAA) can be also managed. The creation and changes in
security policies for various authorization functions is the respon-
sibility of security architect of the Hadoop data lake provider and
must be done in a diligent manner.

The administrative operations necessary for cross Hadoop ser-
vice trust involves initialization, acceptance and revocation of trust
among relevant Hadoop services. Since, these Hadoop services are
running under some service user account, the establishment and
revocation of the trust must be initialized and accepted by relevant
service users of the Hadoop services depending on the type of trust
relation created.

4 USE-CASES AND HeABAC APPLICATION

In this section we will illustrate some important use-cases to em-
phasise the use and benefits of fine grained and flexible attribute
based access control in Hadoop ecosystem. These use-cases will
reflect real world scenarios and will cover different access control
requirements as discussed in earlier sections of this paper. In these
use-cases we consider that users have already been authenticated
by some external mechanisms and data is already ingested into the
Hadoop system before access control comes into enforcement.

Internet of Things is a growing buzz among different businesses,
and several enterprises are harnessing the potential it offers. It
has spread itself to different spheres of our life including health,
smart homes and more recently to smart city and transportation.
Vehicular Internet of Things is the future where vehicles and road
infrastructure will be communicating with each other. These vehi-
cles will be generating lot of data ranging from car sensor readings,
road conditions or even driver health vitals to be analysed by differ-
ent stake-holders for better and life saving services to the customers.
Let us suppose, a connected vehicle from car manufacturer Toyota
is running on the road and is continuously generating data, which
is stored in multi-tenant Hadoop data lake. This stored data can be
used by various entities, including the car dealer or manufacturer
for diagnostic services, by transportation or police department for
over-speeding check, by insurance company to understand driver
driving behaviour or by a doctor who is continuously monitoring
the heart-rate of the patient driver. Each of these users must have
different levels of access to data in the Hadoop data lake and are
only required to know what they should need to know to perform
their functions following the principle of least privileges, and with-
out compromising the integrity and privacy of data. Further, for
analysis purposes these users will be also running some jobs or
applications in the Hadoop cluster, which must cater the needs of
all the users without unwarranted resource constraints.

Figure 6 illustrates the use cases to reflect the importance of
attribute based system in such distributed and multi-tenant envi-
ronment like Hadoop. In this case, a user Alice is assigned to a

Session 1

companyName :{mccombs}
address :{spring-well drive}
dealership :{toyota}

vl
Dealer Graup

effectiveattributes

Eroup
membership
| certification: {ASE} Subject
department: {diagnostic}
role: {technician}
companyName :{mccombs; creates
address: {spring-well drive]
dealership: {toyota} @ @
- < Alice /department:{diagnostic}

effectiveattributes role: {technician}

companyMame:{mccombs}

effectiveattributes

ABAC'18, March 21, 2018, Tempe, AZ, USA

direct attributes

-
createdBy: {admin2}
serviceType:{DataNode
nodeLabel: {Lable1}

policy retrieval and
evaluation

-

@ hive
—~e L

createdOn: {11-11-2017} -"t bleT - dat
createdBy: {adminl} | tableType:{sensor-data

. car: {FVR1234}
T {HIVE
serviceType:{ ! readerType:{technician} |

direct attributes

contains

Access Control
Point

\

direct attributes

Figure 6: IoT Use-Case Illustrating ABAC Access Control in Hadoop Ecosystem

Dealer group, which makes it inherit the attributes of Dealer group,
yielding the effective attributes for Alice. Here, the attributes of
Dealer group (companyName: mccombs, address: spring-well
drive, dealership: Toyota) are added to the direct attributes
of Alice user (certification: ASE, department: diagnostic,
role: technician). The benefits of user to group assignment are
evident, since with single administrative operation all the attributes
of Dealer group are assigned to Alice. Further, when Alice creates
a subject, the subject inherits subset of the effective attributes of
Alice. Also, other entities shown such as Hadoop services (datanode,
NameNode), Ecosystem service (hive) and object (Table car1) in the
system, are also assigned direct attributes by a security administra-
tor. Security policies are defined by the architect and stored in the
central policy server. Cross Hadoop services trust relation is also
established which will be discussed more in the following part of
this section. The numbers in the figure define the sequence of access
control process where the subject is first created, which initiates
requests to perform different operations on objects and services.
These requests are intercepted by the access control decision and
enforcement point (shown as rhombus), which will retrieve polices
from the central server to make an access control decision.

