POSTER: Security Enhanced Administrative Role Based
Access Control Models

Rajkumar P.V.
Department of Information Systems
Texas Southern University

_ Houston, TX, USA.
rajkumarpv@gmail.com

ABSTRACT

Role Based Access Control (RBAC) is a widely implemented
protection mechanism in operating systems, software appli-
cations, and cloud platforms. The existing administrative
models of RBAC provides system administrators the privi-
lege to change users roles and roles permissions that are un-
der their administrative limits. While such privileges are in-
dispensable part of the system, monitoring the execution of
administrative privileges are often necessary to protect and
ensure system security. However, the current administrative
models does not have sufficient monitoring features within
the model. In this work, we present a preliminary idea of in-
tegrating obligations into an Administrative RBAC model to
regulate the usage of administrative privileges. Obligations
would serve as an accountability mechanism within the ad-
ministrative RBAC models. We believe that this work would
initiate further discussions and development of RBAC ad-
ministrative models that would improve the accountability
of system administrators.

Keywords

Operating System; Security; Access Control; RBAC; Ad-
ministration.

1. INTRODUCTION

Role Based Access Control (RBAC) model associates sys-
tem permissions to roles and assigns users to appropriate
roles according to their functions and responsibilities within
the organization. If a users role is active, then he/she will
get the permissions associated with the role. Thereby the
users and permissions are decoupled through the roles. The
RBAC is policy neutral model, further, it closely matches
with the functional structure of organizations [11]. These
feature made the RBAC as a prominent security mecha-
nism in various Database Management Systems, Operating
Systems, and number of application software used in large
organizations like banks. The RBAC model is also imple-
mented in various cloud services like Microsoft Azure and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS’16 October 24-28, 2016, Vienna, Austria

(© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4139-4/16/10.

DOL: http://dx.doi.org/10.1145/2976749.2989068

1802

Ravi Sandhu
Institute for Cyber Security &
Department of Computer Science
University of Texas at San Antonio, TX, USA.
ravi.sandhu@utsa.edu

OpenStack. Today, the RBAC remains as an important
mechanism to provide application security as well as to pro-
tect user privacy. Therefore administration of RBAC is an
important practical issue.

Main tasks of RBAC administrators are associating per-
missions with roles, assigning user to roles, and defining hi-
erarchy of roles as per the organizations policies. These ad-
ministrative rights are different from typical administrative
privilege and root users in commodity operating systems.
The RBAC administrators are not necessarily permitted to
read or write files within the system. Application user rights
are often referred as inert rights. Such segregation of inert
rights and administrative rights improves system security.
However, usage of administrative rights in RBAC are not
fully subjected to accountability.

Organizations with hundreds of roles and thousands of
permissions are not uncommon in banking and finance sec-
tors. Therefore, most of the RBAC administrative models
support decentralized delegation of administrative rights to
multiple administrative users. In general, the administrative
rights of large RBAC systems are distributed among mul-
tiple administrators and same rights may be given to mul-
tiple administrators. For example, multiple administrators
may have the right to add users to Backup_and_Recovery
role which has rights to read and write sensitive files. If an
administrator has such a right he can add/delete users to
the roles without subjecting himself for any accountability
in the future. Such provisions have potential security risk.
In this work, we present our preliminary idea of associating
obligations with execution of administrative rights such that
accountability can be brought into the context where ever it
is needed.

General logging and auditing mechanisms currently avail-
able in most of the applications helps in enforcing certain
level of accountability of all users including system admin-
istrators. Such mechanisms can be configured to log user
actions at various levels of granularity. If any untoward
event or breach is identified then the analysis of past logs in
the system would provide certain level of details about the
breach. On the other hand, integration of obligations with
the execution of administrative rights would provide a more
systematic approach to manage the usage of RBAC admin-
istrative rights. Obligations are the actions that are often
need to be completed before execution of rights and they
would work as a proactive protection mechanism and may
prevent certain breaches before they occur in the system.
Sections 3.1, 3.2 and 3.3 provides the details on administra-
tive obligations.



Section 2 presents the brief overview of administrative
models available for RBAC. Section 3 presents the Security
Enhanced Administrative RBAC model. Section 4 presents
a discussion and conclusion.

