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Abstract—A major challenge in Infrastructure as a Service
(IaaS) clouds is its exposure to malware. Malware can spread
rapidly within a datacenter and can cause major disruption to
a cloud service provider and its clients. This paper introduces
and discusses an effective malware detection approach in cloud
infrastructure using Convolutional Neural Network (CNN),
a deep learning approach. We initially employ a standard
2d CNN by training on metadata available for each of the
processes in a virtual machine (VM) obtained by means of the
hypervisor. We enhance the CNN classifier accuracy by using
a novel 3d CNN (where an input is a collection of samples
over a time interval), which greatly helps reduce mislabelled
samples during data collection and training. Our experiments
are performed on data collected by running various malware
(mostly Trojans and Rootkits) on VMs. The malware used
in our experiments are randomly selected. This reduces the
selection bias of known-to-be highly active malware for easy
detection. We demonstrate that our 2d CNN model reaches
an accuracy of ' 79%, and our 3d CNN model significantly
improves the accuracy to ' 90%.
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I. INTRODUCTION

Cloud infrastructure has become increasingly prone to
novel attacks and malware [1]–[6]. One of the most prevalent
threats to cloud is malware. Cloud malware injection [3] is
a threat where an attacker injects a malware to manipulate
the victim’s Virtual Machine (VM). Due to the nature of
the cloud and automatic provisioning, a large number of the
VMs are similarly configured. One example is when a web
server scales-out due to increase in demand and scales-in
when the demand goes down. This means that the attack that
compromised one of the VMs is highly likely to compromise
many of the other VMs. The attacker can inject a botware
to use it for creating a botnet due to a large number of
VMs available in scaling scenarios. As a result, the need for
malware detection in VMs is critical.

In our earlier work [7], we showed that malware detection
can be effectively performed by inspecting the performance
and resource utilization metrics of VMs as a black-box.
Although the approach works well with highly active mal-
ware (e.g. ransomware), it is not as effective for detecting
malware that maintains a low-profile of resource utilization.
In this paper, we develop a novel and effective technique to
detect such low-profile malware that utilizes minimal system

resources, by inspecting raw, fine-grained meta-data of each
process in a VM.

Two major approaches have been explored for malware
detection in the current literature: static analysis, where
malware code is analyzed without running it, and dynamic
analysis, where a malware is executed and its behavior
observed in order to detect it. The pros and cons of these
approaches for malware detection are well understood.

In this paper, we introduce and discuss a malware detec-
tion approach using Deep Learning (DL). We demonstrate
the applicability of using a 2d Convolutional Neural Net-
work (CNN) for malware detection through the utilization
of raw, process behavior (performance metrics) data. Our
approach falls under dynamic analysis. However, unlike
most prior works that utilize machine learning (ML) in
dynamic analysis to classify malware files, we use it for
online malware detection. Note that the approach introduced
in this paper is general and is not confined to the use of
CNN. The choice of using CNN is due to its simplicity
and training speed as opposed to other DL architectures
such as Recurrent Neural Networks (RNNs). Applying and
comparing different ML approaches is left to future work.

One of the biggest challenges in employing ML for
malware detection is the mislabeling problem. This is
because, during the training phase, there is no guarantee
that a malware exhibited malicious behavior. While some
malware start performing malicious activities immediately
after infecting a machine, a reasonably sophisticated mal-
ware starts off as a process and idles until some condition
is met (e.g., a command from its remote owner), which can
occur at any time. In particular, such a condition may never
occur during the training phase for the malware to activate.
However, this issue is rarely addressed in existing literature
except for the work in [8], which recognizes this issue. The
authors stated that this problem can pollute the training and
testing data; however, since there is no way around it, they
had to make the assumption that it is alright to label all
the data as malicious after a malware execution takes place.
In other words, the assumption is that malware will always
show malicious activity at all times.

We follow their assumption in this work but not to the
fullest. Consider a more common scenario when a malware
periodically (e.g., every 1 minute) performs malicious activ-



ities such as stealing and sending some information to its
Command and Control servers (C&Cs). Now the malware is
surely conducting a malicious behavior but only periodically.
As a result, if a malware is run for 15 minutes and we collect
a data sample every 10 seconds (total of 90 samples), all the
collected data samples will be labeled as malicious whereas
in fact only 15 of them are malicious. This will cause a
mislabeling problem during the training phase.

