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Abstract—The concept and deployment of Internet of Things
(IoT) has continued to develop momentum over recent years.
Several different layered architectures for IoT have been pro-
posed, although there is no consensus yet on a widely accepted
architecture. In general, the proposed IoT architectures comprise
three main components: an object layer, one or more middle
layers, and an application layer. The main difference in detail
is in the middle layers. Some include a cloud services layer for
managing IoT things. Some propose virtual objects as digital
counterparts for physical IoT objects. Sometimes both cloud
services and virtual objects are included.

In this paper, we take a first step toward our eventual goal
of developing an authoritative family of access control models
for a cloud-enabled Internet of Things. Our proposed access-
control oriented architecture comprises four layers: an object
layer, a virtual object layer, a cloud services layer, and an
application layer. This 4-layer architecture serves as a framework
to build access control models for a cloud-enabled IoT. Within
this architecture, we present illustrative examples that highlight
some IoT access control issues leading to a discussion of needed
access control research. We identify the need for communication
control within each layer and across adjacent layers (particularly
in the lower layers), coupled with the need for data access control
(particularly in the cloud services and application layers).

I. INTRODUCTION

With the development of wireless communication systems

over the last few decades, the concept of Internet of Things

(IoT) has emerged and has recently attracted increasing at-

tention of governments, companies, and academia. The IoT is

an extension of network technology, where the basic core of

communication is the Internet. The promising IoT paradigm

integrates many widely dispersed, mobile, abundant, heteroge-

neous objects, such as sensors and actuators that collect data

from an environment and in turn act upon it. Many industries

have initiated major projects even in the absence of widely

accepted architectures for IoT. Thus, there is a crucial need to

develop consensus architectures for the future IoT.

There have been various proposals for IoT architecture in

the research literature. The proposed IoT architectures can be

divided into three main layers: an object layer, one or more

middle layers, and an application layer. The main difference in

detail between them is in the middle layers. Some architectures

abstracted the middle layers to only one layer [1], while others

have two or more middle layers [2]–[5].

Integrating the cloud as a central entity is suggested in vari-

ous IoT architecture [2]–[6]. The IoT can gain advantage from

the powerful capabilities and resources of the cloud to offset

its technological constraints. The IoT encompasses pervasive

and heterogeneous objects that produce big non-structured or

semi-structured data. IoT objects have limited computational

power and low storage. Offering virtually unlimited computa-

tional capabilities, low-cost, on-demand storage capacity, and

ubiquitous resources usable from everywhere, the cloud is the

most convenient and cost-effective solution to deal with IoT

technological constraints [7]–[10].

Moreover, several research papers have suggested incor-

porating an object abstraction layer as an essential part of

IoT architecture. Atzoori et al. [5] argue for such a layer

to unite access to the heterogeneous devices in the object

layer. Evangelos et al. [11] suggest the benefit of exposing the

capabilities and services of objects to the upper layers through

such abstractions. A similar definition as [11] is given in [12]

with the name of ‘virtual object layer’. A virtual object is also

described in [13] as comprised of both current and historical

information about a specific physical object. A virtual object

is called a device shadow in Amazon Web Service (AWS)

IoT, which persists the final and desired future status of each

device, even when the device is offline. The potential benefits

of using virtual objects are discussed in depth in [11], with

respect to IoT issues such as scalability, heterogeneity, security

and privacy, and identification.

In the present paper, we take a first step toward our eventual

goal of developing an authoritative family of access control

models for a cloud-enabled Internet of things. We build upon

previously published IoT architectures, which are all roughly

divided into three layers: an object layer, one or more middle

layers, and an application layer. In the different approaches

the middle layer is divided into sub-layers differently. Since

several papers discuss the advantages of using the cloud and

virtual objects to solve IoT issues, our proposed access-control

oriented (ACO) architecture supports using them in the middle

of object and application layers. As a result, our proposed

architecture is divided into four layers: an object layer, a

virtual object layer, a cloud layer, and an application layer.

This 4-layer architecture will be our guide to build access

control models for a cloud-enabled Internet of Things. Within

this architecture, we present several illustrative examples that

expose some IoT access control issues. This leads us to discuss

needed access control research to address these issues.

The rest of the paper is organized as follows. First, we

review proposed IoT architectures from the research literature

in Section II. In Section III, we propose a cloud-based IoT
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architecture and its characteristics. Illustrative examples are

discussed in Section IV. A research agenda for access control

based on our proposed architecture is discussed in Section V.