2. RELATED WORK

The Administrative Role Based Access Control (ARBAC9T)

model introduced the concept of administrating RBAC [10].
The ARBAC97 defined the set of administrative roles and
the set of administrative permissions which are function-
ally different from application permissions and roles. The
ARBAC97 model uses the notions of user role assignment,
permission role assignments, and role hierarchies defined in
[11]. The ARBAC99 model introduced concept of mobile
and immobile users [12]. The ARBAC02 model decoupled
the administrative user permissions from roles and role hi-
erarchy [8]. This model takes the organizational structure
as a basis and develops the administrative roles and permis-
sions as per the structure. The SARBAC model defined the
concept of administrative scope and used the scope as a pre-
condition to grant administrative rights [2]. Other Adminis-
trative RBAC models [5], [7], [1], and [3] also define who
can get admin permissions. To the best of our knowledge
accountability and obligation aspects of admin users are not
addressed in the ARBAC literature. However, obligations
are well studied concept [4], [6] and the authorization of
obligations using RBAC model is studied [9]. In this work,
we present the notion of administrative obligations and their
integration into administration of RBAC model to enhance
the system security.

3. SECURITY ENHANCED ARBAC

The Administrative RBAC model has three components:
(1) user role assignment, (2) permission role assignment, and
(3) role hierarchy or role-role assignment. A change in any
one of the above relation enables or disables application user
rights. We propose to integration obligations such that if an
administrative action changes user permissions the model
will take notify or have to take an approval from other ad-
ministrators beforehand.

3.1 Administrative Obligations

Administrative obligations are set of actions that the ad-
ministrators have to perform before executing admin rights.
We define three obligatory actions that we deem relevant for
ARBAC97 model. The Report action is designed to notify a
specified set of co-admins before executing an admin right.
The Log action is meant to store the admin, users, and roles
affected due to execution of the right. The Seek_Approval
action requires the admin user to obtain approval from a
specified set of co-admins. The first two obligations are
passive and they do not obstruct the execution of right.
Whereas the third one is an active obligation which requires
an approval from co-admins before executing the right.

Definition 3.1 The Report is defined as a relation of the
form Report C AU x {RL} x U x {CAU} where, (1) AU
is the administrative user who executes the right, (2) RL
is the set of relations that the execution of the admin right
would change in the RBAC system, and (3) CAU is the set
of co-administrators who will be notified.

Definition 3.2 The Log is defined as a relation of the
form Log C AU x {RL} x U x L x T where, (1) AU is the

1803

administrative user who executes the right, (2) RL is the
set of relations that the execution of the admin right would
change in the RBAC system, (3) L is the secure location
where the log will be entered, and (4) T is the time stamp.

Definition 3.3 The Seek_Approval is defined as a rela-
tion of the form Seek_Approval C AU x{RL}xU x {CAU}
where, (1) AU is the administrative user who executes the
right, (2) RL is the set of relations that the execution of
the admin right would change in the RBAC system, and
(3) CAU is the set of co-administrators whose approval is
needed before executing the right.

3.2 Security Enhanced User Role Assignment

Modifications in the user role assignments would directly
change the set of permissions given to the individual appli-
cation user; other users’ permissions would remain intact.
The URA97 model defines can_assign and can_revoke rela-
tional construct that assigns administrative rights to system
admins to add/remove users into roles. These constructs
specify the set of permitted administrative rights to the ad-
mins. We define assign and revoke relations that specify
the administrative obligations required to be fulfilled while
executing the admin rights permitted by can_assign and
can_revoke.

Definition 3.4 The assign is defined as a relation of the
form assign C AU x U x {R} x {AO} where, AU is the
administrative user who tries to add the user U to the set
of roles R and AO C {Report, Log, Seek_Apporval}.

Definition 3.5 The revoke is defined as a relation of the
form revoke C AU x U x {R} x {AO} where, AU is the
administrative user who tries to remove the user U to the
set of roles R and AO C {Report, Log, Seek_Apporval}.

3.3 Security Enhanced Permission Role Assign-
ment

The permission role assignment model PRA97 is a dual of
user role assignment URA97. The PRA97 defines can_assignp
and can_revokep constructs to associate and disassociate
set of permissions with roles. We define the assignp and
revokep relations to integrate the obligations with execution
of admin rights permitted by can_assignp and can_revokep.

Definition 3.6 The assignp is defined as a relation of the
form assignp C AU x {P} x R x {AO} where, AU is the
administrative user who tries to add the set of permissions
P to the role R and AO C {Report, Log, Seek_Apporval}.

Definition 3.7 The revokep is defined as a relation of the
form assignp C AU x {P} x Rx {AO} where, AU is the ad-
ministrative user who tries to remove the set of permissions
P from the role R and AO C {Report, Log, Seek_Apporval}.