To mitigate this problem, we refine the above assumption
by assuming that a malware will show malicious activity
within a time window. The underlying rationale is that while
there is no way to know for sure that a malware ever exhib-
ited malicious behavior during the training phase, it is more
practical to consider a sliding window of time during which
malicious behavior is exhibited instead of assuming that
all data samples collected after malware injection indicate
malicious activity. This increases the probability of correctly
labeling our samples. Toward this end, we develop a 3d CNN
classifier which takes a 3d input matrix containing multiple
samples over a time window. In summary, the contributions
of this paper are two-fold:

• We develop an effective approach for detecting mal-
ware by learning behavior from fine-grained and raw
process meta-data that are available directly from the
hypervisor. The approach we develop is resistant to the
aforementioned mislabeling problem.

• We demonstrate the effectiveness of this approach by
first developing a standard 2d CNN model that does
not incorporate the time window, and then comparing
it with a newly developed 3d CNN model that signif-
icantly improves detection accuracy mainly due to the
employment of a time window as the third dimension,
thereby mitigating the mislabeling problem.

To the best of our knowledge, our work is the first to apply
2d and 3d CNN on raw performance metrics of processes,
which can be easily obtained through the hypervisor layer.
This is critical if a cloud service provider were to offer such
a malware detection service. Since the approach we propose
does not require an agent to run within VMs, we avoid any
major privacy and security concern for cloud tenants.

The remainder of the paper is organized as follows.
Section II discusses related work on malware detection
methods outlined as static and dynamic analysis. Section III
outlines the methodology including the architecture of the
CNN models used. Section IV describes the experiments
setup and results. Section V gives a discussion about some
of the important limitations and possible mitigations. Section
VI summarizes and concludes this paper.

II. RELATED WORK

This section provides an abbreviated introduction to the
major malware detection techniques using ML. The majority
of malware detection techniques falls under one of the two
approaches: static analysis or dynamic analysis.

A. Static Analysis using Machine Learning

During static analysis, no execution of executables/binary
files takes place. It is the process of analyzing executables
by examining their code without actually executing them.
There are two approaches used for static analysis. First, an
executable file can be disassembled or reverse engineered
using disassemblers to get the actual code. Then detection of
malware takes place on the actual code. Most sophisticated
malware can evade this method by embedding syntactic
code errors that will confuse disassemblers but that will still
function during actual execution. Second, analysis can be
done directly on a binary file format. For example, one of
the simplest forms of static analysis, is extracting parts of
the binary file as features (n-grams). Then ML techniques
are used to find malicious patterns. In [9], the approach is to
remove n-grams that are known to be benign. For example, a
worm that distributes itself via emails contains code to send
an email which is benign in many applications, so removing
these segments from the file, while comparing what is left
to known malicious segments is a valid approach. The paper
used different ML techniques including Artificial Neural
Networks (ANN) and Decision Trees (DT). The works in
[10]–[12] are similar but use different ML algorithms.

The authors in [13] use several DL models including
LSTM and GRU based language models as well as a CNN
model. This is a static analysis approach which works
directly on the malware files without executing it. Similarly,
[14], [15] use DL for malware static analysis.

Malware developers evade detection using static analysis
approaches by introducing polymorphism, where a malware
changes and evolves while preserving code semantics. Dy-
namic analysis approaches can help overcoming some of the
static analysis drawbacks since they rely on monitoring the
behavior as opposed to static inspection.

B. Dynamic Analysis using Machine Learning

In dynamic analysis, the executable is executed, typically,
in an isolated environment (e.g., sandbox or VM) and
information is gathered during execution (e.g., system calls,
memory accesses or network communications). Dynamic
analysis is used for malware files classification as well as for
online malware detection (e.g., similar to intrusion detection
systems). Many works exist in this area. In [16], the authors
use ML techniques in order to monitor virtual memory
for malicious access patterns caused by the malware. The
features are represented in histograms of memory access.
The authors train one model for each application which can
be quite expensive.

The work in [17] uses multi-task learning using Deep
Neural Networks (DNN) for malware detection and malware
family classification of binary files. In multi-task learning,
a set of network layers is shared between learning tasks.

The work in [18] applies deep learning for malware
detection using process API calls log information. First, a
Recurrent Neural Network (RNN) is used to extract features
and then CNN is given these features as input. The downside
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of this work is using a sandbox to monitor processes. In
most cases, malware will detect the presence of a sandbox
and hide its true behavior. Also, this deals with single data
sample without considering that malware can be benign at
certain times and malicious at others.