Finally, we conclude this paper in Section VI.

II. BACKGROUND ON IOT ARCHITECTURES

Various IoT architectures have been proposed, and these

are divided into different layers. The general construction

proposed in most IoT architectures includes three basic layers:

an object layer, one or more middle layers, and an application

layer [1]–[5]. In all the papers that we reviewed, an object layer

and an application layer exist. Although the functionalities of

the object and application layers might vary in their detail,

in general they are quite similar. On the other hand, the

middle layers vary in terms of the number of sub-layers

and the proposed technologies. We will discuss each layer

in the general IoT architecture as well as its entities and

functionalities.

A. The Object Layer

The main task of the object layer (e.g., perception layer [4],

[14] or hardware layer [15]) is to identify objects [4], collect

data from the physical environment [2], [3], and reconstruct

a broad perception of the data. This task is accomplished by

using objects (devices) such as sensors that can query location,

humidity, temperature, motion, etc. [2].

All papers agree that the primary entity of this layer is

sensors and actuators. Some papers describe this layer as

consisting of wireless sensor networks (e.g., cluster of sen-

sors [16]), where sensors are the main physical objects that

collect data. Other proposals add additional entities to this

layer, such as actuators [2], [15], RFID tags [3], devices (e.g.,

cameras and cellphones) [12], and networks of devices [14].

The IoT relies on a pervasive and heterogeneous set of

objects that produce big non-structured or semi-structured

data [7]. These objects generally have limited computational

power and low storage. Since IoT technology is a rich producer

of big data [17], which is collected by constrained objects,

the collected data needs to be transferred to a more capable

layer through secure channels to provide added functionality.

Moreover, with a large set of heterogeneous objects which

have different operating conditions, functionalities, resolu-

tions, etc. [12], providing seamless integration of these de-

vices is a huge challenge, and this issue may hinder object

interoperability and slow down the improvement of a unified

reference model for the IoT [18].

B. The Middle Layers

The main goal of middle layers is to successfully convey the

collected data from object layer to a remote destination [1],

[14]. Many proposed IoT architectures describe the middle lay-

ers as only one layer. A transmission layer (gateway) proposed

in [14] is responsible for gathering/sending data, packaging

data, exchanging data, parsing/dispatching commands, and

logging events between the application and object layer. All

data is saved in the application layer in a database. A network

layer is proposed in [1], [19], [20] as a middle layer; it is

responsible for intelligently processing the massive amount of

collected data.

While the transmission layer in [14] and the network layer

in [1] are the single middle layer in the above architecture,

other IoT architectures have proposed two or three layers

between the application and the object layers. The proposed

architecture in [21] consists of two layers in middle, the net-

work layer and the service layer. The network layer connects

everything together to share information, and it aggregates in-

formation from existing IT infrastructures such as power grids

and healthcare systems. The service layer includes service

discovery, service composition, trustworthiness management,

and service APIs. The IoT architecture in [22] also introduced

the network and middleware layer in the middle. The network

layer transmits information to the middleware layer, which

has service management, link to the database, information

processing, automatic decision, and a ubiquitous computation

unit that can be placed in the cloud.

Separating tasks between a network and a

service/middleware layer [21], [22] is more robust than

loading the network layer [1], [19], [20] with so many

tasks. The service/middleware layer includes important

tasks such as processing received data, managing services,

making decisions, and computing tasks. Several papers

suggest integrating with the cloud to support tasks in this

layer [7]–[10], [22].

The main functionality of the middleware layer is providing

a common set of device functionalities [2], [7], [11]. The

middleware layer can also be divided into sub-layers. It is

divided into two sub-layers in [2], which are the object

abstraction and the service management layers. The service

management layer pairs services of objects with requests for

them, processes received data, and makes decisions, while the

object abstraction layer transmits data collected by objects

to the service management layer. Cloud computing and data

management processes are implemented at the object abstrac-

tion layer. Other papers have proposed a middleware layer

that is divided into three sub-layers: an object abstraction, a

service management, and a service composition layer [5], [11].

The service composition layer offers the functionalities for the

composition of single services, which are represented at the

service management layer.

