
The ASCAA Principles for Next-Generation
Role-Based Access Control

Ravi Sandhu
Executive Director and Chaired Professor

Institute for Cyber Security

University of Texas at San Antonio

ravi.sandhu@utsa.edu

Venkata Bhamidipati
Doctoral Candidate

School of IT and Engineering

George Mason University

venkata.bhamidipati@oracle.com

Abstract—Role-based access control (RBAC) received serious
academic attention in the early 1990’s, although traces of the
underlying concepts had been in ad hoc commercial prac-
tise since the 1970’s. Through the 1990’s and 2000’s RBAC
achieved remarkable success, and today is widely practised as
the preferred form of access control. Adoption of the 2004
NIST/ANSI Standard RBAC Model [1] marks a maturity of
concept and practice. The essential roots of this standard go back
to the RBAC96 model [2]. While numerous enhancements and
extensions of RBAC96 and related models have been proposed,
the core ideas introduced in RBAC96 have proved to be notably
stable and robust.

RBAC96 was based on four principles, viz. abstract privileges,
separation of administrative functions, least privilege and sepa-
ration of duties. Advances in RBAC require reconsideration of its
founding principles. In this paper we offer five founding princi-
ples for next-generation access control including next-generation
RBAC, summarized as ASCAA for Abstraction, Separation, Con-
tainment, Automation and Accountability. Abstraction (i.e., ab-
stract privileges) and separation (i.e., separation of administrative
functions) are essentially retained from RBAC96. A generalized
principle called containment is introduced, to subsume least
privilege, separation of duties and other constraints, as well
as modern techniques such as usage and rate limits [3], [4].
Next two new principles called automation and accountability
are introduced.

Automation covers automated acquisition of privileges as well
as automated revocation. Traditional RBAC typically requires
that user-role and permission-role assignment and revocation
result from explicit actions of appropriately authorized adminis-
trators. Some aspects of automated user-role assignment [5], [6],
[7] and user-role revocation [8] have been previously proposed.
We elevate the notion of automation to a full-blown principle and
specifically propose self-assignment of roles as a new element.
Automating assignment and revocation enables agile lightweight
systems by eliminating repeated human intervention. Crucially,
of course, we want to do this without compromising security.

Accountability has recently received considerable attention
driven by emerging requirements of secure information sharing
and continued recognition of the insider threat. We offer the
paradigm of adjustment as a means to achieve accountability.
Adjustment acknowledges that not all authorized actions are the
same. Sensitive operations require an enhanced level of auditing,
notification or authentication. For example, it is common place
for websites to require additional authentication and notification
for sensitive operations such as change of address.

While we believe these five ASCAA principles (Abstraction,
Separation, Containment, Automation and Accountability) are
relevant to access control systems in general, the discussion in
this paper is limited to their application to RBAC.

