Classifying and Comparing Attribute-Based and
Relationship-Based Access Control

Tahmina Ahmed
Univ. of Texas at San Antonio

gfk367@my.utsa.edu

ABSTRACT

Attribute-based access control (ABAC) expresses authoriza-
tion policy via attributes while relationship-based access
control (ReBAC) does so via relationships. While ABAC
concepts have been around for a long time, ReBAC is rela-
tively recent emerging with its essential application in online
social networks. Even as ABAC and ReBAC continue to
evolve, there are conflicting claims in the literature regard-
ing their comparison. It has been argued that ABAC can
subsume ReBAC since attributes can encode relationships.
Conversely there are claims that the multilevel (or indirect)
relations of ReBAC bring fundamentally new capabilities.
So far there is no rigorous comparative study of ABAC vis
a vis ReBAC.

This paper presents a comparative analysis of ABAC and
ReBAC, and shows how various ReBAC features can be re-
alized with different types of ABAC. We first identify sev-
eral attribute types such as entity/non-entity and structured
attributes that significantly influence ABAC or ReBAC ex-
pressiveness. We then develop a family of ReBAC models
and a separate family of ABAC models based on the identi-
fied attribute types, with the goal of comparing the expres-
sive power of these two model families. Further, we identify
different dynamics of the models that are crucial for model
comparison. We also consider different solutions for repre-
senting multilevel relationships with attributes. Finally, the
ABAC and ReBAC model families are compared in terms of
relative expressiveness and performance implications.

Keywords
Access Control; ABAC; ReBAC; Attribute; Relationship

1. INTRODUCTION & MOTIVATION

The concept of using attributes for access control has
been around for many years, e.g., the X.500 standard [16]
was an early effort for managing object information with
attributes. Attribute-based access control (ABAC) is con-
sidered one of the most generalized forms of access control

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CODASPY’17, March 22-24, 2017, Scottsdale, AZ, USA
© 2017 ACM. ISBN 978-1-4503-4523-1/17/03. .. $15.00
DOL: http://dx.doi.org/10.1145/3029806.3029828

Ravi Sandhu
Univ. of Texas at San Antonio

ravi.sandhu@utsa.edu

59

Jaehong Park
Univ. of Alabama in Huntsville

jae.park@uah.edu

as it can capture the salient features of discretionary access
control (DAC), mandatory access control (MAC) and role-
based access control (RBAC) using appropriate attributes
such as access control lists, security labels and roles respec-
tively [35], and bring in additional elements such as location
and time. ABAC enables more precise access control as it
can consider a higher number of discrete inputs into an ac-
cess control decision [33]. Different ABAC models with rich
policy languages and sophisticated features have been pro-
posed [34, 35, 36, 40, 48, 51].

Meanwhile, in recent years, various online social network
(OSN) applications such as Facebook, Twitter and LinkedIn
have become widely used. In OSNs, authorization for users’
access to specific content is typically based on the interper-
sonal relationships between the accessing user and content
owner. OSN ReBAC models mostly use user-to-user rela-
tionships [12, 15, 21, 22, 29, 30] while user-to-resource and
resource-to-resource relationships have also been considered
in some cases [13, 20]. Several access control models have
been proposed for OSN ReBAC considering both single and
multiple relationship types for authorization policy specifi-
cation [13, 20, 21, 29]. Subsequently, additional models have
been proposed to extend and generalize these OSN ReBAC
models so that they can be applicable to computing systems
beyond OSNs [7, 24, 28, 43].

ABAC has been around for a long time and can be viewed
as a generalization, unification and extension of earlier ac-
cess control concepts including discretionary, mandatory and
role-based access control. ReBAC is relatively recent, with
its initial motivation stemming from its essential applica-
tion in online social networks but now generally regarded as
having broader applicability. Both have considerable appli-
cations in industry, and are anticipated to continue being
important for the foreseeable future.

From an ABAC perspective it is often claimed that at-
tributes can express relationships [51], and indeed this is
trivial for direct relationships such as a friend relation be-
tween two users [24]. However, the use of indirect relations,
also called multilevel or composite relations, is fundamental
to ReBAC [12, 24]; a familiar example being friend of friend.
It is hard to see how ABAC can express long chains of rela-
tionships [24]. It has been suggested that ReBAC emerged
to overcome this shortcoming of attributes [12].

Any attempt to compare ABAC and ReBAC is made ad-
ditionally difficult by the fact that there are no consensus
models for either one that are widely accepted. Rather both
arenas exhibit a proliferation of models which are continuing
to evolve as different aspects of each arena are explored.

In this paper we develop a rigorous comparison between
ABAC and ReBAC. We do this by classifying ABAC and
ReBAC models based on salient aspects that are relevant
to their comparison. The main purpose of these classifica-
tions is to enable comparison. The classifications are not
intended to be a complete characterization of ABAC mod-
els or ReBAC models. They are only a partial classification
but sufficient to draw out the essential relationships between
ABAC and ReBAC.

The rest of the paper is organized as follows. Section 2
provides appropriate background on ABAC and ReBAC for
our purpose. Section 3 presents attribute types, character-
istics, definitions and some assumptions on attributes. Sec-
tions 4 and 5 provide the classification of ReBAC and ABAC
models respectively with structural variations and dynam-
ics, giving us a family of ReBAC models and a separate
family of ABAC models. Section 6 identifies two solutions
for expressing multilevel relations with attributes. Section 7
compares the models in the ABAC and ReBAC families.
Section 8 concludes the paper.

2. BACKGROUND

This section provides an overview of ABAC and ReBAC
models, relevant to our purpose.

2.1 ReBAC Models

As OSNs have gained popularity, several ReBAC mod-
els have been introduced to capture various authorization
policies. More recently, researchers have proposed extended
ReBAC models applicable to other computing systems be-
yond OSNs. In this subsection, we review these two types
of ReBAC models.

