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• There are many mainstream approaches for access control
• Access Control Lists (ACLs), Role Based Access Control (RBAC), Attribute 

Based Access Control (ABAC), Relationship Based Access Control (ReBAC), etc.

• These approaches have their benefits and numerous advancements
• Skilled security administrators needed to engineer and manage accesses

• Over-provisioned to ease administrative burden 
• Under-provisioned for the sake of  tightened security 

Introduction
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A Sample System
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Access Control State
<Alice, service1, read>
<Alice, service2, {read, write}>
<Bob, service1, {read, write}>
<Bob, service2, {read}>

User spending join_date credit_score

Alice high Nov 2010 700

Bob high Jul 2015 500

Resource limit process_time

service1 10K 1 day

service2 5K 1 week

User Metadata Resource Metadata

<User, Resource, {Operations}>
Authorization Tuple



Phase-1: Attribute Engineering
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User spending join_date credit_score

Alice high Nov 2010 700

Bob high Jul 2015 500

Resource limit process_time

service1 10K 1 day

service2 5K 1 week

User metadata Resource metadata

User Attributes

User spending C_status

Alice high platinum

Bob high silver

Resource S_status

service1 premium

service2 regular

Resource Attributes

Attributes
Assignment

Attribute
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User Attributes

User spending C_status

Alice high platinum

Bob high silver

Resource S_status

service1 premium

service2 regular

Resource Attributes

Rule: <spending = high, C_status = platinum, S_status = premium> = read

Access Control 
System

access 
request read

Alice service1

Phase-2: Policy Engineering

<Alice, service1, {read}>
<Alice, service2, {read, write}>
<Bob, service1, {read, write}>
<Bob, service2, {read}>

Access Control 
State

Generalization !



• Learn by example
• Learn directly from the raw data (no feature extraction)
• Obtain an excellent accuracy

Deep Learning
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Self
driving car

Healthcare

Banking



• Could it learn from existing access control state of  the system?
• Could it learn directly from the metadata?
• Could it make access control decisions that are accurate and 

generalize better?

Deep Learning in Access Control
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Access Control 
System

access 
request permit

user resource

• Obviates the need for related processes
• Attribute Engineering and Assignments
• Policy Engineering

Rules + 
Attributes

Deep Learning Based Access Control 
(DLBAC)



Policy Engineering in Classical 
Approaches vs. DLBAC
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A Candidate DLBAC Model : 
DLBACα
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ResNet
Network

Trained ResNet

Training dataTraining dataAuthorization Tuple



Authorization Tuple and Dataset 
in DLBACα
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User metadata values Resource metadata values Access to operations

rank team project join date
developer dev projA … Nov 2012

type team project size
source dev projA … medium

A dataset for DLBACα is the collection of  such authorization tuples (samples)

User: Alice

Resource: projectA

developer dev projA … Nov 2012

Operations: op1, op2, op3, op4

<Alice, projectA, {op1, op3}>

User/ Resource metadata

source dev projA … medium 1 0 1 0

Authorization Tuple:



Dataset Generation
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1. Xu et al. 2014. "Mining attribute-based access control policies." IEEE TDSC.

t-SNE plot of  a synthetic dataset

Each dot represents an authorization tuple

Each color indicates a unique combination of  
access operations

The position of  a tuple is based on both user and 
resource metadata values

Two tuples are closed to each other, which 
indicates they have similar user-resource 
metadata values

multiple tuples of the same color indicate they 
have the same access

Generate a synthetic dataset using Xu et al. [1]

<Alice, projectA, {op1, op3}>



Real-world Systems Are Complex !
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https://www.kaggle.com/c/amazon-employee-access-challenge/

A dataset representing Amazon access control system



List of  Datasets
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Preparing Training Data for 
DLBACα
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We consider the data in our datasets are categorical



Decision Making Process in 
DLBACα
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Permit decision is made 
comparing the output 

probability with a threshold



Evaluation Methodology
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• ResNet (DLBACα-R)
• DenseNet (DLBACα-D)
• Xception (DLBACα-X)

Multiple instances of  
DLBACα

• SVM
• Random Forest (RF)
• Multilayer Perceptron (MLP)

Classical ML Algorithms

• XuStoller [1]
• Rhapsody [2]
• EPDE-ML [3]

State-of-the-art policy 
mining and ML-based 

techniques

[1] Xu et al. 2014. "Mining attribute-based access control policies." IEEE TDSC
[2] Cotrini et al. 2018. Mining ABAC rules from sparse logs. In IEEE Euro S&P.
[3] Liu et al. 2021.  Efficient Access Control Permission Decision Engine Based on Machine Learning. Security & Communication Networks. 