I. INTRODUCTION

In the past fifteen years or so role-based access control

(RBAC) has received strong support from the research and

practitioner communities. In this relatively short period it has

become the dominant form of access control in commercial

products. Nascent ideas, similar in some aspects to modern

roles, have been present in the literature since the earliest days

of access control (for example, [9], [10]) and have been reit-

erated over the years (for example, [11], [12]). The traditional

dichotomy of discretionary versus mandatory access control

(DAC versus MAC) was codified in the highly influential, but

ultimately flawed, “Orange Book” [13], [14]. Unfortunately,

neither DAC nor MAC was suitable for the needs of most

commercial and military applications and there was continued

dissatisfaction with this traditional dichotomy (for example,

[15], [16]). DAC is too weak for most needs and MAC is

simply inappropriate. Alternate approaches which sought to fill

this gap, such as Type Enforcement [17], Originator Control

[18], and Propagation Models [19], [20], [21], [22], received

academic interest but were not successful in influencing real-

world commercial practice. It was only with the emergence

of RBAC that a practically successful paradigm going beyond

MAC and DAC gained real traction.1

The modern concept of role-based access control emerged in

the early 1990’s. The seminal paper of Sandhu et al [2] estab-

lished the RBAC96 model as the de facto standard for RBAC.2

Since then RBAC96 has proved to be remarkably robust. A

sizable literature on RBAC has developed. A thorough review

of notable contributions is beyond the scope and purpose of

this paper, so we will only mention a few influential highlights

here. Administrative models for RBAC include [26], [27],

[28], [29]. Temporal considerations in RBAC were introduced

in [30], [31], [32]. Separation of duty constraints in RBAC

1RBAC truly goes beyond MAC and DAC because while it can be
configured to do either one [23] it really seeks to capture requirements that are
not even considered in MAC or DAC. Conversely, MAC is based on the single
overriding principle of enforcing one-directional information flow in a lattice
of security labels, and DAC on the similarly overriding but different principle
of owner-based discretion, neither of which are recognized as foundational
principles for RBAC. The fact that RBAC96, based on a completely different
set of foundational principles, can support MAC and DAC is serendipitous
and not by design.

2Other early influential RBAC papers include [24], [25].

xixxviixxvii

(QE2)

Quality
Engineer 2

(PE1)
Engineer 1
Production Quality

Engineer 1
(QE1)

Engineering Department (ED)

Employee (E)

Director (DIR)

Project lead 1 (PL1)

Engineer 1 (E1)

Project lead 2 (PL2)

Engineer 2 (E2)

Project 1 Project 2

Production

(PE2)
Engineer 2

Fig. 1. An Example Role Hierarchy [26]

Project Security Officer 1 (PSO1) Project Security Officer 2 (PSO2)

Department Security Officer (DSO)

Senior Security Officer (SSO)

Fig. 2. An Example Administrative Role Hierarchy [26]

were studied in [33], [34], [35] and further explored in [36]

along with other constraints. The interaction of RBAC and

workflow is discussed in [37], [38], [39]. Delegation models

for RBAC were first proposed in [8] and further developed

in [40]. The interplay of RBAC and Trust Management has

been investigated in [5], [6]. All of these extensions and

enhancements have been accomplished without changing the

core concepts of RBAC96 which have remained stable. Roles

hierarchies and constraints have proven to be two central ideas

of RBAC96 that can robustly support many extensions.

The only really significant concept that was not present in

the original RBAC96 model is role activation hierarchies [41].

Consider the often used example role hierarchy in figure 1.

RBAC96 specifies role hierarchies as inheritance hierarchies.

Thus roles higher up in the hierarchy such as DIR inherit

permissions from all junior roles. Equivalently junior roles

inherit members from senior roles. Inheritance is convenient

but can result in aggregating lots of permissions in very

senior roles such as DIR. The concept of activation hierarchy

authorizes a member of DIR to activate roles junior roles such

as PL1 and PL2 instead of simply inheriting their permissions

when DIR is activated. This allows the DIR role to exercise

oversight without unnecessary aggregation of permissions.

The NIST/ANSI RBAC standard [42] allows hierarchies to

be inheritance hierarchies or activation hierarchies or some

combination, leaving it up to the vendor to specify. This is the

sole substantive feature of the RBAC standard missing from

the original RBAC96 model.3

This brings to the topic of this paper. It is our belief that

substantial advances in RBAC will be made only by recon-

sidering the foundational principles leading to new RBAC

models.4 To this end we first review the foundational principles

of RBAC96 and then propose the new set of five ASCAA

principles (Abstraction, Separation, Containment, Automation,

and Accountability) for next-generation RBAC.