An approach to integrating cloud computing as a middle

layer in the IoT architecture is proposed by Gubbi et al. [15],

where the IoT architecture includes three layers: a wireless

sensor networks layer, a cloud computing (middle) layer,

and an application layer. Integrating cloud in the middle

offers various functionalities to support a middleware layer.

Gubbi et al. and other researchers [7]–[10] have discussed the

integration of cloud computing with IoT.

The object abstraction layer is discussed in many papers,

although they offer slightly different definitions. In [5], this

layer consolidates access to the heterogeneous devices in the

object layer, while in [11], it allows physical objects in the

object layer to deliver their capabilities and features to the
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upper layers. It is also called virtual object layer in [12].

Virtual object which is defined in [13] comprises both current

and historical information about a specific physical object.

However, Amazon called virtual objects as device shadows

which persist both last and desired future status of each device

even when the device is offline. The advantages of representing

virtual object (e.g., digital counterpart of physical objects) as

major component of IoT are discussed in depth in [18].

C. The Application Layer

Application layer is the topmost layer of the IoT architec-

ture, and it delivers services and system functionalities to the

end users. The application layer presents the information to

the final users through merged and analyzed data. This layer

exploits the functionalities of the middle layer and provides

user-friendly applications of the IoT. Using applications is an

easy way to remotely communicate to objects (devices) and

present their information. The final received information from

the middle layer can be used to create models, graphs, and

flowcharts, which can support decision-making [2], [4], [5].

III. ACCESS CONTROL ORIENTED

ARCHITECTURE FOR IOT

From the reviewed papers, we conclude that there is a need

for integrating the cloud with the IoT architecture and a benefit

to using virtual objects as a counterpart of physical objects.

Therefore, we propose an IoT architecture that emphasizes

enabling cloud computing to support middleware and service

management functionalities. Our architecture is designed to

assist in proposing access control (AC) models for IoT, and

thus we call it an AC-oriented (ACO) architecture for the IoT.

We will show the details of this architecture and examples of

it in this section.

Our ACO architecture is designed to be roughly close to

the general architecture of the IoT that is divided into three

layers: the application layer, one or more middle layers, and

the object layer. Therefore, we kept the two basic layers

(the application and object layers) that exist in all of the

reviewed IoT architectures. However, the middle is divided

into two layers: a virtual object layer and a cloud services

layer. Therefore, our architecture basically includes four main

layers: an object layer, a virtual object layer, a cloud services

layer, and an application layer. Figure 1 represents the layering

of ACO architecture for the IoT where object layer appears at

the bottom and application layer at the top. Each layer has its

components and functionalities. We discuss each layer below.

A. The Object Layer

This layer is similar to most of the object layers that we

reviewed. The main task of this layer is to collect data from

physical environment and to construct a broad overview of

the data to send it to the upper level (virtual object layer) or

to other objects. This layer includes heterogeneous types of

objects such as sensors, actuators, and cameras, which form

one cluster or multiple clusters of objects.

Fig. 1. ACO Architecture for the Cloud-Enabled IoT

Objects at this level basically push collected data to upper

layers, such as data collected from sensors. However, objects

at this layer also can receive information from other objects or

from higher layers. For example, a light bulb needs to receive

a command to be turned off or on. Thus, data at object layer

could be output of objects or input to them.

The object layer is on the bottom of the IoT architecture.

Users can directly communicate with objects by pressing a

button, changing a device, powering on an object, etc. Objects

in this layer can communicate with other objects directly

through communication technologies such as Bluetooth, Wire-

less, ZigBee, 6LoWPAN, ISA 100, WirelessHart/802.15.4,

18000-7, and LTE [2]. They can also communicate to their

virtual objects (digital counterparts) through the Internet. In

both communication directions, there is a need to authenticate

the communication possibly using technologies such as PKI

or digital certificates.

The physically connected objects could be intentionally

or unintentionally turned off or on. At the same time, the

input/output data of physical objects could be needed/reached

any time. Thus, knowing the status of objects in IoT architec-

ture is required. One way to do it is to have virtual objects of

physical objects. In addition, most of the physical objects will

have limited computational power and low storage, and can

only implement simple computational tasks and save limited

data. Since IoT relies on vast sets of collected data, these

physical objects need to depend on another party to execute

intensive computational tasks, as well as to voluminous col-

lected data. This party will be the cloud services layer, which

will be described in part C.