Let us assume that the following security policy (referred as
policy 1) is created by an administrator in the system to control
access to some Ecosystem service:

Authorizationccess(s:S, es:ES) =diagnostic €
effectivegepartment (S) A technician € effectivero1e(s)
A serviceType(es) = HIVE A createdBy(es) = admini

This policy states that a user (or subject) belonging to diagnostic
department with technician role can access ecosystem service of

21

type HIVE which was created by admin1. Clearly, if subject s : S
created by a user and an ecosystem service es : ES satisfy the stated
policy condition (i.e. evaluates to True), then access operation will
be granted on service es to subject s. This policy can be enforced by
Apache Knox [4], which offers a single point gateway to multiple
services inside Hadoop ecosystem. Another security policy (referred
as policy 2) is created to determine if select operation is allowed by
a subject s : S on an object ob : OB in ecosystem service es : ES:

Authorizationgeject (s:S, es:ES, ob:0B) =
Authorizationgccess(s:S, es:ES) = True A diagnostic
€ effectivegepartment (S) A effectiverole(s) €
readerType(ob) A tableType(ob) = sensor-data A
car(ob) = FVR1234

This policy requires a subject to perform select operation on an
object ob belonging to Ecosystem service es if the user belongs to
diagnostic department and the effective roles of the user belong
to readerType attribute of the object, tableType attribute of object
having value sensor-data and car attribute with value FVR1234. It
should be noted that, this authorization function has a condition
Authorizationsccess(s:S, es:ES) = True, stating that subject
s must be first allowed to access ecosystem service es before its
underlying object ob is allowed to be operated by subject s.

Let us say, in our use-case a user Alice from a car dealer wants
to read the data of a car which is stored in Hadoop data lake. As a
security requirement, Alice can only access data through Apache
Hive ecosystem service with no direct access to data at HDFS level.
Alice has some attributes which are its own, but some are also
inherited from the car dealer as being a part of its employee. For
this access to authorize, Alice must first be allowed to access Apache

Session 1

Hive ecosystem service and then allowed to read the table inside
it. Looking at the effective attributes of user Alice, the subject
created by Alice and the attributes of service hive and object table
carl, it can be well understood that the policy 1 and policy 2 are
satisfied by subject of user Alice. Therefore, select operation by
Alice on table carl is allowed by the defined security policies. Let
us suppose another user Bob from the same car dealer but in a
different department (say sales) tries to perform select operation
on the same object Table carl. The operation will not be allowed
as the value for department attribute for Bob will be sales, which
will not satisfy the above stated policies. Similar set of policies
can be defined in the system to cater various other use-cases and
security requirements in Hadoop data lake. For example, some
user may only be allowed to access HDFS files directly without
access through Apache Hive, or some may be allowed to submit
YARN applications only. Policies can also be defined to prevent
denial of resource attacks where specific users are only allowed to
submit jobs to YARN capacity or fair scheduler queues which have
limited set of resources attached to them. A sample security policy
to restrict submitting YARN applications to only specific users can
be defined for YARN capacity scheduler queues as:

Authorizationgypmit (s:S, es:ES, ob:0B) =
Authorizationgccess(s:S, es:ES) = True A diagnostic €
effectivegepartment (S) A technician = effectivero1e(s)
A queueType(ob) = dept-diagnostic A queueAdmin(ob) =
admin2

In this case, Authorizationaccess (s:S, es:ES) = True signifies
that a user with certain attributes must be allowed to access YARN
ResourceManager (approved by a separate policy) before allowed to
submit applications to its queues which have attributes queuetype
having value dept-diagnostic and queueAdmin with value admin2.