II. RBAC96 PRINCIPLES

RBAC96 was motivated by four foundational principles,

discussed below. RBAC96 does not actually “enforce” these

principles, or require “conformance.” It is possible to com-

pletely ignore them and still technically do RBAC. This is

perhaps inevitable in any truly flexible model. It is always

possible to do “bad” things if you really want to. RBAC96

does provide the means to make these principles convenient,

and even natural, to pursue. In other words it is easier to do

“good” things with RBAC96 but it remains possible to do

“bad” things.5

A. Abstraction

The abstraction principle refers to abstraction of permis-

sions. In general, permissions and operations are system spe-

cific. For example operating systems typically support permis-

sions such as read, write and execute. Database management

system permissions could be select, delete, update, etc. While

RBAC is useful in controlling permissions at these lower

levels, its real value lies in managing abstract application-

oriented operations such as credit and debit operations on an

account. Capturing and managing abstract operations allows

for distinction of usage which are not possible if only system

level permissions are managed by RBAC. To the contrary

MAC takes a reductionist approach of providing protection

entirely in term of primitive read and write operations. This

is appropriate for MAC due to its single-minded focus on

lattice-based information flow which can be reduced to reads

and writes. But in this view credit and debit operations both

involve read and write of the account balance, and are thereby

indistinguishable.

The constructive approach of RBAC accommodates the se-

mantic distinction between credit and debit, familiar to anyone

who has balanced a checkbook. The permissions for credit and

debit can then be granted to different roles. The fact that the

3With regard to constraints the RBAC standard actually degrades the
capability of RBAC96 since it only permits static and dynamic separation
of duty constraints.

4There have been some recent suggestions with respect to improving
the NIST/RBAC standard [43] but these do not really offer significant
enhancements. Some of these were already considered in RBAC96 and the
NIST/RBAC standard and rejected for good reason [44], [45]. Others correct
small technical errors and omissions in the standard and are not fundamentally
substantive.

5This is not a trivial accomplishment because with some models such as
MAC we are actually prevented from doing useful things we would like to
do because of its sole focus on information flow.

xiixxviiixxviii

information flow in both operations is identical is irrelevant to

RBAC and does not force us to assign both operations to the

same role.6 Because of its fixation on information flow MAC

is unable to express authorization policies that distinguish

between credit and debit, which is a commonplace requirement

in business applications. Abstract permissions raise the level

of policy consideration to application-level semantics, and

accommodate real-world policies beyond information flow.7

Operating systems and database management systems have

provided mechanisms for implementing abstract permissions

since the early 1970’s by means of stored procedures or similar

constructs, and these mechanisms have been widely used.

The abstraction principle remains unchanged in our pro-

posed set of principles for next-generation RBAC.

B. Separation

Separation refers specifically to separation of administrative

functions. This principle is not explicitly articulated in the

original RBAC96 paper [2], [44], but it deserves recognition

in retrospect because of its utility. One of the attractive aspects

of RBAC is the separation of user-role assignment from

permission-role assignment. These two tasks require different

skills and are operationally distinct. Permission-role assign-

ment requires deep knowledge of application semantics and

security needs. This is best done by people who understand

the application and the system that supports it. User-role

assignment is a human resources and people management task

which requires greater understanding of the human side and

an appreciation of overall priorities which may need to be

balanced with respect to individual decisions. Moreover, the

deeper policy issues in managing the overall set of roles,

the role hierarchy and constraints can be further separated

into a business security organization. This organization can

focus on the more important policy issues around RBAC

while devolving day-to-day operational details to appropriate

business and information technology people.

The separation principle also remains unchanged in our

proposed set of principles for next-generation RBAC.

C. Least Privilege

Least privilege is a long-standing tenet of access control.

RBAC supports it by having each role assigned with permis-

sions appropriate to the business function of the role. Taken to

its extreme least privilege is likely to result in unmanageable

proliferation of roles so there is need for judicious balance.

By letting the role designer determine the degree of role

fragmentation versus least privilege RBAC provides support

for achieving this balance.

The least privilege principle is subsumed by the more

general containment principle in our proposed set of principles

for next-generation RBAC.

6In this respect DAC also allows recognition of abstract permissions such
as credit, debit and does not force their assignment to be coupled as in MAC.

7The aggregation of multiple permissions into a role is itself a significant
abstraction benefit of RBAC. The abstraction principle as such is focussed on
what are atomic permissions from an application perspective.

D. Separation of Duty

Separation of duty has been a driving principle for RBAC.