The work in [19] uses dynamic analysis for malware
files classification. Malware run in a lightweight VM and
hundreds of thousands of features are extracted to be used
in a DL technique. This approach is for files classification
which is not naturally suitable for online malware detection.

Most dynamic analysis approaches for online detection
deal with single samples and do not consider the mislabeling
problem nor malicious patterns across windows of time.

In this paper, we are motivated by:
• The feasibility of applying CNN to VMs malware de-

tection using fine-grained process performance metrics.
• Tackling the mislabeling problem by using 3d CNNs.

III. METHODOLOGY

This section provides an overview of the methodology
used for malware detection in VMs using CNN.

A. Convolutional Neural Network

CNN is a type of DL that has been applied to images
analysis and classification. One advantage of CNN is that it
requires little pre-processing as compared to similar image
classification algorithms since it works on raw data. It acts
as a feature extractor which is very convenient since feature
selection in most cases requires human experts.

Figure 1 shows the architectural overview of a CNN.
Much like deep neural networks, CNN consists of input and
output layers and multiple hidden layers. A Convolutional
layer applies a convolution operation on the input matrix and
passes the output to the next layer. A convolution operates
on two inputs: feature map (input matrix) and convolution
kernel (works as a filter) and outputs another image. The
kernel is used to filter out certain information from the
feature map and discard other information. In other words,
a convolution operation uses multiple kernels where each
kernel is responsible to extract and focus on a piece of
information (e.g., one kernel might filter edge information).
Usually, a convolutional layer is followed by a Pooling layer
which takes the output of the convolutional layer as input.
Pooling is an operation in which it down samples the feature
maps received from the convolutional layer. It works by
taking a certain area of the input and reduces it to a single
value. For example, max pooling uses the maximum value
from certain area, while average pooling uses the average

value. Convolutional and pooling layers are followed by
fully connected layers, which connect every neuron in one
layer to every neuron in the next layer.

B. Process Performance Metrics

In this work, we use performance metrics as a way of
defining a process behavior. Table I shows metrics that are
selected to be collected for the VMs. Selected metrics are for
the purpose of showing the effectiveness of our approach; in
practice, many more metrics are available. For the sake of
practicality, we assume no prior knowledge of any additional
information other than the metrics we collect in Table I.

C. CNN Input

We represent each sample as an image (2d matrix) which
will be the input to the CNN. Consider a sample Xt at
a particular time t, that records n features (performance
metrics) per process for m processes in a VM, such that:

Xt =


f1 f2 . . . fn
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...

... . . .
...

...
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...
. . .

...

pm
...

... . . .
...


Note that a CNN requires the same process to remain

in the same row in each sample. For example, a process
with PID 1 that resides in the first row of the matrix
must remain in the first row across all upcoming samples.
The CNN in computer vision takes fixed-size images as
inputs, so the number of features (n) and processes (m)
must be predetermined. The number of features is easily
determined since we have a fixed number of collected
features represented in Table I (28 in our case). On the other
hand, determining the number of processes is not as easy
since the processes are dynamic in nature. In highly active
systems (e.g., web or app server), many processes get created
and killed to handle client requests based on the workload.

A process is defined by a process identification number
(PID) which is assigned by the OS. In a Linux based OS
(used in our experiments), PID numbers will increase to
a maximum system-dependent limit and then wrap around
(recycle). The kernel will not reuse a PID before this wrap-
around occurs.1 The limit (maximum number of PIDs) is
defined in /proc/sys/kernel/pid max which is usually 32k.
This number presents a problem because a matrix of 32k×28
is a huge input matrix. Also having too many variables in
the input requires a large number of input in any neural
network. Limiting the max number of processes to a lower
value and depending on the concept of wrap-around will not
solve the problem because of many reasons. First, the reason
the max number of processes is set to a very large number
(i.e. 32k) is that it can confuse the kernel if the value is
too small and wraps around too often, not to mention that
it is hard to determine the appropriate number before hand.