Similar attribute based access control policies can be also de-
fined for controlling user access to Hadoop daemon services
like HDFS DataNode, NameNode etc. In Figure 6, we created
a Hadoop service DataNode ‘datanode’ which has a set of at-
tributes directly assigned to it. An access control list (ACL)
security.client.datanode.protocol.acl is currently defined
in Hadoop to control the communication between user clients and
DataNodes to retrieve data blocks. The following security policy
can be used in place of ACL to control this access:

Authorizationgccess(s:S, hs:HS) =

diagnostic € effectivegepartment(s) A technician €
effectiverole(s) A serviceType(hs) = DataNode A
createdBy(hs) = admin2

Clearly, if user Alice subject tries to access DataNode service
‘datanode’, the aforementioned policy will allow Alice to ac-
cess service ‘datanode’ which will serve the purpose of defin-
ing security.client.datanode.protocol.acl ACL. Similar at-
tribute based policies can be stated for other service level autho-
rization ACLs also.

Another Hadoop service NameNode has also been shown in
Figure 6 which trusts DataNode service ‘datanode’. Cross Hadoop
service trust relation is needed to control cross Hadoop services
communication which is currently controlled by ACLs. For ex-
ample, security.datanode.protocol.acl controls communica-
tion between DataNode and NameNode. These can be replaced

22

ABAC'18, March 21, 2018, Tempe, AZ, USA

by defining trust relations between Hadoop services. As shown
in Figure 6, DataNode ‘datanode’ has a cross service trust with
NameNode, meaning datanode can access NameNode where Na-
meNode is trustor and ‘datanode’ is trustee service. To state this
requirement, we assume to have a cross Hadoop service Type-a
trust type, written as NameNode <, datanode, where the trust is
initiated by NameNode and service access to NameNode is also
controlled by NameNode service. Other trust types can also be
considered depending on use-cases requirements but for simplicity,
we restrict to Type-a trust type in HeABAC model.

As noted, these real world use-cases illustrate how attribute-
based access controls can be enforced into this dynamic and dis-
tributed environment, where users have different access needs. Fine
grained requirements of a multi-tenant Hadoop data lake, where
a user can access one service but not other, or two users having
different levels of access to the same object can be truly catered by
this HeABAC authorization model. Further, the use of trust in cross
Hadoop service communication obviates the need to define service
level authorization ACLs in the system.

5 RELATED WORK

Security and Privacy of Big Data has always been a concern in
the academic and scientist community. Several works have been
published to protect the confidentiality, integrity and availability
of these valuable resources. The first paper we read about Big Data
access control security is from Hu et al. These researchers proposed
an access control scheme for Big data processing in [27] which
offers the concepts security agreement, trust list, access control
policy and trust chain to authorize access to authenticated user. The
paper offers a more general approach for access control in Big data
processing systems with some examples of incorporation in Hadoop.
However, the details pertinent to Hadoop ecosystem are not well
discussed in this paper. Our work is very inspired by this important
paper from National Institute for Standards and Technology (NIST)
researcher. NIST Big Data Public Working Group has been formed
to create Big Data interoperability framework in consensus with
academia, industry and government. The draft version 2 of special
publication [40] offers aspects of security and privacy with respect
to Big Data, reviews security and privacy use cases, and proposes
security and privacy taxonomies. Several other white papers and
enterprise technical reports have been published to emphasis the
security requirements and techniques for protecting Big data in
Hadoop including [1, 2, 17, 35, 44, 52]. Articles and reports have
also been published online to illustrate several security features
and their incorporation in Hadoop ecosystem. Some important best
practices in relation to securing HDFS and Apache Hive [3] are
discussed in [24, 25] respectively. Hortonworks [8] and Cloudera
[7] have been key players in offering secure Hadoop deployments
which have provided several important security features in their
proprietary Hadoop suite offerings.