The fact that roles may be conflicting has been a long standing

practice in commerce since ancient times. Modern business

practices continue to build on these long-proven insights. A

common example is the conflict between purchasing manager

and accounts payable manager roles. A single person with both

roles would have sufficient power to single-handedly commit

fraud, hence the conflict. This requirement is commonly called

static separation of duties. A more nuanced conflict exists

between a cash register manager and cash register clerk. A

single individual could legitimately take on both roles, but not

at the same time on the same register. This is called dynamic

separation of duties. A common example of separation of

duties from the military sector is the use of two-person, or

more generally n-person, rules which require two, or more,

people to authorize critical actions such as launch of weapons

of mass destruction.

The separation of duty principle is also subsumed by the

more general containment principle in our proposed set of

principles for next-generation RBAC.

III. ASCAA PRINCIPLES

We propose the following five principles for next-generation

access control, and next-generation RBAC in particular. We

refer to these as the ASCAA principles for Abstraction,

Separation, Containment, Automation and Accountability.

A. Abstraction

The abstraction principle is essentially unchanged from

RBAC96 and refers to abstraction of permissions.

B. Separation

The separation principle is also essentially unchanged from

RBAC96 and refers to separation of administrative function.

C. Containment

The containment principle unifies the older principles of

least privilege and separation of duty, and further incorporates

additional constraints and usage control elements. The concept

of containment seeks to limit the damage that a user, or a

set of users, can perpetrate either by deliberate malice or by

victimization from malicious malware. The individual tech-

niques such as least privilege, separation of duty, cardinality

constraints [2], [36] and usage limits [3], [4] are means to this

end. They should be viewed as applicable mechanisms rather

than motivating principles.

Least privilege and separation of duty have been discussed

in the previous section and are familiar in the access control

literature. There is not much more for us to say about these

here. RBAC96 introduced an abstract open-ended notion of

constraints to accommodate separation of duties but not be

limited only to this specific mechanism. The construction for

MAC in RBAC [23] requires separation of duty constraints

but in addition requires cardinality and simultaneity constraints

on user-role and permission-role assignment. In other words

xiiixxixxxix

there are real-world security policies that appear to require

constraints beyond separation of duty for their expression

in RBAC. Other uses of constraints are discussed in [36].

Containment accommodates these previously published as-

pects of current-generation RBAC, beyond least privilege and

separation of duty.

Looking to next-generation RBAC we believe it is important

to incorporate usage and rate limit concepts from recent

models for usage control [3]. Usage limits occur in various

forms. We can restrict the number of times that a particular

permission or role can be exercised. These limits may be

absolute so the usage quota runs out at a certain point and

requires replenishing by some means for further access. This

case is more appropriate for digital rights management where

access is purchased by some exchange of value, such as

money. Rate limits control the number of times a particular

permission or role can be exercised in a specified period of

time. For example, many ATM networks limit a user to, say,

three withdrawals per day. This limits loss due to misuse of

an ATM card. Rate limits are particularly relevant to RBAC.

For example, a customer service representative (CSR) can

be limited to access a certain number of customer records

commensurate with the anticipated workload. This contains

the damage from a malicious CSR who is fishing for customer

data. Perhaps more importantly the rate limit also contains the

damage by malware. By restricting the rate to be within the

rate reasonable for a human to consume the information, the

human initiated activity is not disrupted but access at machine

speeds by malware is cut off. These applications have been

motivated in the usage control literature but are also relevant

to RBAC, and should be supported in next-generation RBAC.

D. Automation

We believe that automation of access control administra-

tion is inevitable in next-generation access control simply

to keep pace with scalability requirements of cyberspace.

Assignment and revocation have traditionally been viewed

as administrative actions requiring intervention by human

administrators.8 Current-generation RBAC offers substantial

benefits in this regard by aggregating permissions into roles

which can then be assigned in a single step instead of requiring

multiple assignments. Moreover, additions and deletions of

permissions to and from a role have immediate effect with

respect to role members. To this degree RBAC inherently

supports automation by aggregation. We propose to extend

automation to a much deeper level in next-generation RBAC.

The failure to remove privileges after they are no longer

needed continues to be a major source of security problems.