1Linux Manual. http://man7.org/linux/man-pages/man5/proc.5.html



TABLE I: Virtual machines performance metrics

Metric Category Description
Status Process status
CPU information CPU usage percent, CPU times in user space, CPU times in system/kernel space, CPU times of children processes in user

space, CPU times of children processes in system space.
Context switches Number of context switches voluntary, Number of context switches involuntary
IO counters Number of read requests, Number of write requests, Number of read bytes, Number of written bytes, Number of read chars,

Number of written chars
Memory information Amount of memory swapped out to disk, Proportional set size (PSS), Resident set size (RSS), Unique set size (USS), Virtual

memory size (VMS), Number of dirty pages, Amount of physical memory, text resident set (TRS), Memory used by shared
libraries, memory that with other processes

Threads Number of used threads
File descriptors Number of opened file descriptors
Network information Number of received bytes, Number of sent bytes

Second, there is no guarantee that, for instance, a process
with a PID 1000 at time t1 is going to be the same process at
time t100. Considering the wrap-around concept, this process
might have been killed and a new different process could be
assigned the same PID later on. This can cause inaccurate
results by the CNN since an important requirement is that
the same processes remain in the same rows at all times.

To solve these problems, instead of defining a process
by it’s PID, we define a process, referred to as unique
process, by a 3-tuple: process name, command line used
to run process, and the hash of the process binary file
(if applicable). In cases where the same application (e.g.,
apache web server) forks multiple child processes (with
the same name, cmd, and originated binary), we aggregate
these processes by taking the average of their performance
metrics. This also helps in smoothing the fluctuations of
processes that have similar functions. In all of our experi-
ments none of the VMs had more than 100 unique processes;
however, for practicality, we set the maximum number of
unique processes to 120 to accommodate for newly created
unique processes. Any unavailable unique process (due to
termination) at a particular time is padded with zero-values.
In the rest of the paper, the term process and unique process
are used interchangeably, where they refer to unique process.

The 3d CNN model input includes multiple sam-
ples over a time window. The input matrix Xtij =
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, where Xtij is the 3d
input matrix containing samples from time ti to tj . As stated
in section I, we use a 3d CNN model to enhance the results
by capturing patterns over a small time window which in
turn helps in mitigating the mislabeling problem.

IV. EXPERIMENT SETUP AND RESULTS

In this section, first, we present the CNN model used in
this work as well as the data preprocessing step. Second, we
review our experimental setup. Then, we provide the results
to illustrate that a 2d CNN can be effective in detecting
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Fig. 2: Proposed CNN Model

low-profile malware using per-process performance metrics.
Lastly, we show how using a 3d CNN can improve the
results by attempting to solve the mislabeling problem.

A. Preprocessing

It is essential to CNN to have scaled data input for
faster convergence and better accuracy results. A standard
approach is to rescale the data to have a mean of 0
and standard deviation of 1. It is done in a per feature
fashion. Given a set of features F = {f1, fi, ..., fn} and
a set of samples X = {x1, xj , ..., xt}, it is defined as
x
(fi)
jstandardized

= (x
(fi)
j − µ(fi))/σ(fi), where x

(fi)
j is a

vector of values corresponding to feature fi in the jth input
sample, and µ(fi), σ(fi) are respectively the mean and the
standard deviation of values corresponding to feature fi
across all samples in set X . The same two sets of µ(fi)

and σ(fi) (obtained from the training dataset) are used for
standardizing the validation and testing datasets.

B. CNN Model Architecture

Figure 2 shows the CNN model used in this work. It
consists of 8 layers. First, the input layer which is basi-
cally received as the input matrix. Second, a convolutional
layer which receives a d × 120 × 28 standardized matrix,
representing samples in a particular time window, where



d is the depth of the input matrix and 120 × 28 is the
length of the 2d matrices representing the number processes
and features, respectively. Then, it performs a convolutional
operation with 32 kernels of size d × 5 × 5 with zero-
padded ending. The results of this layer are 32 feature maps
of size d × 120 × 28. Third, a max pooling layer of size
2× 2× 2 which down size each dimension by a magnitude
of 2, resulting in a 32 feature maps of size d/2×60×14. The
fourth and fifth layer are replicates of layer two and three so
the output of the max pool layer 2 is 64 feature maps of size
d/4× 30× 7. The last 3 layers are a fully connected layer
with size of 1024, a dropout layer described below, and,
last, another fully connected layer with size of 2 denoting
the classification probability of a malicious or benign VM
sample. Note that the model doesn’t classify malicious or
benign processes but rather the VM as a whole which means
there is no way to know which process is malicious.

To reduce over fitting, we use a dropout [20] layer after
the first fully connected layer, since it is shown in previous
work [21] that dropout regularization works well with fully
connected layers.