B. The Virtual Object Layer

In the virtual object layer, virtual objects (digital counter-

parts) can present a persistent current status of objects if both
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are connected. In case the virtual and physical objects are not

connected, virtual objects could also present a desired future

status, the last received status of a physical object, or both

the future and last received status. Virtual objects deliver the

services and capabilities of physical objects to users. Virtual

objects can have a subset of physical objects’ services, all

of the physical objects’ services, or one of physical objects’

services. In our model, we will assume virtual objects only

for physical objects. There is no digital counterpart for users

(although that may be appropriate as the architecture and

functionality evolve).

Using virtual objects solves IoT issues such as scalability,

heterogeneity, security and privacy, and identification. Thus,

the virtual objects in this layer can uniformly communicate

with each other regardless of heterogeneity and locality in the

object layer. This communication needs to be controlled by

appropriate access control mechanisms, such as RBAC [23],

ABAC [24], or ReBAC [25]. Studying the benefit of using

multiple access control mechanisms is also possible [26].

Virtual objects can be associated with physical objects in

various ways. The simplest is to represent one virtual object

with one physical object (if any) that has one or many services,

thus leading to a one (or less)-to-one association [27]. With an

object that has many services, there is also the possibility of

representing one virtual object for each service, thus leading to

a one-to-many association. For example, a smartphone could

represent all of its services through a single virtual object

(one-to-one), or it could have separate virtual objects one

for each available service, e.g. one for location sensing and

one for temperature sensing, thus resulting in a one-to-many

association [18], [28]. Another way would be to represent a

set of physical objects with one virtual object, for instance, to

manage them more efficiently with less resource consumption

than having a distributed implementation (many-to-one) [18],

[29], or to collect the information of single service from

various physical objects (many-to-one) [18], [30]. Thus, the

combination of all different kinds of associations will lead to

many-to-many association [31].

C. The Cloud Services Layer

This layer is built to assist most of the functionalities related

to the service/middleware layer. With an expected 50 billion

smart objects in existence by 2020, attention must be focused

on developing the means to access, store, and process the

huge amount of data collected by these objects. Thus, this

layer assists in storing and processing the big collected data.

The saved data in this layer can also be used intelligently for

smart monitoring and actuation, and it can be visualized in

ways that are more meaningful for users. Thus, policymakers

(or administrators) can utilize the visualized data to help them

to modify or add policies that are kept in the cloud, so the

communication and access between applications and objects

are managed through the cloud. The cloud services layer also

assists in the intensive computational tasks that cannot be

handled by the constrained objects. Thus, the cloud services

layer supports the computation, visualization, and analysis of

stored data in the cloud.

In addition to managing the communication with applica-

tions and objects, clouds can also communicate with each

other, ranging from only providing services and information

at a local level to collaborating with other connected IoTs

in order to share information at a broad level and pursue

common goals. Hence, multi-cloud communication can occur

at this layer. As we mentioned above, controlling accessing to

data and entities communications can be controlled by suitable

access control mechanisms such as RBAC [23], ABAC [24],

and ReBAC [25].

D. The Application Layer

The application layer is the top most layer of the proposed

ACO IoT architecture and offers an interface through which

users can easily communicate with objects and visualize the

analyzed information. Administrators can also interact with

applications to generate policies or to update/add policies

based on the obtained information. Moreover, configuring and

managing the communication of objects and virtual objects

is organized by administrators through applications. General

users and administrators can remotely communicate with IoT

objects and virtual objects only through applications. For

example, a user who is out of her home can use an application

to send a turn off command to remote light bulbs located at her

home. Applications communication with any entity should be

controlled and authorized by using appropriate access control

techniques.

IV. ILLUSTRATIVE EXAMPLE

The proposed ACO architecture for IoT in the previous

section is illustrated in more concrete terms in Figure 2 in

context of a simple example.

A. Multi-Value Switch Use Case

In our example, we have a multi-value switch that can

change the color of a light bulb to red, blue, or green. Users

communicate directly (and physically) with the multi-value

switch to turn on the light bulb with a specific color. We will

discuss each layer as follows.

1) The Object Layer: Although our ACO architecture in

general allows objects to communicate directly to each other,

we don’t allow that in our example for simplicity. Therefore,

the multi-value switch and the light bulb (objects) do not

communicate with each other directly at this layer. Both of the

multi-value switch and the light bulb connect to the Internet

via secure channels to communicate with their virtual objects.