2.1.1 ReBAC for Online Social Networks

Fong et al. [29] presented a Facebook-like access control
model, featuring four types of policies that cover four dif-
ferent aspects of access in OSNs. The four policies include
user search, traversal of the social graph, communication
between users and normal access to objects owned by users.
The policy vocabulary supports expressing some topology-
based properties, such as k common friends and k clique.
The model uses single relationship types between users.

Carminati et al. [15] proposed an access control model
which considers type, depth and trust metrics of user-to-
user relationship between accessing user and target user. It
also considers multiple types of relationships between users.
In [13], Carminati et al. proposed a model which utilizes se-
mantic web technology. This model considers multiple type
relationships between users and resources.

Cheng et al. [21] proposed a user-to-user relationship
based access control model with a regular expression-based
policy specification language. Social graph of UURAC con-
tains user-to-user relationships only. The connection be-
tween resources and users are referred to as controlling user
(e.g., owner, tagged user). URRAC model [20] extends UU-
RAC to include user-to-resource and resource-to-resource re-
lations. In both models, multiple types of relationships are
supported, and policy language can specify relationship path
patterns between accessing user and target resource or user.

Subsequently Cheng et al. [22] defined an attribute-aware
ReBAC model to express the contextual nature of relation-
ships and users. The authors have extended their UURAC
model to incorporate node attributes and relationship at-

60

tributes. They further introduced the concept of a graph
attribute such as count which is associated with the rela-
tionship graph other than with a particular node or edge.

Bennett et al. [9] proposed a ReBAC model that consid-
ers multiple types of relationships between users and demon-
strates how conflicts and potential misconfigurations can be
automatically detected using the Alloy Analyzer [1]. Pang
et al. [39] proposed an access control scheme for OSN where
they have taken hybrid logic approach to use public infor-
mation along with relationships.

2.1.2 ReBAC Beyond Online Social Environment

Fong et al. [28] proposed a formal ReBAC model intend-
ing to widen the application of ReBAC beyond social com-
puting. The model considers multiple relationship types be-
tween users with directional relationships and access con-
texts, and uses a modal logic language for policy specifica-
tion. The connection between users and resources is main-
tained through a system function called ‘resource owner.’
Fong et al. [30] extended the policy language of [28] and
characterized its expressiveness. Subsequently they defined
hybrid logic for ReBAC which can express complex relation-
ship requirements [12].

Crampton et al. [24] proposed the RPPM model that
can be applied to general computing system. The model
considers users, resources and other logical and physical en-
tities (i.e., files, folders, organizations, etc.) as nodes of a
labeled relationship graph. Policies are defined using path
conditions. The model allows multiple types of relationship
between different entities. The model uses a two-stage de-
cision process: it first computes the path between requester
and the requested resource and tries to find matches from a
list of policies, and then it determines whether those poli-
cies are authorized. Rizvi et al. [43] demonstrated an imple-
mentation of RPPM model in an open-source medical record
system. Subsequently they extended their model to be in-
teroperable with RBAC [42]. Recently Crampton et al. [26]
proposed a framework for inter-operating multiple ReBAC
model instances by initiating request in one system to target
resource in a second system.

Most ReBAC models consider user-to-user and possibly
user-to-resource relationships. Very few of consider resource-
to-resource relationships. Models that consider resource-to-
resource relationships typically do so through users. Re-
cently Ahmed et al. [7] proposed a ReBAC model which
considers object-to-object relationships without intervening
users, and demonstrated an implementation of the model in
the OpenStack’s [3] object storage, Swift [6].

All the models reviewed so far are operational models. Re-
cently a number of ReBAC administrative models have also
been proposed for general purpose ReBAC [19, 25, 49] which
consider graph dynamics such as adding/deleting nodes (en-
tities) and or edges (relationships). In particular, [19] intro-
duces the concept of dependent edge in ReBAC and consid-
ering dependencies during edge deletion.

2.2 ABAC Models

ABAC has been studied for a long time and many different
formal models have been proposed [34, 35, 36, 40, 48, 51].
Several of these are application specific or limited to a spe-
cific domain. ABAC for web services [51] proposed an ABAC
model for web service authorization, while [48] defined an
ABAC model for semantic web technology. UCON [40]

was proposed to capture authorization continuity and at-
tribute mutability. [36] defines an ABAC model for service
oriented architecture considering requester’s privacy pref-
erence. ABAC, [35] is proposed to configure DAC, MAC
and RBAC, while ABACj [34] extends ABAC, to incor-
porate different RBAC extensions. NIST ABAC [33] pro-
vides a detail explanation of ABAC concepts and consid-
erations for deployment of enterprise ABAC capabilities.
XACML [2] proposes a standardized mechanism to specify
ABAC authorization policy, request and policy evaluation.
Attribute-based encryption is supports fine-grained sharing
of encrypted data [11, 17, 37, 38, 41, 44].

3. ATTRIBUTES

In our comparison and classification for ReBAC and ABAC
models, attributes play an important role. In this section
we identify and discuss various types of attributes based on
several different criteria. Some of these attribute types are
crucial for ABAC and ReBAC comparison as their existence
in a model strongly influences its expressiveness and perfor-
mance. Others are not quite significant for our comparison
purpose. In the next two sections, we use these attribute
types to classify ReBAC and ABAC models to facilitate
comparison between them.

3.1 Attribute Types

In this subsection we present several attribute types clas-
sified using five different criteria. Specifically the criteria are
based on (1) how attribute value(s) are structured, (2) what
the attribute scope is, (3) boundedness of attribute range,
(4) attribute association and (5) attribute mutability.