Rectified linear unit (ReLU), a simple and fast activation
function, is simply defined as f(x) = max(0, x). It turned
out that ReLU (which is used in our work) works better in
practice than the other activation functions as well as it’s
several times faster in training as stated in [22].

The model is trained using back-propagation for Adam
Optimizer [23], a stochastic gradient descent that auto-
matically adapt the learning rate. The optimizer works on
minimizing the loss function. We use the mean cross entropy
as a loss function. The model is also trained using mini-
batches which is not reflected in the layers described above.

The described CNN model is used for both 2d CNN and
3d CNN except the former has one less dimension (i.e.
the depth d of the input matrix is 1). The CNN structure
used in this work is considered to be shallow as opposed to
models such as GoogleNet and LeNet due to the limit of the
experiments we could perform in our lab which, in turn, led
to lack of large data sets. Experimenting in a larger scale
and comparing different CNN models is left to future work.

C. Parameters Tuning

Parameters tuning is a very challenging problem in ML in
general. It helps choosing the set of parameters that yields
the best classification accuracy. A common approach, used
for most of the parameters in our work, is grid search,
where we define (based on our knowledge) bounds for each
parameter and try all the combinations that yields the best
classification accuracy during the validation phase. Other ap-
proaches can be more practical such as random search [24].
In our case, the set of important parameters are as follows.
Dropout. Dropout is a regularization technique that turns
neurons on/off in each layer to force them to go through
different path. This operation improves generalization of the
network and prevents over-fitting. We set this parameter to
0.5 [25]. Learning rate. This determines how fast we move
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Fig. 3: 3-tier web architecture
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toward the optimal weights in our network. If this parameter
is very large, it will skip optimal values. On the other hand,
if it is too small, it will take too much time to converge to
the optimal values, and it may get stuck in local minima.
Typically, a stochastic gradient descend uses decay learning
rate to slow down the learning rate as it moves forward.
AdamOptimizer (used in our study), adapts the learning rate
automatically, however the adaptation maximum ceiling is
defined by our learning rate parameter. If we set it very large,
it will give the optimizer more room to adapt which can be
problematic in some cases. The values we found reasonable
during our experiments lies between 1e − 3 and 1e − 5.
Mini-batch size. As CNN is using mini-batches to learn, we
define the bounds of our mini-batches sizes between 10 and
30. Going lower or higher proved to decrease the accuracy.

D. Experimental Setup

Our experiments were conducted on Openstack2 (a major
open-source cloud orchestration software). To simulate a real
world scenario, we used a 3-tier web architecture (one of the
most common cloud architectures according to Amazon3).
Note that our work is not confined to the 3-tier web archi-
tecture use case used in the experiments since our approach
relies on learning the behavior of processes in VMs. This
means that learning approach of processes behavior would
remain the same regardless the architecture in place. Figure
3 shows the setup used to conduct our experiments on
Openstack. A 3-tier web architecture, typically, consists of
3 separate tiers: web, application and database server. In our
case, we used Apache as a web server, Wordpress4 (a major
open-source content management system) that utilizes PHP
as an application server and MySQL as a database server.

According to [26], Internet traffic is of self-similar nature.
Thus, we built a multi-process traffic generator (set to the
NS25 default parameters values), based on ON/OFF Pareto

2Openstack website. https://www.openstack.org/
3Amazon architecture references. https://aws.amazon.com/architecture/
4Wordpress website. https://wordpress.org/
5NS2 tool manual. http://www.isi.edu/nsnam/ns/doc/node509.html
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Fig. 6: 2d CNN classifiers results

distribution, to generate traffic for our experiments.
Figure 4 shows an overview of the data collection pro-

cess. Each of our experiments was 30 minutes long. The
aforementioned 3-tier architecture was created from known-
to-be clean images. The first 15 minutes is the normal phase,
where no malicious activity takes place, and is followed by
15 minutes of malicious phase, where a single malware is
injected and executed in the application server. Few normal
processes were injected during the normal phase to check the
effectiveness of our approach in handling false positives. The
malware was injected in the application server VM because
most vulnerabilities, typically, lies in the application side.

The image used for spawning VMs is Ubuntu 16.04 which
was modified to include a data collection agent. Data was
collected at 10-second intervals in a JSON object. We refer
to each of the collected objects at a particular time as a
sample. For simplicity, we included an agent inside VMs
to collect data; however, data collection could also be done
through Virtual Machine Introspection (VMI) since similar
metrics [27], [28] could be collected from the hypervisor.