Thus, the only communication allowed is with the virtual

object layer.

Figure 2 shows one multi-value switch (object) that enables

a color changing service. In other words, we have a physical

object that has one service. Therefore, there is one virtual

object that can associate with each multi-value switch, leading

to a one-to-one association with the virtual object. Also, there

is only one light bulb that receives a command to change its
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Fig. 2. Multi-Value Switch Use Case for the ACO Architecture

color, and for that light bulb there is one associated virtual

object.

Users can directly interact with the light bulb and the multi-

value switch by powering them on or off, changing them, or

moving them, etc. Also, users can interact with multi-value

switch by pressing a color. In our example, the collected data

is only coming from users’ action. When users press a color in

the multi-value switch, the command is sent to virtual objects.

The light bulb also needs to communicate with its virtual

object to receive the new color; otherwise the color will stay

the same. Over time, collected commands and received colors

from the multi-value switch generate data that can be logged

and saved.

2) The Virtual Object Layer: The virtual multi-value switch

and virtual light bulb (virtual objects) store information about

their physical objects. The virtual multi-value switch saves

the current pressed command in the multi-value switch if they

both are connected, and it will save the last received command

in case if they are not connected. Similarly, the virtual light

bulb will maintain the current color of the light bulb if they

both are connected, and it will also save the last received color

(the future color of the light bulb once it is connected) in case

they are not connected. The current, past, and future status can

be presented via list of attributes (e.g.‘current-status’, ‘past-

status’, and ‘future-status’) that are saved in the virtual objects.

The two virtual objects communicate in three different

ways. They communicate with their physical objects. They

also communicate with each other directly at this layer.

One familiar communication model between virtual objects

is publish/subscribe [32]. Our simple use case has two topics:

‘update’ and ‘update/accept’. The virtual multi-value switch

publishes to ‘update’ topic, and the virtual light bulb sub-

scribes to ‘update’ topic and thus receives any published

command to change the state of the color; and vice versa with

‘update/accept’ topic. Finally, virtual objects can communicate

with the cloud services layer to log and save the sending

commands and the received colors, store the number of

disconnections with physical objects, share attributes with the

policy decision point (PDP), and receive authorized topics to

publish or subscribe.

3) The Cloud Services Layer: This layer supports cloud

services such as compute, storage and analysis of stored data.

As shown in Figure 2, the cloud services layer has data storage

that saves all the collected data (as discussed above). This

data can be analyzed and visualized to decision makers to

understand, for example, the difference between the number

of sent commands from multi-value switch and the number of

received commands to light-bulb.

The policy component stores rules that allow virtual objects

to publish/subscribe to ‘update’ or ‘update/accept’ topics.

In our example, the light bulb is allowed to publish to

‘update/accept’ topic but not to publish to ‘update’ topic.

Policy rules are constructed and managed by administrators

who communicate to this layer through applications. The PDP

communicates with policy and data storage components, and

with virtual objects to retrieve required information (e.g. roles

and attributes) for making a decision [33]. For instance, it

decides whether or not users can communicate to virtual

objects and thus objects themselves.

4) The Application Layer: This layer includes an applica-

tion to view the analyzed and visualized saved information,

such as past statuses of the multi-value switch and the light

bulb. The application allows the owner of the multi-value

switch and light bulb to control communication between

virtual objects, users’ access to the saved data, and com-

munication between applications and objects by constructing

policies that are used by the PDP, which control various kinds

of communication.

B. Multi-Value Switch Use Case Enhancements

Our use case showed a very simple scenaorio that has

only two objects. Each object has one-to-one association with

its virtual objects. This example can be enhanced in several

ways such as adding multi-value switches and virtual objects,

allowing direct communication between switches and light

bulbs, or permitting collaborative multi-clouds, etc. Some

examples of the enhancements are discussed as below.