Privileges are too often left intact when users leave or are

reassigned to different jobs within an enterprise. These unused

and unnecessary residual permissions become an attractive

pathway for attackers. The role-based delegation models of

[8] incorporate a time limit on temporary delegations so

8The demand operation for acquiring privileges in the schematic protection
model [20], [46] and automated expiry of role delegation in the role-based
delegation models of [8] are some exceptions to this tradition.

that the delegation will expire by the specified time. We

believe such limits should be embedded into other permission

granting operations of RBAC. We feel this is particularly so

for user-role assignment. In general we expect permission-

role assignment to be fairly stable and automated revocation

is less likely to be useful in this context. User-role assignment

on the other hand is likely to change more rapidly over time.

We can base automatic revocation in this context on a fixed

time period, such as one year, or on time elapsed since last

use or similar considerations. Recovery from revocation in

this context can be based on explicit human intervention by

an appropriate administrator to restore the revoked role. But

automation can be used in this context too. We can allow

the user to renew role-membership on their own after the

proscribed period has expired. Thus users who need the role

can keep it alive whereas those who do not can let it expire.9

Another aspect of automated revocation is cascading revoca-

tion. A single revocation action can result in multiple revoca-

tions as conditions for maintaining the permissions change. In

the DAC context cascading revocation is tied to the notion that

one can only grant a subset of what one has, and one can only

revoke what one has given. Cascading revokes then relate to

chains of grant operations and their undoing as revocations at

the head of the chain automatically propagate to wipe out the

remainder of the chain. As argued in [26] these DAC concepts

are not appropriate in RBAC. In RBAC we often see situations

where an administrator can grant a role the administrator does

not possess. Likewise chains of grants do not immediately

become illegitimate because one administrator early in the

chain leaves the organization. Thus the model of [26] suggests

a notion of strong versus weak revocation. Weak revocation

does not require cascading revoke whereas strong does. In

other words the automation of cascading revokes is relevant

to RBAC but it should be interpreted quite differently from its

usual interpretation in DAC.
We also propose to apply automation to role assignment.

One of the recognized benefits of RBAC is simplicity of

administration. However, as roles proliferate the administra-

tion burden grows. Several models for decentralized user-role

assignment have been proposed [26], [27], [28]. Figures 1

and 2 from [26] respectively show a role-hierarchy and an

administrative role hierarchy. Junior administrators such as

PSO1 and PSO2 are limited in the roles that they can assign

and in the users to whom they can assign these roles. The

URA97 model of [26] provides the notion or prerequisite

conditions for users to be eligible for assignment, while [27],

[28] argue for using organizational structure rather than roles

for this purpose. Nonetheless granting and revocation of roles

in these models requires explicit administrator action. Imagine

these two figures expanded to have hundreds or thousands

of projects, with engineers working on dozens of projects at

any time with frequent re-assignment to different projects.

Administration entirely by human intervention becomes im-

9Anticipating the accountability principle we could require additional
authentication to effect the renewal step so it can be attributed to the user
rather than malware that simply keeps all the users roles alive.

xivxxxxxx

practical on such a scale. Instead, we could authorize users

to take on role membership by self-assignment in a limited

number of projects on their own, while restricting them from

simultaneous membership in too many projects and too rapid

a rate of change of projects. The ability to do this would

be predicated on membership in basic roles such as ED or

E. This would allow flexibility in which projects engineers

can work on and can explore while limiting the damage due

to malicious activity of users or malware. We could insist

that higher level roles such as PE1 and QE1 require explicit

administrator assignment or approval.

Another application of self-assignment can arise in a profes-

sional or social community context. Initial membership in the

community could be made available on a purely self-assigned

basis with minimal, if any, verification of self-asserted user

attributes. Self-promotion of membership up to a certain level

could be permitted with the understanding that taking on more

senior roles implies obligation to participate in community

activities, such as reviewing and mentoring in a professional

society. The highest levels of membership could require an

approval process by appropriate peers. Thus endorsement by

a specified number of advanced members would be required

for assignment of a user to advanced member status.