A demonstration paper in a representative Hadoop ecosys-
tem presenting multiple access control mechanisms using Apache
Ranger is an important cohesive document [20] to understand multi-
layer access control features in Hadoop. Sharma et al also presented
security issues and requirements in Hadoop system in [42]. Zeng et
al proposed content based access control model for content based

Session 1

data sharing in [54]. A cryptographically enforced access control
system based on proxy re-encryption for Big data processing in
cloud in discussed in [34]. Security and privacy of data including
the MapReduce job security in cloud, authentication of mapper and
reducer, and other security challenges are well addressed in [18]. A
security model for G-Hadoop based on public key cryptography,
SSL protocol and a single sign-on approach is discussed in [55].
Ulusoy et al have presented important fine grained access control
system for MapReduce systems namely, GuardMR and Vigiles in
[49, 50] respectively. Colombo et al presented a research road-map
for Big Data security in [15]. Same authors have also discussed
research challenges and fine grained context aware access controls
in MongoDB NoSQL database in [14]. Privacy preserving Big data
computing and challenges are elaborated extensively in [33]. Some
other important work related to Big Data privacy and security are
discussed in [43, 48]. Trust and Big Data inter-dependencies and a
research road-map is presented in [39].

Attribute based access control (ABAC) have received significant
attention and several researchers have proposed important models.
Xin et al presented a unified ABAC model configuring DAC, MAC
and RBAC in [30]. Yuan et al [53] presented an authorization archi-
tecture and policy formulation for ABAC in web services. Wang et al
[51] provided framework using logic based programming to model
ABAC. XACML [10] is well used as a policy definition language
and a processing architecture whereas SAML [9] is used for ex-
changing information. Hu et al also presented ABAC in [28] which
provides a guide to ABAC definitions and considerations in [26].
NIST also proposed strategies to incorporate attributes in RBAC is
presented in [32]. A significant work by Servos et al [41] introduced
the notion of groups to ease the administration of attributes into
the system, which inspired us to use groups in our work. Some
other relevant access control models [12, 13, 16, 23, 31, 37, 38] in
attributes based, role based and its administration can be found
which have significantly influenced and inspired our contribution
in this work.

6 CONCLUSION

In this paper we propose the first formalized attribute-based access
control model for the Hadoop ecosystem, referred to as HeABAC.
This model is an extension to the already existing Hadoop access
control model (HeAC) which includes the authorization capabili-
ties of core Hadoop and two important security projects, Apache
Ranger and Sentry. The paper also outlines OT-RBAC model which
is an RBAC extension to HeAC and predecessor to our work in this
paper. Attribute based access control offers fine grained and flexible
authorization which is an important requirement in multi-tenant
Hadoop data lake. This model offers such capabilities as been illus-
trated using examples and use-cases in the paper. The novel concept
of cross Hadoop services trust has also been introduced where inter
Hadoop service interaction is primarily controlled using the trust
relations as defined in the system. We have also proposed an imple-
mentation approach for HeABAC model using open-source Apache
Ranger using context enricher and condition evaluators, and high-
lighted some administrative requirements in HeABAC. Some future
extensions in this line of work may involve data ingestion security
at HDFS data nodes level.

23

ABAC'18, March 21, 2018, Tempe, AZ, USA

ACKNOWLEDGMENTS

Sincere gratitude is extended to James Benson, Technology Research
Analyst at Institute for Cyber Security, UTSA, for his valuable
comments and suggestions in this research paper. This work is
partially supported by NSF CREST Grant HRD-1736209, NSF grants
CNS-1111925, CNS-1423481, CNS-1538418 and DoD ARL Grant
WO911NF-15-1-0518.

REFERENCES

[1] 2016. Big Data: Securing Intel IT’s Apache Hadoop Platform.
http://www .intel.com/content/dam/www/public/us/en/documents/white-
papers/big-data-securing-intel-it-apache-hadoop- platform-paper.pdf

[2] 2016. Securing Hadoop: Security Recommendations for Hadoop Environments.
https://securosis.com/assets/library/reports/Securinggadoopginaly 2. pdf

] 2017. Apache Hive. https://hive.apache.org/

[4] 2017. Apache Knox. https://knox.apache.org/.