Depending upon the type of attribute value, there can be
three types of attributes.

e Atomic-valued or Single-valued Attribute: If an
attribute has at most one value associated with it at
any one point in time, it is called atomic-valued or
single-valued [4, 35] attribute. For example, gender
attribute can have only a single value at a given time.

e Set-valued or Multi-valued Attribute: If an at-
tribute can have more than one value associated with
it at any one point in time, it is called set-valued or
multi-valued attribute. For example, a person can have
more than one phone number [4, 35].

e Structured Attribute: A structured attribute has
a number of single or multi-valued sub-attributes [5].
For example, a Person-Info attribute can have sub-
attributes of name, age and phoneNumber.

Depending upon the scope of the attribute, attributes can
be either Entity Attribute or Non-entity Attribute.

e Entity Attribute: An entity is a thing which can
be distinctly identified. A specific person, company an
object or event is an example of entity [18]. Entity
attribute takes an entity as input and returns another
entity, a set of entities, or a structured tuple containing
at least one entity. For example, an attribute value of
parent of a person, owner of an object or friend of a
person is another person (entity).

e Non-entity Attribute: Attributes whose range is
not defined on the set of entities in the system are

61

called non-entity attributes. For example, user’s age
or gender does not include another entity as its value.
The concept of non-entity attribute depends upon what
is defined as entities in the system. For example, sup-
pose roles or organizations are entities in a system,
and the range of attributes “assigned-roles” and “work-
sAt” are a set of roles and a set of organizations, re-
spectively. In that case both attributes are entity at-
tributes. If roles and organizations are not defined as
entities in the system, these are non-entity attributes.

Depending upon whether the range of an attribute is boun-
ded or not, attributes can be either finite domain attribute
or infinite domain attribute.

e Finite Domain Attribute: Range of this attribute
type is a finite set of attribute value (e.g., gender, role).

e Infinite Domain Attribute: Range of this attribute
type is a countably infinite set of attribute values (e.g,
time). Entity attributes where new entities can be
created without bound are infinite domain attributes.

Considering the association of an attribute we can have
two types of attributes [33, 34, 51]

e Contextual or Environmental Attribute: These
attributes are independent and not associated with any
specific users, subjects, objects or entities in the sys-
tem. They are global and managed by the system and
associated with system. For example, current-time
is system-wide information and not associated with a
specific entity [34]. Other examples include system
status, network security level, and so on [33, 51].

e Meta Attribute: Meta attributes are attributes of an
attribute. Unlike regular attributes that are associated
with entities, meta attributes are associated with other
attributes. For example a user is associated with a role
and the role is associated with a task. Here, the role
is an attribute, and the task is a meta attribute [34].

Considering the mutability of attributes there are two
types of attribute [40].

e Mutable Attribute: Mutable attributes are changed
as a consequence or side effect of users’ access or ac-
tivity.

e Immutable Attribute: Immutable attributes can be
changed only by direct administrative activity of a user
or administrator.

The notions of entity/non-entity, finite/infinite domain,
atomic-valued/set-valued/structured attributes are impor-
tant for ReBAC-ABAC comparison as they are key attribute
types that will strongly influence expressibility of relation-
ships between entities or configurability of relationship graph.

Unlike these key attribute types, contextual /environmental
attribute is a special type of attribute, not related to enti-
ties. Meta attribute defines relationship between attributes.
Mutability is special feature specified in usage control for
consumable authorization. These type of attributes are not
relevant to ReBAC-ABAC comparisons with respect to ex-
pressiveness or performance. In the next two subsections,
we will further discuss the definitions of these key attribute
types and some assumptions for the rest of the paper.

3.2 Attribute Definitions for ReBAC and ABAC
Comparison

For our ReBAC and ABAC comparison, we consider en-
tity and non-entity, finite and infinite domain, atomic-valued,
set-valued and structured attributes. In this subsection, we
define these key attribute types (except for single-valued,
multi-valued and structured attributes which have been ad-
equately defined above).

DEFINITION 1. Entity Attribute: An attribute att; is an
entity attribute if

i. range of att; is a set of entities (i.e. att;: E; — Ey),

ii. range of att; is a powerset of entities (i.e. att;: Ej —
25) or

att; is a structured attribute with at least one sub-
attribute being an entity attribute.

For example, if user is defined as an entity in the system
and best-friend is an atomic or set-valued attribute on user
then best-friend is an entity attribute. At a specific time
each entity set is fixed but can change over time if the system
allows entity changes (i.e., creation or deletion of entities.).
If att; is a structured attribute and at least one sub-attribute
of att; is an entity attribute then att; is also an entity at-
tribute. For example let’s say ‘roleInfo(roles,assignedby)’ is
a structured attribute which has ‘roles’ and ‘assignedby’ as
sub-attributes. Here ‘roles’ is non-entity attribute whose
range is set of roles however ‘assignedby’ is an entity at-
tribute whose range is set of users. So ‘roleInfo’ is an entity
attribute.

DEFINITION 2. Non-Entity Attribute: An attribute att; is
a non-entity attribute if it is not an entity attribute.

Examples are phoneNumber and age. Note that if att; is a
structured attribute then every sub-attribute of att; must be
a non-entity attribute for att; to be a non-entity attribute.

DEFINITION 3. Finite Domain Attribute: An attribute do-
main is finite if the range of the attribute doesn’t grow over
time.

For example, ‘gender’ is a finite domain attribute. Also,
‘roles’ and ‘security clearance’ are finite domain attributes
if the system does not allow new roles or security clearances
to be added over time.

DEFINITION 4. Infinite Domain Attribute: An attribute
domain is infinite if the range of the attribute grows over
time.

For example, in an OSN, if a new user can be created so he
or she can be a friend of other users, the friend attribute is
an infinite domain attribute as the range of friend is changed
over time.

Finally, we introduce the familiar concept of attribute
function composition [8, 31].