Change in a permission role relation would impact the per-
missions of all users who are assigned with the role. Such
changes require certain level of organizational policy de-
cisions, therefore, Seek_ Approval type obligations seems
more useful than others. However, it requires further study
with respected to established security practices and usabil-
ity aspects. Execution of admin rights that change the role
role relation would affect large number of users’ permissions,
therefore, administrative obligations for such admin rights
require further analysis on deciding the appropriate set of
obligation types as well as selecting the set of co-admins for
each type.



3.4 Example

Let us assume that the RBAC system is administrated
using ARBAC97 model and the set of system administra-
tors SA = {A1, A2, As}. The following example shows the
specification of administrative obligation policy “whenever
an administrator adds new users to Backup_and_Recovery

role he must report to his co-admins”

assign = < au,u, Backup_and_Recovery,

Report(au,u X Backup_and_Recovery,

Vau':au' € {SA —au}) >

In the above specification, the parameter au denotes an
administrative user who execute the assign right; u denotes
the application user who gets the Backup_and_ Recovery

role.

The Report obligation sends the message that “the

admin au has successfully modified the user permission re-
lation u X Backup_and_ Recovery” to all his co-admins. Set
of receipts of the report may vary dependings on the context

and sensitivity of the role.

4. DISCUSSIONS AND CONCLUSION

Administrative rights are more powerful permissions and
checking accountability of execution of admin rights is an im-
portant security measure. Most of the administrative RBAC
models distribute rights to multiple administrators. Though
such decentralized security management has difficulties in
checking admin accountability, it is more efficient compared
to centralized approach, particularly in large organizations.
We introduced administrative obligations in ARBAC as a
way to improve the accountability of admin users in the de-
centralized systems. The proposed approach would reduce
the potential of security risk and improve accountability of
security administrators. As the cloud and mobile applica-
tions are becoming integral part of business information sys-
tems, ensuring the accountability of admins play a vital role
in system security. Obligations are well studied feature in
the security literature and adding them into security admin-
istration would open up many possibilities for future devel-

opments in this direction.

ACKNOWLEDGMENTS

This research is partially supported by NSF Grants CNS-

1111925 and CNS-1423481.

S. REFERENCES

[1] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati.
Decentralized administration for a temporal access
control models. Information Systems, 22(4):223-248,
1997.

1804

2]

(4]

(5]

(8]

(9]

(10]

(11]

(12]

J. Crampton and G. Loizou. Administrative scope: A
foundation for role-based administrative models. ACM
Transactions on Information and System Security,
96(2):201-231, May 2003.

M. Dekker, J. Crampton, and S. Etalle. RBAC
administration in distributed systems. In Proceedings
of the ACM Symposium on Access Control Models and
Technologies (SACMAT), pages 93-102. ACM,
December 2008.

K. Irwin, T. Yu, and W. Winsborough. On the
modeling and analysis of obligations. In Proceedings of
the 13th ACM conference on Computer and
communications security, pages 134-143. ACM,
November 2006.

A. Kern, A. Schaad, and J. Moffett. An administration
concept for the enterprise role-based access control
model. In Proceedings of the ACM Symposium on
Access Control Models and Technologies (SACMAT),
pages 3—-11. ACM, December 2003.

N. Li, H. Chen, and E. Bertino. On practical
specification and enforcement of obligations. In
Proceedings of the second ACM conference on Data
and Application Security and Privacy, pages 71-82.
ACM, February 2012.

N. Li and Z. Mao. Administration in role-based access
control. In Proceedings of the ACM Asia Conference
on Computer and Communications Security, pages
127-138. ACM, December 2007.

S. Oh, R. Sandhu, and X. Zhang. An effective role
administration model using organization structure.
ACM Transactions on Information and System
Security, 9(2):113-137, May 2006.

M. Pontual, O. Chowdhury, W. Winsborough, T. Yu,
and K. Irwin. Toward practical
authorization-dependent user obligation systems. In
Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security,
pages 180-191. ACM, April 2010.

R. Sandhu, V. Bhamidipati, and Q. Munawer. The
ARBAC97 model for role-based administration of
roles. ACM Transactions on Information and System
Security (TISSEC) - Special issue on role-based access
control, 2(1):105-135, February 1999.

R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based access control models. IEEE Computer,
29(2):38-47, February 1996.

R. Sandhu and Q. Munawer. The ARBAC99 model
for administration of roles. In Proceedings of 15th
Annual Computer Security Applications Conference,
pages 229-238. IEEE, December 1999.