[5] 2017. Apache Ranger. http://ranger.apache.org/.

[6] 2017. Apache Sentry. http://sentry.apache.org/.

[7]1 2017. Cloudera. http://www.cloudera.com/products/apache-hadoop.html

(8]

[9]

[3

o0

2017. Hortonworks. https://www.hortonworks.com/

2017. SAML. https://www .oasis-open.org/committees/tcy ome.php?wg, bbrev=
security

2017. XACML.
tepome. php?wg, bbrev=xacml
2017 (Accessed: November 14, 2017). IdentityForce.
//www .identityforce.com/blog/2017-data-breaches.
Mohammad A Al-Kahtani and Ravi Sandhu. 2002. A model for attribute-based
user-role assignment. In Proc. of ACSAC. IEEE, 353-362.

Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. 2017. ABAC with Group At-
tributes and Attribute Hierarchies Utilizing the Policy Machine. In Proc. of ABAC
Workshop. ACM, 17-28.

Pietro Colombo and Elena Ferrari. 2015. Complementing mongodb with advanced
access control features: Concepts and research challenges. In Proc. of SEBD 2015.
Pietro Colombo and Elena Ferrari. 2015. Privacy aware access control for Big
Data: a research roadmap. Big Data Research 2, 4 (2015), 145-154.

Jason Crampton and George Loizou. 2003. Administrative scope: A foundation
for role-based administrative models. ACM Transactions on Information and
System Security (TISSEC) 6, 2 (2003), 201-231.

Devaraj Das, Owen O’Malley, Sanjay Radia, and Kan Zhang. 2011. Adding security
to Apache Hadoop. Hortonworks, IBM (2011).

Philip Derbeko, Shlomi Dolev, Ehud Gudes, and Shantanu Sharma. 2016. Security
and privacy aspects in MapReduce on clouds: A survey. Computer Science Review
20 (2016), 1-28.

David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and Ramaswamy
Chandramouli. 2001. Proposed NIST standard for role-based access control. ACM
Transactions on Information and System Security (TISSEC) 4, 3 (2001), 224-274.
Maanak Gupta, Farhan Patwa, James Benson, and Ravi Sandhu. 2017. Multi-
Layer Authorization Framework for a Representative Hadoop Ecosystem De-
ployment. In Proc. of the 22nd ACM on Symposium on Access Control Mod-
els and Technologies (SACMAT). ACM, New York, NY, USA, 183-190. https:
//doi.org/10.1145/3078861.3084173

Maanak Gupta, Farhan Patwa, and Ravi Sandhu. 2017. Object-Tagged RBAC
Model for the Hadoop Ecosystem. In Proc. of Data and Applications Security and
Privacy XXXI: DBSec 2017, Philadelphia, PA, USA, July 19-21, 2017. Springer, 63-81.
https://doi.org/10.1007/978-3-319-61176-14

Maanak Gupta, Farhan Patwa, and Ravi Sandhu. 2017. POSTER: Access Control
Model for the Hadoop Ecosystem. In Proc. of the 22Nd ACM on Symposium on
Access Control Models and Technologies (SACMAT). ACM, New York, NY, USA,
125-127. https://doi.org/10.1145/3078861.3084164

Maanak Gupta and Ravi Sandhu. 2016. The GURAg Administrative Model for
User and Group Attribute Assignment. In Proc. of NSS. Springer, 318-332.
Robert Hryniewicz. 2016. Best Practices in HDFS Autorization with Apache
Ranger. https://hortonworks.com/blog/best-practices-in-hdfs-authorization-
with-apache-ranger/. (2016).

Robert Hryniewicz. 2016. Best Practices in Hive Autorization with Apache
Ranger. https://hortonworks.com/blog/best-practices-for-hive-authorization-
using-apache-ranger -in-hdp-2-2/. (2016).

Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R Friedman, Alan J Lang,
Margaret M Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert Miller, Karen
Scarfone, et al. 2014. Guide to attribute based access control (ABAC) definition
and considerations. NIST Special Publication 800, 162 (2014).