As the number of rooms increase, more light bulbs are

needed, and thus using one multi-value switch can control all

of them efficiently. Introducing more light bulbs that connect

to one virtual light bulb leads to a many-to-one association

on the light bulbs side, which helps to manage them more

efficiently, while there is a one-to-one association on the multi-

value switch side. Figure 3(a) shows how one multi-value

switch can control many light bulbs. However, how to control

each room with different color is not clear with a many-to-one

association on the light bulb side.
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Fig. 3. Different kinds of objects and virtual objects associations

On the other hand, looking to control many rooms separately

will result in increasing the number of multi-value switches,

virtual multi-value switches, and virtual light bulbs. Designing

a smart multi-value switch that considers how many times

the red, the green, or the blue button has been pressed can

result in a one-to-many association. In other words, this smart

multi-value switch is associated to many virtual objects, rather

than having multiple multi-value switches, each of them is

associated with one virtual object. Figure 3(b) shows that

with two groups of light bulbs (two rooms), each group

associates with a different virtual light bulb (multiple many-

to-one associations). The smart multi-value switch will be

associated with two virtual multi-value switches. The first

virtual multi-value switch is for the first group of light bulbs,

and the other one is for the second group. Hence, two many-

to-one associations are on the light bulbs side, while one-

to-many association is on the smart multi-value switch side,

which decreases the cost of having many multi-value switches.

In our simple case example, there is a one-to-one association

on both the light bulb and the multi-value switch. One virtual

multi-value switch is communicating with one virtual light

bulb by pushing to ‘update1’ topic (this update is only for

specific virtual object(s)). As a result, there are only two

topics to publish and subscribe: ‘update1’ and ‘update/accept’

topics. However, Figure 3(b) shows more topics since we are

looking to control two separate groups of light bulbs. Thus the

‘update1’ topic is for the first group and ‘update2’ is for the

second one. In this case, adding a third group of light bulbs

to be controlled separately will increase the number of topics.

As one advance enhancement is having groups of light bulbs

and multi-value switches in one city, each group is for one

neighborhood. The logged data, such as historical multi-value

switch commands, is saved in the cloud. Another city that

has a different cloud would like to communicate with the

first city’s cloud and retrieve the analyzed historical multi-

value switch commands to discover the most required color

in that city, for example, or to study the difference between

the number of sent commands from multi-value switch and

the number of received commands to light-bulb, and so on.

This case shows why different clouds could communicate

and collaborate within the cloud services layer in multi-cloud

collaboration.

In the application layer, a smart phone could have an

application that displays for users the current color, the past

color, and the future color of a light bulb, as well as an

illustrative graph that visualizes the number of times each

color has been pressed so that users can understand what the

most desired color has been. In addition to multi-value switch

commands, an application could allow users to control the

light bulb color remotely by pressing the required color and

transmitting it within the cloud and the virtual object layer.

C. Controlling Communications and Data Access

Various access control models have been discussed such as

attribute based access control model (ABAC) [24], relationship

based access control model (ReBAC) [25], and role based

access control model (RBAC) [23]. Access control models

such as these can be employed to control communications

between entities and controlling accessing to data.

In our simple use case, we can control virtual objects

communication by adapting an appropriate access control

model. ABAC model, for example, shows its capability for

accommodating the need of the IoT in terms of the unlimited

increase of objects. ABAC can be used to control communi-

cation between our two virtual objects: the virtual multi-value

switch (VO1) and the virtual light bulb (VO2). Controlling

which virtual objects are authorized to publish or subscribe

to a specific topic is important here. In our case, the VO1

needs to be authorized to publish to the ‘update’ topic and

subscribe to the ‘update/accept’ topic, while the VO2 needs

to be authorized to subscribe to the ‘update’ topic and publish

to the ‘update/accept’ topic.

For both of the two virtual objects, we have the follow-

ing attributes: {Type1, Location, Current-color, Past-color,

Future-color, Publish, Subscribe}. Each attribute has the fol-

lowing range: range(Type1) = {‘apple switch’, ‘apple light

bulb’}, range(Location) = {‘home1’}, range(Current-color)

= range(Past-color) = range(Future-color) = {‘red’, ‘green’,

‘blue’}, and range(Publish) = range(Subscribe) = {‘update’,

‘update/accept’}. We assume that Type1 and Location at-

tributes’ values are already assigned for both of the two virtual

objects. Thus, a virtual object is allowed to either publish to

‘update’ topic if it is with Type1 ‘apple switch’ and is located

at ‘home1’, or it is allowed to subscribe to ‘update’ topic if

it is with Type1 ‘apple light bulb’ and is located at ‘home1’,

and vice versa for the ‘update/accept’ topic. Figure 4 shows

the authorization policy to publish or subscribe to ‘update’

topic and VO1 and VO2 attributes.