The 25 malware binaries6 used were randomly obtained
from VirusTotal7. They mainly belong to 3 classes: Rootkits,
Trojans and Backdoors and have unique SHA-256 hashes.

Most malware check for connection to their C&Cs, oth-
erwise, they remain idle. Many researches (on malware

6https://github.com/mahmoudaslan/researchrepo/blob/master/malwarehashes
7VirusTotal website. https://www.virustotal.com

dynamic analysis) use sandboxes or VMs in a controlled
environment which can cause hindrance to the malware.
To accommodate for this problem, all of our VMs are
connected to the Internet outside of firewalls to prevent
any intervention. To avoid data pollution, experiments were
totally independent and all VMs used for one run were
completely destroyed before the next run because malware
can infect other VMs and possibly pollute subsequent runs.

We collected samples at 10 seconds intervals for 30
minutes duration, so we have a total of ' 180 samples per
experiment and ' 4500 samples in total.

E. Evaluation

We use four evaluation8 metrics. Precision is the num-
ber of correct malware predictions. Recall is the number
of correct malware predictions over the number of true
malicious samples. Accuracy is the measure of correct
classification. F score is the harmonic mean of precision
and recall. True Positive (TP ) refers to malicious activity
that occurred and was correctly predicted. False Positive
(FP ) refers to malicious activity that did not occur but was
wrongly predicted. True Negative (TN ) refers to malicious
activity that did not occur and was correctly predicted. False
Negative (FN ) refers to malicious activity that occurred but
was wrongly predicted.

F. 2d CNN Results

The data collected are divided into 3 sets: training, vali-
dation and testing sets with the percentages of 60%, 20%,
and 20% respectively. The split is done on the number of
experiments. For example, the 25 experiments (each using a
different malware) is split to 15, 5 and 5 respectively. This
means that the validation and testing phases are exposed to
unknown malware. Training data is used to train the CNN
models. Then, the validation set is used as a way to tune the
parameters of the CNN. Once we get the highest validation
accuracy for a model with specific set of parameters, we use
the testing set to test the chosen model (optimized classifier).
The classifiers were trained for 30 epochs as it turned out,
in our case, that there was no extra gain of accuracy or
decrease in mean cross entropy loss afterwards.

8Accuracy = TP+TN
TP+TN+FP+FN

, P recision = TP
TP+FP

,

Recall = TP
TP+FN

, F score = 2× Precision×Recall
Precision+Recall
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Fig. 7: Optimized 2d and 3d CNN classifiers results. 3d CNN
classifiers are best optimized with learning rate of 1e-4 as
well as with 20 and 30 mini-batch sizes, respectively.

We only show results for classifiers using learning rate
of 1e − 5 because they showed the highest accuracy and
lowest mean cross entropy loss. Figure 5 shows three trained
classifiers based on different mini-batch sizes of 10, 20, and
30. Figures 5a shows the accuracy the three 2d classifiers,
and similarly, Figures 5b, 5c and 5d show the mean cross
entropy for mini-batch size of 10, 20 and 30, respectively.

In general, the results show that using mini-batch size of
20 yields the highest accuracy of 85.9% during validation.

Figure 6 shows the results of the 4 evaluation metrics.
The CNN classifier with mini-batch of 20 shows the highest
results when it is evaluated on the testing data set, while the
classifier with mini-batch size of 30 shows the lowest (larger
mini-batch sizes can lose generalization [29]); however,
there is a drop in the overall performance of the classifiers
on the testing data set where the highest accuracy is ' 79%.

G. 3d CNN Results

The 3d CNN classifiers take time-windowed input. Sam-
ples inside this time window represent the depth of the input
matrix. In fact, the 2d CNN is a special case of the 3d
CNN where the depth is 1. Our experiments is done on 2
time-windows: 20 and 30 seconds. Since data is collected
in 10 seconds intervals, a 10 seconds time window means 1
data sample and, similarly, 20 and 30 seconds time windows
means 2 and 3 data samples, respectively.

Figure 7 shows a comparison of the performance metrics
of the 2d and the newly tested 3d classifiers. These results
are based on the testing data set. We refer to the classifiers
as shown in Figure 7: 2d CNN, 3d CNN 1 (20 seconds time
window) and 3d CNN 2 (30 seconds time window). The
results showed significant improvement of using 3d CNN 1
and 3d CNN 2. The accuracy of 3d CNN 1 and 3d CNN
2 classifiers jumped to ' 86% and ' 90%, respectively, as
opposed to the 2d CNN classifier accuracy of ' 79%.