We are currently developing formal models for self-

assignment. In general we expect that more junior roles would

be available for self-assignment with usage and rate limits,

and that more senior roles would require human approvals.

We also anticipate the need to allow self-assignment of senior

roles on a temporary basis in case the additional privileges

are required in extreme situations. Thus a user with PE1

privileges may temporarily escalate to PL1 with appropriate

accountability provisions, which brings us to our next principle

of accountability.

E. Accountability

Accountability has recently received considerable attention

driven by emerging requirements of secure information sharing

and continued recognition of the insider threat. We offer the

paradigm of adjustment as a means to achieve accountability.

Adjustment acknowledges that not all authorized actions are

identical. Sensitive operations require an enhanced level of

auditing, notification or authentication. For example, it is

common place for websites to require additional authentication

and notification for sensitive operations such as change of

address.

The primary goal of accountability is to make a human

user take responsibility for actions that the individual performs

in a system. This can be achieved in a combination of

three basic ways. Sensitive operations can be subjected to a

more detailed level of auditing but unless the audit records

are brought to some other user’s attention the audit trail

is useful only as a forensic tool. Detailed audit trails can

trigger fraud detection systems to direct their attention to

suspicious activity but ultimately some user has to be alerted.

Notification is a more direct approach to explicitly require

sensitive operations to trigger a message to an appropriate

user. Thus temporary self-assignment of the PL1 role by a

PE1 user should trigger a message to all PL1 users alerting

them to the circumstance. This will inhibit inappropriate use

of this escalation privilege. Finally it is important to escalate

the authentication required for sensitive operations. Thus a

re-authentication may be required when a particularly large

transaction is attempted. The re-authentication may fail if a

human or malware attacker is attempting the operation and

is unable to produce the necessary credentials on demand.

Instead of or in addition to a re-authentication we may require

an alternate authentication based on credentials other than used

for the earlier authentication.

In the context of RBAC we can measure sensitivity of

operations with respect to the application semantics such

as monetary amount of a transaction. We can also measure

sensitivity with respect to roles and various stages of role

assignment, activation, usage and release. We are currently

developing formal models for this purpose.

IV. CONCLUSION

In this paper we have proposed a new set of five principles

called ASCAA for next-generation RBAC comprising Abstrac-

tion, Separation, Containment, Automation and Accountabil-

ity. We believe these principles are applicable to access control

in general, but our immediate focus has been on RBAC.

Two of these, abstraction (i.e., abstraction of permissions) and

separation (i.e., separation of administrative functions), are

essentially unchanged from the RBAC96 principles. The third,

containment, generalizes and unifies the two older principles

of least privilege and separation of duties to include additional

constraints and usage control elements. The final two, automa-

tion and accountability, are newly recognized in this paper.

Automation applies to revocation and to the granting of roles

and permissions. The accountability principle is illustrated in

this paper with respect to authentication adjustment, enhanced

auditing and targeted notification.

It is our belief that next-generation access control, and

next-generation RBAC in particular, should be based on this

expanded set of principles so as to address real-world pro-

tection needs of next-generation systems. We are currently

developing a new RBAC model based on these principles, and

their interactions, and will report our results in future papers.

ACKNOWLEDGEMENT

Ravi Sandhu would like to thank his students, colleagues

and critics for their interest in RBAC and the numerous

advances resulting from their efforts, as well as practitioners,

many unknown to him, who have translated theoretical and

conceptual RBAC ideas into real-world practise.

REFERENCES

[1] ANSI INCITS 359-2004, Standard for Role Based Access Control.
[2] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-

based access control models,” IEEE Computer, vol. 29, no. 2, pp. 38–47,
February 1996.

[3] J. Park and R. Sandhu, “The UCONABC usage control model,” ACM
Transactions on Information and System Security, vol. 5, no. 6, 2007.

xvxxxixxxi

[4] A. Pretschner, M. Hilty, and D. Basin, “Distributed usage control,”
Communications of the ACM, vol. 49, no. 9, pp. 39–44, 2006.

[5] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid, “Access
control meets public key infrastructure, or: Assigning roles to strangers,”
Proceedings of the 2000 IEEE Symposium on Security and Privacy, pp.
2–14, 2000.