Historical sent commands (HSC) from VO1 and histor-

ical changed colors (HCC) of VO2 can be logged in the

cloud storage. In that case, access control techniques are
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Fig. 4. Using ABAC to control virtual objects commuincations

needed to control accessing to historical data. For example,

an application (App1), which represents information about

historical sent commands and received colors, needs to access

data storage to get that information. This application has

the following attributes: {Type2, Located-objects}, and their

ranges are as follows: range(Type2) = {‘apple switch-bulb’},

range(Located-objects) = {‘home1’, ‘home2’}. We assume

that the application is already identified and the Type2 and

Located-objects attributes values are already assigned for the

application. By using ABAC model, applications can access

historical sent commands and historical changed colors only

if they have the following attributes values: Type2 = ‘apple

switch-bulb’ and Located-objects = ‘home1’. Figure 4 shows

the authorization policy that allow an application to access

historical data and application saved attributes. Also, it shows

information that can be presented via the application (App1).

D. Object Life Cycle Issues

Looking to object layer in our simple use case, we have

two objects that need to be designed with at least basic

requirements of Internet of Things objects. For example,

multi-value switches that do not connect to the Internet and

communicate with virtual objects are not eligible to be placed

with the Internet of Things objects. Thus, objects need to be

designed and built to communicate.

Objects need to hold identifiers so as to be recognized once

they connect to the Internet. With object identification, each

object could be mapped to their virtual objects and authorized

for communication with virtual objects. In our example, we

have the virtual multi-value switch and the virtual light bulb.

The decision of mapping light bulb to virtual multi-value

switch or to virtual light bulb will need the light bulb identifier.

Therefore, identifying objects is one important aspect of the

object layer.

For each object there is at least one owner responsible

for configuring that object, controlling its communication

to other objects, and authorizing users and application to

control/connect to this object. In other words, owners are the

only users who can manage object policies. The multi-value

switch in our example is permitted to send a command color

only via owner authorization policy. As a result, we can say

that ownership is significant for object security.

Designing objects to communicate with the assistance of

identifiers and owner guidance leads to the secure deployment

of these objects [34]. The secure communication of objects

needs to be maintained periodically for these objects. The

light bulb, for example, needs to be checked frequently for

whether it is still permitted to communicate with a virtual light

bulb or not. Additionally, objects or virtual objects that are

not working any more or are not needed need to be changed

or removed. Thus, ownership and policies of retired objects

should be revoked for security purposes.

V. RESEARCH AGENDA

Our use case reveals different possibilities of communica-

tions among entities in each layer and in different layers. As a

result of these communications, the collected data flows among

entities in various layers. From our ACO architecture and

illustrative examples, we recognize two major issues that need

to be controlled: communications among entities, and data that

flows through these communications. Figure 5 represents the

general two main recognized issues and entities in each of

them.

A. Controlling Communications

Access control models have been frequently used to control

data access. On the other hand, enforcing access controls to

determine what kind of communication or traffic is allowed

onto the network has been less frequently discussed by re-

searchers although widely used in practice in firewalls [35].

A firewalls is a decision and enforcement point that grants or

rejects any communication flow through it.

In general, communications between entities at different

layers are possible in different directions. In our ACO ar-

chitecture, objects can communicate directly with each other

at object layer. Many protocols have been proposed for

networked devices communications, such as Bluetooth and

WiFi [36], [37]. In addition, objects can communicate with

their virtual objects with different associations. These kinds

of communications introduce questions such as, which objects

are authorized to communicate with a specific object? Which

objects are allowed to access specific virtual objects? What

are the necessary requirements for objects to authorize them

to communicate? Is the collected data from objects going to

participate in controlling the communication of an object? All

these questions can be studied and solved by proposing access

control models for all kinds of objects’ communications.
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Within the virtual object layer, various communication

models are possible. In our simple use case, we described a

publish/subscribe communication style. Questions arise such

as, who is allowed to publish or subscribe to the ‘update’ and

‘update/accept’ topics? What kind of information is needed to

permit virtual objects to subscribe or publish? Questions such

as these should be reviewed and resolved by suitable control

models for virtual objects communications.

Our ACO architecture integrates the cloud as a service

management layer, which helps in solving issues with IoT

technology. It exists in the middle between the top and the

bottom of the ACO architecture, so it is a crucial communi-

cation point that top and bottom entities should both access

to communicate with each other. How do virtual objects get

permissions to access each other or to access the cloud? Are

virtual objects permitted to communicate directly with cloud

entities or not? And what are the conditions and requirements

for this communication? Do clouds communicate to share their

information with each other? Can virtual objects be controlled

or accessed through different (remote) clouds? Such questions

should be addressed and appropriate control provided.