Evaluation Metrics
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A higher F1 score: better generalization 

A higher TPR: accurate and efficient in granting 
access 

A lower FPR: efficient in denying access

F1, 
TPR

FPR

80% samples for the training, and 20% testing 

Under-Provision vs. Over-Provision



Comparison with ML Algorithms
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DLBACα instances are more effective and accurate than classical ML 
approaches for making accurate access decisions



Comparison with Policy Mining 
Algorithms
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A DLBACα can make more accurate access control decisions and generalize 
better



Comparison with Policy Mining 
Algorithms (cont’d)
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A DLBACα can balance both permitting desired accesses and denying unwanted 
accesses

handling desired accesses handling unwanted accesses



• Propose two approaches
• Integrated Gradients
• Knowledge Transferring

Understanding DLBAC Decisions
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Why does Bob’s ‘op2’ access been denied 
for projectB resource?

Which metadata are important/ influential 
for this decision?

Bob

DLBACα

projectBop2

deny

A sample access request



Integrated Gradients
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Integrated 
Gradients

Bob’s metadata

DLBACα

deny for op2

projectB’s metadata

Local Interpretation



Integrated Gradients
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Integrated 
Gradients

DLBACα

projectB’s metadata

Bob’s metadata

deny for op2

Global Interpretation



Application of  Integrated Gradient-
based Understanding
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• Strengthen the effect of  “influential metadata”
• Can be utilized in future access modification
doesn’t establish the relationship among metadata



• Rule: local interpretation
• DT: global interpretation

Knowledge Transferring
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approximately understand the 
decision in the form of  

traditional rules



• DLBAC Administration

• DLBAC in Tandem

• Adversarial Attacks from Access Control Perspectives

• Bias and Fairness 

Future Research Directions
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https://github.com/dlbac/DlbacAlpha

DLBAC Source code and datasets URL:
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Backup



Decision Making in Classical 
Approaches vs. DLBAC
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A Candidate DLBAC Model : 
DLBACα
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ResNet Network

Trained ResNet

Training dataTraining dataAuthorization Tuple

• ResNet dominates in different deep learning applications
• Reduces parameters and faster training
• Reducing the effect of  vanishing gradient problem through identify layers

reluweight layer weight layer +
relu

identity layer

How about Authorization Tuples?



Network Architectures
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ResNet, DenseNet

For dataset 1-4: ResNet8
For dataset 5-10: ResNet50



Dataset Generation
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Create Users and assign 
values to all metadata

Proposed by Xu et al. , 
Mining attribute-based 
access control policies, 

TDSC’2014

Create a set of  ABAC Rules based on User and 
Resource metadata

A set of  user 
metadata (8)

A set of  resource 
metadata (8)

A set of  operations 
(4)

Create Tuple based on User-Resource metadata and the Rules, 
and add to the dataset

for each Rule

1

2

3

4

Create Resources and assign 
values to all metadata



Dataset Generation
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Create Users and assign 
values to all metadata

Create a set of  ABAC Rules based on User-Resource metadata; 
keep “hidden metadata” invisible to the Rules

A set of  user 
metadata

A set of  resource 
metadata A set of  operations

Create Authorization Tuple based on User-Resource metadata 
and the Rules, and add to the dataset

for each Rule

1

3

4

5

Create Resources and assign 
values to all metadata

2 Hide a portion of  metadata



Dataset Generation
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A dataset with 1000 users and 639 
resources, 3 hidden user/resource 

metadata.

There are tuples of  same color those are easily 
distinguishable

Mixes authorization tuples of  other colors

Metadata values are assigned based on a very 
sparse distribution

We determine a fixed set of  values for each 
metadata



Dataset Generation
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A dataset with 800 users and 665 resources, 3 
hidden metadata, fixed set of  metadata 

values.
A real-world dataset from Amazon



Characteristics of  AmazonKaggle
and AmazonUCI Datasets
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Highly imbalanced !

Amazon Kaggle Dataset Amazon UCI Dataset



Performance Comparison with 
Policy Mining Algorithms
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A deep learning based approach can properly balance both over-provision 
and under-provision



FPR Performance 
Improvement in DLBACα
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Decision Tree Generated 
from KT in DLBACα
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• Propose DLBAC framework as an automated access control system
• Experiment and evaluate the performance of  DLBAC prototype 

using both synthetic and real-world access control data
• DLBAC Performance:

• Make more accurate access control decisions and generalize better
• Properly balance both permitting desired accesses and denying unwanted 

accesses

• Propose two methods for understanding DLBAC decisions in 
human terms

Summary
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