Vincent C Hu, Tim Grance, David F Ferraiolo, and D Rick Kuhn. 2014. An access
control scheme for big data processing. In Proc. of CollaborateCom. IEEE, 1-7.

[10] https://www.oasis-open.org/committees/

(1]

(12]

https:

[13

[14

[15

[16]

[17

(18

[19]

[20]

[21]

[22

[23

[24

[25

™
2

[27

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/big-data-securing-intel-it-apache-hadoop-platform-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/big-data-securing-intel-it-apache-hadoop-platform-paper.pdf
https://securosis.com/assets/library/reports/Securing_Hadoop_Final_V2.pdf
https://hive.apache.org/
https://knox.apache.org/
http://ranger.apache.org/
http://sentry.apache.org/
http://www.cloudera.com/products/apache-hadoop.html
https://www.hortonworks.com/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.identityforce.com/blog/2017-data-breaches
https://www.identityforce.com/blog/2017-data-breaches
https://doi.org/10.1145/3078861.3084173
https://doi.org/10.1145/3078861.3084173
https://doi.org/10.1007/978-3-319-61176-1_4
https://doi.org/10.1145/3078861.3084164
https://hortonworks.com/blog/best-practices-in-hdfs-authorization-with-apache-ranger/
https://hortonworks.com/blog/best-practices-in-hdfs-authorization-with-apache-ranger/
https://hortonworks.com/blog/best-practices-for-hive-authorization-using-apache-ranger
https://hortonworks.com/blog/best-practices-for-hive-authorization-using-apache-ranger
-in-hdp-2-2/

Session 1

[28] Vincent C Hu, D Richard Kuhn, and David F Ferraiolo. 2015. Attribute-based
access control. IEEE Computer 2 (2015), 85-88.

[29] Xin Jin, Ram Krishnan, and Ravi Sandhu. 2012. A role-based administration
model for attributes. In Proc. of the First International Workshop on Secure and
Resilient Architectures and Systems. ACM, 7-12.

[30] Xin Jin, Ram Krishnan, and Ravi Sandhu. 2012. A unified attribute-based access
control model covering DAC, MAC and RBAC. In Proc. of IFIP Annual Conference
on Data and Applications Security and Privacy. Springer, 41-55.

[31] Xin Jin, Ravi Sandhu, and Ram Krishnan. 2012. RABAC: role-centric attribute-
based access control. In Proc. of MMM-ACNS. Springer, 84-96.

[32] D Richard Kuhn, Edward J Coyne, and Timothy R Weil. 2010. Adding attributes
to role-based access control. Computer 43, 6 (2010), 79-81.

[33] Rongxing Lu, Hui Zhu, Ximeng Liu, Joseph K Liu, and Jun Shao. 2014. Toward
efficient and privacy-preserving computing in big data era. IEEE Network 28, 4
(2014), 46-50.

[34] David Nunez, Isaac Agudo, and Javier Lopez. 2014. Delegated Access for Hadoop
Clusters in the Cloud. In Proc. of CloudCom. IEEE, 374-379.

[35] Owen O’Malley, Kan Zhang, Sanjay Radia, Ram Marti, and Christopher Harrell.
2009. Hadoop security design. Yahoo, Inc., Tech. Rep (2009).

[36] Navid Pustchi, Ram Krishnan, and Ravi Sandhu. 2015. Authorization federation
in TaaS multi cloud. In Proc. of the 3rd International Workshop on Security in Cloud
Computing. ACM, 63-71.

[37] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. 1999. The ARBAC97
model for role-based administration of roles. ACM Transactions on Information
and System Security (TISSEC) 2, 1 (1999), 105-135.

[38] Ravi S Sandhu, Edward] Coyne, Hal L Feinstein, and Charles E Youman. 1996.
Role-based access control models. IEEE Computer 29, 2 (1996), 38—47.