DEFINITION 5. Attribute Function Composition: Nesting
two or more attribute functions to form a single new function
is known as attribute function composition. The composition
of two attribute functions f : X — Y and g : Y — Z yields
a function which maps © € X to g(f(z)) € Z. Composition is
denoted as g o f, where g is a function whose domain includes
the range (or codomain) of f. We write (g of)(z)=g(f(x)).

62

A function h(z) = fn(......f2(f1(x))....) which is the com-
position of n functions (same or different), say fi to fn, is
also said to be a composite function. Intuitively, composing
two or more functions is a chaining process in which the out-
put of the first function becomes the input of the second one,
and the output of the (k-1)*® function becomes the input of
the k' function.

3.3 Assumptions

For ease of our comparison, all the ReBAC and ABAC
models considered in this paper comply with the following
assumptions.

1. All non-entity attributes are finite domain. Attributes
such as role, department, title, gender, etc., typically
admit only a small number of finite values by their
intrinsic nature. Attributes such as location can be
ever finer grained, so in principle could be regarded
as infinite domain but a large finite domain should be
adequate. Time being modeled as a finite domain has
similar issue. For our purpose a finite domain assump-
tion is reasonable.

2. FEach entity has a countably infinite set for all possi-
ble entities of that type. For example if users, subjects
and objects are the only entities defined in a partic-
ular system then the countably infinite sets for users,
subjects and objects are U, S and O. The existing set
of users, subjects and objects at any moment are U, S,
O respectively where U, S, O are finite sets, and U C
U,SCcSand O C O.

3. Identity of an entity is not reusable. If an entity gets
deleted, its identity cannot be used for another entity
that is created after the deletion.

4. All entity attribute functions are partial functions de-
fined on existing entities only. For example let U is the
countably infinite set of all possible users, and U the
finite set of current users (U C U). An entity attribute
function f : U — Y is defined only for elements of U
and is undefined for elements in U/-U. We understand
f: U — Y for an entity set U to mean that U will
change with time but is finite at any moment. Note
that if the system allows creation of entities then the
entity attributes have infinite or unbounded domain.
If the system doesn’t allow any entity creation or dele-
tion then the entity attributes form a finite domain.

5. For attribute function composition inner attribute func-
tions should always be entity attributes. We require
that a non-entity attribute can only occur as the out-
ermost function in a composition. So for a composition
fr(oiiof2 (f1())....), for 1 <i< n-1, f; must be an en-
tity attribute function, while f,, can be either entity or
non-entity attribute.

6. For any set valued attribute function f defined on
set X, we understand f(X) = U,.cx f(zi). So an
attribute function composition friend(friend(“Alice”))
means: Uu,iefriend(“Alice”) friend(ui)

7. We understand that structured attribute is a multival-
ued tuple of atomic and or set-valued attributes. So it
is more expressive than atomic or set valued attributes.

ReBAC,,. 5 .
+Structured Attribute Node Dynamic
ReBAC O Relationship Dynamic
BNE
+Node Attributs
/ +Edge Amibuc;\
ReBACB Re BACBE QO Attribute Dynamic
+Node Att%ute +Edge Attribute

ReBAC, ‘
NodeType O Static
EdgeType

(a) ReBAC Structural Models (b) ReBAC Dynamics

Figure 1: ReBAC Framework

Structured attribute can express atomic or set-valued
attribute by having a single sub-attribute.

4. ReBAC CLASSIFICATION

In this section we develop a ReBAC framework including
a family of structural models. The framework is illustrated
in Figure 1 and consists of two components. Specifically,
Figure 1(a) shows a family of structural models while Fig-
ure 1(b) shows the different types of dynamics found in Re-
BAC models.

The goal of this framework is to build a classification
of ReBAC models that facilitates comparison with ABAC
models. While there are many sophisticated proposals on
ReBAC policy expression mechanisms such as incoming ver-
sus outgoing policy, policy individualization, modal/hybrid/
first order/propositional logic based policies, this framework
does not focus on policy specification. Rather it is inde-
pendent of policy languages and focusses on structural and
dynamic aspects of ReBAC.

Figure 1(a) depicts ReBAC models with increasing capa-
bilities as we go upwards in this hierarchy. In ReBAC, en-
tities are represented as nodes in a relationship graph, and
relations as entity to entity edges. We use the terms “node”
and “entity” as synonyms, and likewise for the terms “edge”
and “relation”. The base model ReBACg allows for mul-
tiple node types (e.g., user, resource project, organization,
group, etc.) and multiple directed or undirected edge types
(e.g., friend, coworker, spouse, parent, etc.) Figure 2 shows
an example relationship graph [24] expressible in ReBACsg.
Most of the relationship graphs permitted in existing Re-
BAC models, including [20, 21, 24, 28, 29], can be expresed
with the capabilities of ReBACg.

ReBACgN adds node attributes to ReBACg. Node at-
tributes enable consideration of entity attributes along with
relationships in authorization policies. For example, in a
professional social network we may have a policy that an
employee of an organization o; can connect to a recruiter
of organization oz only if the recruiter is not already con-
nected to any employees of 01. In this case, the organiza-
tion attribute of users (nodes) needs to be considered along
with professional relationships. Another example is an on-

63

Participant-of Resource-for

Supervises
FileMember-of

Figure 2: An Example of a Relationship Graph Expressible in
ReBACp [24]

“—Age =25
— Gender=F

—Age =30

‘ —Age =28
—Gender =M i

—Gender=F

Figure 3: An Example of Node Attributes in Relationship Graph
Expressible in ReBACp N

line dating site where a single male user wants to connect a
single female who has less than 4" degree connection with
him through only his female friends and is at least two years
younger than him. Here we need to consider gender, age and
relationship depth along with relationships. Such attribute-
aware ReBAC is discussed in greater detail in [22]. Figure 3
shows an example relationship graph with node attributes.