V. DISCUSSION

In this section, we discuss some relevant issues in our
approach and some possible improvements for future work.

Accuracy drop between validation and test. The 2d
CNN classifiers showed a drop of accuracy from ' 86%
(validation dataset) to ' 79% (testing dataset). Similarly, a
drop of accuracy also happened during 3d CNN classifiers
evaluation (from ' 97% to ' 90% and ' 89% to ' 86%).
Although it might seem normal considering the validation
set is biased since it is used for parameters tuning, one
reason is that the malware included in the testing data set
(after manual examination) is shown to have more different
behavior than ones included in the training and validation
set. Note also that malware which apparently has the same
purpose can have different behavior which can confuse clas-
sifiers that uses malware classes information. For example,
one Trojan we analyzed opens a back-door and remains
idle, while another opens a back-door, steals and sends
system information over the Internet. In our experiments,
we randomly selected our malware from few classes (trojans,
rootkits, etc..) to completely unbias our experiments.

Mislabeling problem. Using 3d CNN, we improved the
mislabeling problem stated in Section I. Figure 8 shows a
behavior of a malware for just 1 metric. The spike in the fig-
ure shows the time when the malware first booted up. Then,
the malware keeps idle for specific time not performing any
malicious activity. Labeling all samples corresponding to the
benign area shown in the figure will pollute the data because
the classifier learns that these actions are malicious while in
fact they are not. On the other hand, when the malware steals
and sends data over the Internet, samples should be labeled
as malicious. Differentiating between those two actions is
not possible unless it is seen by human experts. In most
cases, researches take the risk of this kind of pollution
because there is no way around it. A partial solution is
to take both the shown areas as one sample and state that
during this time window a malicious activity has happened.
This is essentially what our 3d CNN classifiers are trying to
do by decreasing the number of mislabeled samples as well
as capturing patterns over a small time window. In theory,
the larger the window the better; however, a very large time
window would need a large amount of data , as well as it
would act as a window of opportunity for the malware to
maliciously act before detection and possible mitigation.

3d CNN’s need for data. We experimented on two time
windows (20 and 30 seconds) due to the limited amount
of data. Increasing the time window (meaning increasing
the depth of the input matrix), needs to stack multiple data
samples together. Trying to experiment with 40 seconds time
window and above caused dramatic decrease in accuracy
because the CNNs did not have enough data to converge
and learn properly. Using 3d CNN showed significant im-
provement with a very short time window, so having large
enough data can further improve the results.

Processes and metrics ordering. One advantage of CNN
is that it takes into account the spatial structure of the
data; however, in our case, it seems that the input lacks
spatial structure across columns and rows of the matrix. For
example, if we substituted feature f1 column with feature f2



Fig. 8: Malware behavior of the network sent kBs metric.

column, it is still going to represent the input. On the other
hand, in the case of a normal 2d image, this substitution
will distort the image. The same situation is true with the
rows of our input matrices when, for example, substituting
process p1 row with process p2 row. Note that correlations
might exist between the features (e.g. when CPU percent
goes up, memory usage goes up as well); however, we
did not use this information in our work. We believe that
obtaining correlation information about the features to be
used in ordering our input matrices might help with getting
better results. It is true for processes as well, although it is
not as easy because of the processes’ dynamic nature and the
possibility of newly created processes during testing time.

VI. CONCLUSION AND FUTURE WORK

In this work, we introduced a malware detection method
for VMs using 2d CNN model by utilizing performance
metrics. Results showed a reasonable accuracy of ' 79%
on the testing dataset. We noted the problem of mislabeling
and we improved the performance by introducing 3d CNN
model which uses samples over a time-window. It adds a
3rd dimension (depth) to the 2d input matrix representing
the samples inside the defined time window. Results showed
a significant improvement of accuracy of' 90% for 3d CNN
2 classifier which is practically acceptable.

In the future, we plan to dedicate a pre-training step
to evaluate the effectiveness of ordering the processes and
features in the input matrix. We also plan to increase the
scale of our experiments by using more malware binaries
which will allow evaluating different time-window sizes for
the 3d CNN models as well as using deeper CNN models.
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