[6] N. Li, J. Mitchell, and W. Winsborough, “Design of a role-based trust-
management framework,” Proceedings IEEE Symposium on Security and
Privacy, pp. 114–130, 2002.

[7] M. Al-Kahtani and R. Sandhu, “A model for attribute-based user-role
assignment,” Proceedings 18th Annual Computer Security Applications
Conference, pp. 353–362, 2002.

[8] E. Barka and R. Sandhu, “Framework for role-based delegation mod-
els,” Proceedings of the 16th Annual Computer Security Applications
Conference, 2000.

[9] J. Wimbrow, “A Large Scale Interactive Administrative System,” IBM
Systems Journal, vol. 10, no. 4, pp. 260–282, 1971.

[10] E. Fernández, R. Summers, and C. Coleman, “An authorization model
for a shared data base,” Proceedings of the 1975 ACM SIGMOD
international conference on Management of data, pp. 23–31, 1975.

[11] C. Landwehr, C. Heitmeyer, and J. Mclean, “A security model for
military message systems,” ACM Transactions on Computer Systems,
vol. 2, no. 3, pp. 198–222, 1984.

[12] R. Sandhu, “Transaction control expressions for separation of duties,”
Fourth Aerospace Computer Security Applications Conference, pp. 282–
286, 1988.

[13] National Computer Security Center, Department of Defense Trusted
Computer System Evaluation Criteria (TCSEC), 1985.

[14] S. Chokhani, “Trusted products evaluation,” Communications of the
ACM, vol. 35, no. 7, pp. 64–76, 1992.

[15] D. Clark and D. Wilson, “A comparison of commercial and military
computer security models,” Proceedings of IEEE Symposium on Security
and Privacy, pp. 184–194, 1987.

[16] D. Brewer and M. Nash, “The Chinese Wall security policy,” Proceed-
ings of the 1989 IEEE Symposium on Security and Privacy, pp. 206–214,
1989.

[17] W. Boebert and R. Kain, “A Practical Alternative to Hierarchical
Integrity Policies,” Proceedings of the 8th National Computer Security
Conference, pp. 18–27, 1985.

[18] R. Graubart, “On the need for a third form of access control,” Proceed-
ings of the 12th National Computer Security Conference, pp. 296–304,
1989.

[19] M. Harrison, W. Ruzzo, and J. Ullman, “Protection in operating sys-
tems,” Communications of the ACM, vol. 19, no. 8, pp. 461–471, 1976.

[20] R. Sandhu, “The schematic protection model: its definition and analysis
for acyclic attenuating schemes,” Journal of the ACM, vol. 35, no. 2,
pp. 404–432, 1988.

[21] M. Bishop, “Hierarchical take-grant protection systems,” Proceedings of
the 8th ACM Symposium on Operating Systems Principles, pp. 109–122,
1981.

[22] R. Sandhu, “The typed access matrix model,” Proceedings of the 1992
IEEE Symposium on Security and Privacy, p. 122, 1992.

[23] S. OSBORN, R. SANDHU, and Q. MUNAWER, “Configuring Role-
Based Access Control to Enforce Mandatory and Discretionary Access
Control Policies,” ACM Transactions on Information and System Secu-
rity, vol. 3, no. 2, pp. 85–106, 2000.

[24] D. Ferraiolo and R. Kuhn, “Role-based access control,” 15th NIST-NCSC
National Computer Security Conference, Baltimore, MD, October, pp.
13–16, 1992.

[25] M. Nyanchama and S. Osborn, “The role graph model,” in Proceedings
of the first ACM Workshop on Role-Based Access Control. ACM, 1996.

[26] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The ARBAC97 model for
role-based administration of roles,” ACM Transactions on Information
and System Security, vol. 2, no. 1, pp. 105–135, 1999.

[27] S. Oh and R. Sandhu, “A model for role administration using organiza-
tion structure,” Proceedings of the seventh ACM symposium on Access
control models and technologies, pp. 155–162, 2002.