ReBACgg extends ReBACg with edge attributes. For ex-
ample, some ReBAC models use trust value of relationships
to show the connection strength between users [14, 15]. In
general, when a ReBAC authorization policy needs to con-
sider some properties of relationships beyond relationship
types, the relationship graph needs edge attributes to store
and express those criteria, such as proposed in [22]. Fig-
ure 4 provides an example of edge attributes in relationship
graph. Here “Bob” is assigned to supervise “Project:” and
“assignedBy” is an edge attribute for relationship type “su-
pervises” which specifies who has assigned “Bob” as supervi-
sor. Similarly “tenant;” has “tenantTrust” relationship with
“tenanty” and here “trustValue” specifies the strength of how
much “tenanto” trusts “tenanty”.

ReBACgnNE brings together the two separately motivated
extensions of ReBACgpn and ReBACgg, such as in [22]. Fol-
lowing common practice, node and edge attributes in these
models are atomic or set-valued attributes.

Recently Cheng et al. [19] proposed a ReBAC administra-
tive model where they introduced the concept of dependent
edge in relationship graph. A dependent edge example of
MT-RBAC [19] is shown in Figure 5. Here user u owned by
tenant x (with relationship type UO) can be “assigned to” a
role r (with relation type UA) which is “owned by” tenant
y (with relationship type RO) only if tenant y trusts tenant
x (with relationship type TT). This particular tenant-trust
relationship needs to be considered during role assignment
or any time the trust-relationship between x and y changes.
If the tenant’s trust relationship is revoked at some point
of time, the role assignment needs to be revoked as well.
In order to configure this scenario using attributes, we need
to store a paired set of the role values and the required
trust relationship. This additional information allows the

Bob

@ supervises

%assignedBy

@ tenantTrust @

%trustVaIue

Figure 4: An Example of Edge Attributes in Relationship Graph
Expressible in ReBACpg

Figure 5:

Example of Dependent Edge Expressible in
ReBACpNEs [19]

model to consider cascading revocation [10, 27, 32] of de-
pendent edges. This edge dependency in a graph cannot be
captured using edge types or atomic or set valued edge at-
tributes. To be precise, we will need structured attributes
which can store multiple relevant attributes as a single at-
tribute in a certain structure. For the above scenario, the
structured attribute can store information of those edges
that are required to create another edge. For instance, “de-
pendsOn” attribute of relationship type UA can store a tuple
of three sub-attributes: (sourceNode, targetNode, relation-
shipType), hence, (y,x,TT) for the example above. Con-
sider another example where “securityLabel” is an object
attribute. If a graph needs to store the information who has
assigned a particular “securityLabel” to an object, we can
use a structured attribute where sub-attributes are (label,
assignedBy). If relationship graph only considers atomic-
/set-valued attributes it won’t be able to store this infor-
mation. Our final model ReBACgnEs considers structured
attributes for both nodes and edges. This completes our
discussion of Figure 1(a).

Considering the changes or dynamism in ReBAC there
are 4 dynamics shown in Figure 1(b). The dynamics are as
follows.

e Static: In a static ReBAC model, attribute values,
nodes and edges of the graph remain unchanged. A
static graph is used for access only. Actions such as
add or delete relationship between two entities (add or
delete edges in the relationship graph), add or delete
entities (add or delete nodes in relationship graph are
not allowed) and change of attribute values are not
allowed.

e Attribute Dynamic: ReBAC that allows changes
of node attribute and edge attribute values are at-
tribute dynamic ReBAC. For example, consider Hobby
is a node attribute of users in a social network. Sup-
pose Hobby(“Alice”)={gardening, painting}. Recently
“Alice” gets interested to do “knitting” and wants to
change her hobby in the social network site. If the sys-

64

ABAC,

Entity and Non Entity Attribute
Structured Attribute

\

ABAC,

Entity Attribute

QO Entity Changes

N

ABAC,,

Entity and
Non Entity Attribute

Structured Attribute O Attribute Value
/ Changes
ABAC, ABAC,
Non Entity Attribute Entity Attribute Q static

(a) ABAC Structural Models (b) ABAC Dynamics

Figure 6: ABAC Framework

tem allows her to update her hobby as Hobby (“Alice”)
= {gardening, painting, knitting} then it is an at-
tribute dynamic ReBAC.

e Relationship Dynamic: ReBAC that allows changes
of relationships between entities (add or delete edges in
the relationship graph) is called relationship dynamic.
Examples include establishing a new relationship be-
tween two entities, or deleting an existing relation-
ship between two entities. We consider relationship
dynamic includes attribute dynamic for the ReBAC
models which have edge attributes, as adding new re-
lationship needs to assign attribute values of that edge.

e Node Dynamic: ReBAC that allows changes of enti-
ties is called as node dynamic ReBAC. Some examples
are creating or deleting a user or resource in a rela-
tionship graph. Here we consider node creation implies
possible relationship establishment and attribute value
assignments when ReBAC models have attributes for
nodes and or edges. Hence, node dynamic includes
attribute dynamic (for some cases) and relationship
dynamic.

Each ReBAC dynamic can be combined with any of the
ReBAC structural models excluding ReBACg. ReBACs
can only have static, relationship dynamic and node dy-
namic. However ReBACp cannot have attribute dynamic as
it doesn’t have any attributes. Thus, attribute dynamism is
irrelevant for ReBACsg.

S. ABAC CLASSIFICATION

In this section, we develop a set of structural models for
ABAC with capabilities to configure the ReBAC models de-
fined in Section 4. We define the ABAC models by con-
sidering attribute types that are necessary to capture rela-
tionships and relationship graphs as shown in Figure 6(a).
Specifically, we consider entity/non-entity, finite/infinite do-
main, and atomic-valued/set-valued/structured attributes.
As shown in Figure 6(b), we also identify the dynamics of
ABAC models. While this is not the most general frame-
work for ABAC, it facilitates comparative analysis of relative
expressiveness of ABAC and ReBAC.