[39] Johannes Singer, Christian Richthammer, Sabri Hassan, and Giinther Pernul. 2014.
Trust and big data: A roadmap for research. In Proc. of DEXA. IEEE, 278-282.

[40] NIST Big Data Public Working Group, Security and Privacy Subgroup. 2017.
DRAFT: NIST Big Data Interoperability Framework: Volume 4, Security and
Privacy. NIST Special Publication 1500, 4 (2017).

[41] Daniel Servos and Sylvia L Osborn. 2014. HGABAC: Towards a formal model of

hierarchical attribute-based access control. In Proc. of International Symposium
on Foundations and Practice of Security. Springer, 187-204.

24

[42]
[43]

[44

[45]

[46

=
)

(48]

[49

[50

(54

[55]

ABAC'18, March 21, 2018, Tempe, AZ, USA

Priya P Sharma and Chandrakant P Navdeti. 2014. Securing big data Hadoop: a
review of security issues, threats and solution. IJCSIT 5 (2014).

Jordi Soria-Comas and Josep Domingo-Ferrer. 2016. Big data privacy: challenges
to privacy principles and models. Data Science and Engineering 1, 1 (2016), 21-28.
Ben Spivey and Joey Echeverria. 2015. Hadoop Security. Protecting your Platform.
" O'Reilly Media, Inc.".

Bo Tang and Ravi Sandhu. 2013. Cross-tenant trust models in cloud computing.
In Proc. of 14th International Conference on Information Reuse and Integration (IRI).
IEEE, 129-136.

Bo Tang and Ravi Sandhu. 2014. Extending openstack access control with domain
trust. In Proc. of International Conference on Network and System Security. Springer,
54-69.

Bo Tang, Ravi Sandhu, and Qi Li. 2015. Multi-tenancy authorization models
for collaborative cloud services. Concurrency and Computation: Practice and
Experience 27, 11 (2015), 2851-2868.

Omer Tene and Jules Polonetsky. 2012. Privacy in the age of big data: a time for
big decisions. Stanford Law Review Online 64 (2012), 63.

Huseyin Ulusoy, Pietro Colombo, Elena Ferrari, Murat Kantarcioglu, and Erman
Pattuk. 2015. GuardMR: Fine-grained security policy enforcement for MapReduce
systems. In Proc. of ASIACCS. ACM, 285-296.

Huseyin Ulusoy, Murat Kantarcioglu, Erman Pattuk, and Kevin Hamlen. 2014.
Vigiles: Fine-grained access control for mapreduce systems. In Proc. of Big Data
Congress. IEEE, 40-47.

Lingyu Wang, Duminda Wijesekera, and Sushil Jajodia. 2004. A logic-based
framework for attribute based access control. In Proc. of Workshop on Formal
methods in security engineering. ACM, 45-55.

Tom White. 2012. Hadoop: The Definitive Guide. O’Reilly Media, Inc.

Eric Yuan and Jin Tong. 2005. Attributed based access control (ABAC) for web
services. In Proc. of International Conference on Web Services. IEEE.

Wenrong Zeng, Yuhao Yang, and Bo Luo. 2013. Access control for Big Data using
data content. In Proc. of International Conference on Big Data. IEEE, 45-47.

Jiaqi Zhao, Lizhe Wang, Jie Tao, Jinjun Chen, Weiye Sun, Rajiv Ranjan, Joanna
Kolodziej, Achim Streit, and Dimitrios Georgakopoulos. 2014. A security frame-
work in G-Hadoop for big data computing across distributed cloud data centres.
JCSS 80, 5 (2014), 994-1007.

	Abstract
	1 Introduction
	2 Access Control in Hadoop Ecosystem
	2.1 Multi-layer Authorization
	2.2 Access Control Models

	3 ABAC Model for Hadoop Ecosystem
	3.1 The HeABAC Model
	3.2 Concept of Cross Hadoop Services Trust
	3.3 HeABAC Implementation Approach
	3.4 Administrative Realms of HeABAC

	4 Use-Cases and HeABAC Application
	5 Related Work
	6 Conclusion
	References