[28] S. Oh, R. Sandhu, and X. Zhang, “An effective role administration model
using organization structure,” ACM Transactions on Information and
System Security (TISSEC), vol. 9, no. 2, pp. 113–137, 2006.

[29] J. Crampton and G. Loizou, “Administrative scope: A foundation for
role-based administrative models,” ACM Transactions on Information
and System Security (TISSEC), vol. 6, no. 2, pp. 201–231, 2003.

[30] E. Bertino, P. A. Bonatti, and E. Ferrari, “TRBAC: A temporal role-
based access control model,” ACM Transactions on Information and
System Security, vol. 4, no. 3, pp. 191–233, 2001.

[31] J. Joshi, E. Bertino, and A. Ghafoor, “Temporal hierarchies and in-
heritance semantics for GTRBAC,” Proceedings of the seventh ACM
symposium on Access control models and technologies, pp. 74–83, 2002.

[32] J. Bacon, K. Moody, and W. Yao, “A model of OASIS role-based
access control and its support for active security,” ACM Transactions
on Information and System Security, vol. 5, no. 4, pp. 492–540, 2002.

[33] D. Kuhn, “Mutual exclusion of roles as a means of implementing
separation of duty in role-based access control systems,” Proceedings
of the second ACM workshop on Role-based access control, pp. 23–30,
1997.

[34] R. Simon and M. Zurko, “Separation of duty in role-based envi-
ronments,” Proceedings of the 10th Computer Security Foundations
Workshop (CSFW’97), p. 183, 1997.

[35] V. Gligor, S. Gavrila, and D. Ferraiolo, “On the formal definition of
separation-of-duty policies and their composition,” Proceedings IEEE
Symposium on Security and Privacy, pp. 172–183, 1998.

[36] G. Ahn and R. Sandhu, “Role-based authorization constraints specifica-
tion,” ACM Transactions on Information and System Security (TISSEC),
vol. 3, no. 4, pp. 207–226, 2000.

[37] E. Bertino, E. Ferrari, and V. Atluri, “The specification and enforcement
of authorization constraints in workflow management systems,” ACM
Transactions on Information and System Security, vol. 2, no. 1, pp. 65–
104, 1999.

[38] G. Ahn, R. Sandhu, M. Kang, and J. Park, “Injecting RBAC to secure
a Web-based workflow system,” Proceedings of the 5th ACM Workshop
on Role-Based Access Control, pp. 1–10, 2000.

[39] S. Kandala and R. Sandhu, “Secure role-based workflow models,” IFIP
TC11/WG11. 3 Fifteenth Annual Working Conference on Database and
Application Security, 2001.

[40] L. Zhang, G. Ahn, and B. Chu, “A rule-based framework for role-
based delegation and revocation,” ACM Transactions on Information and
System Security (TISSEC), vol. 6, no. 3, pp. 404–441, 2003.

[41] R. Sandhu, “Role activation hierarchies,” Proceedings of the third ACM
workshop on Role-based access control, pp. 33–40, 1998.

[42] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R. Chandramouli,
“Proposed NIST standard for role-based access control,” ACM Transac-
tions on Information and System Security (TISSEC), vol. 4, no. 3, pp.
224–274, 2001.

[43] N. Li, J.-W. Byun, and E. Bertino, “A critique of the ANSI standard on
role-based access control,” IEEE Security and Privacy, vol. 5, no. 6, pp.
41–49, Nov./Dec. 2007.

[44] R. Sandhu, “Rationale for the RBAC96 family of access control models,”
Proceedings of the first ACM Workshop on Role-based access control,
1996.

[45] D. Ferraiolo, R. Kuhn, and R. Sandhu, “RBAC standard rationale:
Comments on “A critique of the ANSI standard on role-based access
control”,” IEEE Security and Privacy, vol. 5, no. 6, pp. 51–53, Nov./Dec.
2007.

[46] R. Sandhu, “The demand operation in the schematic protection model,”
Information Processing Letters, vol. 32, no. 4, pp. 213–219, 1989.

xvixxxiixxxii

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