Figure 6(a) depicts ABAC models with increasing capabil-
ities as we go upwards in this hierarchy. ABACx considers
non-entity attribute only. According to our assumption 5 in
Section 3, non-entity attribute cannot configure relationship
composition, hence ABACy is incomparable to ReBACg.
ABACK can only have attributes such as name, gender, lo-
cation etc.

ABACHk considers entity attributes only and can configure
ReBACg model which has multiple relationship types and
multiple entity types. Most of the ReBAC models fall under
this category [20, 21, 24, 28, 29]. For example, consider the
system graph in Figure 2 [24]. To configure it with ABACg
we need the following.

e entity types = {user, project, file, directory}

e user attributes = {Participant-of, Supervises},
file attributes ={Resource-for, FileMember-of},
project attributes = {},
directory attributes ={DirectoryMember-of}.

ABACKg considers both entity and non-entity attributes
which is similar to considering node attributes along with
multiple relationship types and multiple entity types as in
ReBACgn. For example, in Figure 2, suppose the user has
attributes {name, gender, age} and files have attributes {se-
curityLabel, size}. Using ABACxEg, we can configure these
node attributes with non-entity attributes.

ABACEs considers structured entity attributes which can
configure relationships and edge attributes of relationship
graph. Figure 4 shows some simple edge attributes in rela-
tionship graphs. To configure the relationship graph “Bob
supervises Project:” in ABAC, we need to have entity at-
tribute “supervises” for user so we can express supervises
(Bob)= {“Project1”}. In addition, to express the edge at-
tribute “assignedBy”, we will need a structured attribute of
user “assignedBy”, so we can express assignedBy(Bob) =
(“Project1”,“supervises”, “Alice”). Here the sub-attributes
for “assignedBy” are (targetNode, relationshipType, assigned-
ByUser). The same is true for the tenantTrust relationship
between tenant; and tenants. Here we can configure the
trustValue with structured attribute trustValue (tenants)
= (“tenant,”, ‘tenantTrust’, 0.5). Consider the example in
Figure 5 where the edge (u, r, UA) is dependent on edge
(v, x, TT) and this dependency can be represented using
a structured attribute for edge. To configure this struc-
tured edge attribute in ABAC, we need to have dependent-
Edge(u) = (“07,“UA”, {(y,x,TT)}). ABACgs is comparable
to ReBACgE.

ABACnNEgs considers entity and non-entity structured at-
tributes which can configure relationships, node attributes

and edge attributes. ABACngs is comparable to ReBACgNEs.-

This completes our discussion of Figure 6(a).

There are three types of ABAC in terms of possible changes
in ABAC Models which we call ABAC dynamics. Figure 6(b)
shows the dynamics as follows.

e Static ABAC: Nothing gets changed. In this type of
ABAC, everything is static. Change of attribute val-
ues (i.e., assigning new values to attributes) or change
of entities (i.e., adding or deleting entities) are not al-
lowed.

e Attribute Value Changes: This ABAC allows changes

of attribute values (assigning new values to attributes).

65

Figure 8: A Simple Relationship Graph for Example 2

e Entity Changes: This ABAC allows new entity cre-

ation and/or deletion. We understand that entity changes

also includes attribute value changes as it needs assign-
ing new values to attributes.

Each ABAC models shown in the Figure 6(a) can be com-
bined with any dynamics shown in Figure 6(b).

6. EXPRESSING MULTILEVEL RELATION-
SHIPS WITH ATTRIBUTES

Entity attributes can directly configure one level relation-
ship such as parent, spouse, owner. Only entity attribute
is allowed for attribute function composition. ReBAC is
all about expressing authorization policy with multilevel or
composite relationship (friend o friend, friend o parent etc.).
In this subsection, we propose two methods of composite re-
lationship expression using attributes.

1. Attribute Composition or Chaining: Attribute
chaining is attribute function composition as defined
in Section 3. Traditional ABAC uses direct attribute
value of a user to specify policy. While attribute chain-
ing approach allows to specify a policy through com-
position of attribute function. This approach requires
runtime computation for relationship composition just
like ReBAC.

2. Composite Attribute: In this approach, all possible
or required paths of a relationship graph are captured
as attributes. When an update occurs in the relation-
ship graph, this approach needs to update attributes
of directly and indirectly related entities. Here the
term possible and required is used in the sense that
the maximum possible depth of a graph depends upon
its size while required depth means the limited depth
required to specify authorization policy.

We discuss both concepts with some examples below.

friend

Alice friend

coworker

Carol Bob

Attribute Composition:

friend (“Alice”) = {“Carol}
coworker (“Alice”) = {}

friend (friend(“Alice”)) = { “John”}
coworker(coworker(“Alice”)) = { }
friend (coworker(“Alice”)
coworker (friend(“Alice”)

)={}
) = {"Bob"}

Composite Attribute:

friend (“Alice”) = {“Carol’}

coworker (“Alice”) = {}
friendOfFriend(“Alice”) = { “Carol.John”}
coworkerOfCoworker(“Alice”)) = { }
friendOfCoworker(“Alice”) =
coworkerOfFriend(“Alice”)) = {“Carol.Bob"}

Figure 9: Example of Attribute Composition and Composite
Attribute in a Simple Relationship Graph (Example 3)

Example 1: Consider the relationship graph in Figure 7.
Let’s assume the policy for photo access allows only owner
or owner’s friend can access them.