The only way for users and administrators to remotely

connect with IoT entities is across applications in the ap-

plication layer that generally display analyzed collected data.

Also, applications can be used to control objects by sending

commands that go from applications to cloud and virtual ob-

jects layers to control objects. Based on our ACO architecture,

such communications between clouds, between virtual objects

and clouds, and between applications and clouds can occur

directly; communications between applications and objects,

for example, should be transmitted through clouds and virtual

objects. Figure 5 shows general entities that can communicate

directly or through other layers and need to be controlled.

Within the IoT, indirect communication could introduce vul-

nerabilities in term of using an authorized communication to

get unauthorized communication. For example, an application

is allowed to communicate with a virtual object that has many-

to-one association (many objects to one virtual objects). In

contrast, the application is not allowed to communicate with

some of the associated objects. Thus, such this association

could cause indirect authorized access. It is important to have

access control models to be used to control entities commu-

nication. As an initial step toward understanding controlling

communication, an example of using ABAC to control a

publish/subscribe communication style is discussed above in

Section IV-C.

B. Controlling Access to Data

The ACO architecture integrates heterogeneous objects that

collect data from an environment. Data could be collected by

an individual object, such as the multi-value switch from our

simple use case or a wearable FitBit device for one person.

There could also be sub-data related to entities of the IoT, such

as information about objects, virtual objects, and application.

All sub-data and individual collected data can be accumulated

and shared with others. Since our ACO architecture integrates

Fig. 5. Recognized access control issues from ACO architecture

the cloud, accumulated data is saved in the cloud’s storage.

Figure 5 shows that data is result of communication, and also

communication could be established to retrieve data. Thus, the

relation between data and communication is bidirectional. It

also shows that individual collected data and by object(s) and

the sub-data are a subset of all accumulated data. Differenti-

ating between who is allow to access the individual collected,

sub-data, or accumulated data is necessary.

Data security should be applied at every stage of the

data lifecycle because it is vulnerable from the moment of

transferring it from the owner’s data storage until it is deleted

from cloud storage. According to [38], the data lifecycle is

divided into seven stages: data generation, transfer, use, share,

storage, archival, and destruction.

In every stage of data lifecycle, the confidentiality and

integrity of this data is important. There are many questions

raised regarding data security and privacy. Can an object,

a virtual object, or an application access data partially or

entirely? If so, can they retrieve data directly or across other

entities? Can accumulated data in one cloud accessed by

remote clouds, objects, applications, etc.? What is accumulated

data used for? These and similar questions present themselves

when dealing these issues.

C. General Issues

The virtual object layer includes virtual objects for physical

objects. However, it is important to address issues such as

whether virtual objects exist first or physical objects? Should

both virtual objects and physical objects exist together or one

of them could exist first? Can a virtual object appear without

being a counterpart for any physical objects? These questions

need be to be considered by studying and controlling the

mapping between virtual objects and their physical objects.

The owner or the administrator of entities creates an access

control rule to govern the set of allowable capabilities. For

example, all virtual objects of wearable FitBit devices can
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view the average of the collected data from all wearable FitBit

devices. Since the number of devices and applications in the

IoT organization is unlimited, it is important for owners or

administrators to apply access control policy without prior

knowledge of particular entities that might require access [33].

ABAC allow an owner to implement access control policy

without changing policy when new entities join.

Administrators control entities through applications that

exist in the application layer. Since administrator and users

both access through applications, it is important to distinguish

administrators from users. How administrators control commu-

nications between entities at same and different layers? What

kinds of actions that are self-control? What kinds of actions

need direct control from administrators? All these questions

need to be considered.

VI. CONCLUSION

In this paper, we take a first step toward our eventual goal

of evolving an authoritative family of access control models

for cloud-enabled Internet of things. First, we developed IoT

architecture which is divided into four layers: the object layer,

the virtual object layer, the cloud layer, and the application

layer. This architecture will be our reference to build access

control models for cloud-enabled Internet of things. We dis-

cussed illustrative examples that highlight the needed access

control models for IoT. From our examples, we discussed the

research agenda that could be studied.
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