Attribute Composition or Chaining : To configure
this scenario with attribute composition approach, each user
should have two entity attributes “friend” and “owner” and
the authorization policy would check whether a particular
user is in owner(“photo”) or friend (owner (“photo”)). Accord-
ing to this policy “Carol” and “Alice” can access “photo”, but
“Bob” cannot.

Composite Attribute: In this approach, to express the
relationship graph and policy, ABAC should have user at-
tributes, “friend” and “friendOfFriend”, as well as object
(photo) attributes, “owner”, “friendOfOwner” and “friend Of-
FriendOfOwner”. Here, “friendOfFriend”, “friendOfOwner”
and “friend OfFriendOfOwner” are composite attributes. The
authorization policy would check whether a particular user
is in owner(“photo”) or friendOfOwner(“photo”).

Here, owner(“photo”) = {“Carol”}, friendOfOwner(“photo”)
= {“Alice”}, friendOfFriendOfOwner(“photo”) = {“Bob”},
fri-endOfFriend(“Bob”) = {“Carol”}, friendOfFriend (“Carol”)
= { “Bob”}. If “friend” relationship between “Alice” and
“Bob” is removed, it is necessary to update friend(“Bob”),
friend (“Alice”) and friendOfFriend(“Bob”). This action also

requires indirect updates on friendOfFriend (“Carol”) and friend-

OfFriendOfOwner(“photo”).

Example 2: Consider Figure 8 where “Alice” has friend
“Carol” and “Amy”. “Amy” and “Carol” both have a common
friend “John”. So “John” is Alice’s friend o friend through
“Carol” and “Amy”. Removing the relationship between
“Amy” and “John” shouldn’t remove “John” from “Alice™’s
friendOfFriend list. This means, instead of simply storing
friendOfFriend (“Alice”) = {“John”}, we need to store friend-
OfFriend(“Alice”) = { “Amy.John”, “Carol.John”}. Storing
such path information as an attribute value would ensure
availability of accurate attribute values. As demonstrated
in this example, it is often not sufficient to store only the
end user information as an attribute value in case composite
attributes are used.

Example 3: Consider another example with the simple
relationship graph shown in Figure 9.

Attribute Composition or Chaining: In this approach
we need to have two entity attributes for users, “friend” and

66

O Node Dynamie

---- O Entity - - Infinite
Changes
—_|—— = q
| OReIationshipl
Dynamic
! I
Pl O Attribute Value ~ * * Finite
| Changes
! I
| O Attribute
Dynamic |
L — -
Q static = « = + =« = » QO static = =+« . Finite

ReBAC Dynamics ABAC Dynamics Attribute Domain

Figure 10: Comparison Between ReBAC and ABAC with respect
to Dynamics and Attribute Domain

“coworker”. To express a policy that verifies a composite
relationship such as friend o friend, coworker o friend or
friend o coworker, we can use attribute composition such as
friend (friend (“Alice”))= {“John”}, coworker(friend(“Alice”))
= {Bob}, friend(coworker(“Bob”)) = {“John”}.
Composite Attribute: In this approach, we need to
have “friend”, “coworker”; “friendOfFriend”, “friend OfCowor-
ker”, “coworkerOfFriend” as attributes, so we can express
relationship paths that might be found in policies without
chaining attributes. This approach has maximum depth
limit in expressing relationship based policy dependent on
the attribute configuration. Every entity attributes defined
in this approach should have a fixed relationship depth.
For example “friend” and “coworker” express one level re-
lationships while “friendOfFriend”, “friendOfCoworker” and
“coworkerOfFriend” express two level relationships.

7. COMPARISON: ABAC vs. ReBAC

In this section we compare ReBAC with ABAC, using the
classifications of Sections 4 and 5. We conduct a conceptual
comparison using two metrics: i) dynamics and ii) structural
models. As the goal of this paper is to provide high level
comparison, we do not provide any formally defined models
or policy specifications. In order to use the formal frame-
work of [50] to compare expressive power it is necessary to
give detailed formal specifications of access control models.
This limits comparison results to the very specific models
that have been fully specified. We rather seek an intuitive
but rigorous and insightful comparison between structurally
comparable models.

In this work, we assume only entity attributes can config-
ure relationships and non-entity attributes are finite domain
attributes. We have shown that multilevel relationships can
be configured with either attribute composition or with com-
posite attributes. ReBAC node attributes can be configured
using ABAC atomic or set-valued, and entity or non-entity
attributes. ReBAC edge attributes can be configured using
ABAC structured attributes of entities. From ReBAC point
of view, if ABAC has only non-entity attributes, it means
ReBAC graph structure has disconnected nodes with node
attributes only. If ABAC has the capability to define en-

ReBAC

BNES « _
~
+Structured Attribute "~

T -ABAC,,

+Node Attribute Entity and Non Entity Attribute
+Edge Attribute, Structured Attribute

NN

ReBAC,, eBAC,. ABAC, ABAC,

+Node Attribute +Edge Attribute Entity Attribute
Structyred Attribute

ReBAC

BNE

Entity and
— Non Entity Attribute

ReBAC,

NodeType
EdgeType

ABAC,

Non Entity Attribute Entity Attribute

Figure 11: Equivalence of ReBAC and ABAC Structural Classi-
fication

tity attributes, it can be configured to express relationships.
Structured entity attributes can be configured as atomic or
set-valued edge attributes or structured node attributes in
relationship graph.

7.1 Comparison on Dynamics

Figure 10 shows a three-way alignment of ReBAC and
ABAC dynamics with finite/infinite attribute domains. We
understand this alignment to mean the following. The state-
ment that ABACx is equivalent to ReBACy is to be inter-
preted as given below.

e Static and finite attribute domain ABACx is equiva-
lent to static ReBACy.

e ABACx that allows change of attribute values with fi-
nite domain attribute is equivalent to relationship dy-
namic (which includes attribute dynamic where it is
applicable) ReBACy.

e ABACx that allows entity changes and infinite do-
main entity attribute is equivalent to node dynamic
ReBACy.

This alignment and interpretation allows us to avoid explicit
consideration of all combinations of dynamics and models,
which would be overwhelming. It does impose an obligation
to consider all three levels of dynamics from Figure 10 in
making equivalence claims.

We also have the following general result.

THEOREM 1. Finite domain ABAC cannot configure Re-
BAC that changes entities in the relationship graph (i.e.,
node dynamic ReBAC).

PROOF. (Sketch) Entity changes in ReBAC entail creat-
ing new entities in the system and deleting existing ones.
In order to configure any kind of ReBAC we need entity
attributes in ABAC. Changes of entity from ReBAC re-
quires changing the range of entity attribute for ABAC to
potentially unbounded size. A finite domain ABAC can-
not have attributes that changes its range over time in this
manner. []

67

ReBAC,,.

+Structured Attribute

ReBAC - ~"~""""""""""""=-=-= ABAC

BNE

+Node Attribute

+Edge Attribute
ReBAC__ ABAC,

Entity and Non Entity Attribute
< Stryictured Attripute

e
]
]

ReBAC,, ABAC,
" +Edge Attribute y
+Node Attribute ~. Entity and Entity Attribute
~, , NonEntity Attribute Structured Attribute
S
N ~
A%
~
-
_ B
ReBAC,--- ----- ABAC, ABAC,

NodeType

EdgeType Non Entity Attribute Entity Attribute

Figure 12: Non-Equivalence of ReBAC and ABAC Structural
Classification

7.2 Comparable Structural Models for ReBAC
and ABAC

In this sub-section we compare the ReBAC and ABAC
structural models from Figures 1(a) and 6(a) respectively.
Figure 11 shows the equivalence of different ABAC and
ReBAC models (with blue dotted lines) Figure 12 shows
the non-equivalence of different ABAC and ReBAC models
(purple dotted line shows one model is incomparable with
another while green dotted line shows one model is more
expressive than another).

THEOREM 2. ABACY is incomparable to ReBACg

PRrROOF. (Sketch) ABACK has only non-entity attributes
which cannot configure relations as discussed earlier. []

THEOREM 3. ABACE and ReBACp are equivalent in ex-
pressive power.

PRrROOF. (Sketch) To prove this we need to show
e ABACgk can configure ReBACp
e ReBACg can configure ABACg

For the former, ABACg has entity attributes which can
configure relationships via the techniques discussed in Sec-
tion 6. For the latter, ABACEg can be expressed as ReBACg
where the entity attributes are relationship types, entities
are nodes in the graph and which allows only one level rela-
tionship expression in authorization policy. [J]

COROLLARY 1. ABACNK is incomparable to ABACEg

PROOF. (Sketch) Theorem 2 proves that ABACx is in-
comparable to ReBACg and Theorem 3 proves that ABACg
and ReBACg are equivalent in expressive power. The corol-
lary follows. [

THEOREM 4. ABACNE and ReBACgpyN have equivalent ex-
pressive power

PRrROOF. (Sketch) With entity attribute ABACng can con-
figure relationships of ReBACgn and with non-entity at-
tribute ABACNE can configure non-entity node attribute of
ReBACgpN. So ABACNE can configure ReBACgn. Con-
versely ReBACgN can express entity attribute as relation-
ships and non-entity attribute as node attribute in the rela-
tionship graph. So ReBACgn can configure ABACyg. [

THEOREM 5. ABACE is less expressive than ReBACBE

PROOF. (Sketch) Entity attribute of ABACE can be con-
figured with relationship of ReBACgg. So ReBACgg can
configure ABACg. On the other hand we have seen in
Section 5 that structured attributes are required to con-
figure edge attributes in ABAC. For example consider Fig-
ure 4 where “tenantTrust” has “trustValue” as edge attribute.
Without structured entity attribute, ABACg cannot config-
ure this example of ReBACgg. O

THEOREM 6. ABACEs is more expressive than ReBACpE

PROOF. (Sketch) By definition ABACgs has structured
entity attribute while ReBACgg does not have structured
attributes. We have seen in section 5 with structured val-
ued entity attribute ABACgs can configure relationships,
nodes and atomic or set-valued edge attribute of ReBACgEg.
So ABACEgs can configure ReBACgg. On the other hand
ReBACgg cannot configure more than one level structured
entity attribute because it can have only atomic or set valued
edge attribute. A 2-level structured entity attribute means
at least one subattribute is also a structured attribute. So
ReBACgg cannot configure ABACgs. [

THEOREM 7. ABACNgs is more expressive than ReBACpNE

PROOF. (Sketch) Essentially similar proof as the previous
theorem. [

THEOREM 8. ABACyNgs and ReBACgnEs have same ex-
pressive power

PROOF. (Sketch) ABACngs has structured entity and non-
entity attributes while ReBACgnrs has labeled relationship
graph (multiple type of relationships) with multiple types
of nodes (entities) and structured node and edge attributes.
Section 5 has shown that ABACngs can configure relation-
ships, nodes and structured attributes for nodes and edges.
So ABACNgs can configure ReBACgNgs. On the other
hand ReBACgnEs can configure entities with nodes, struc-
tured entity and non-entity attributes with structured entity
and non-entity node attributes respectively. So ReBACgpnNEs
can configure ABACngs. This proves that ABACngs and
ReBACgNEs have same expressive power. [

7.3 Performance Comparison

So far we have considered the theoretical expressive power
equivalence between ABAC and ReBAC. There are clearly
some differences between them in terms of performance. Re-
BAC does runtime computation of authorization. Even if
relationship graph is static and nothing changes, ReBAC
still needs to repeat the same computation. To eliminate
this massive redundant computation load researchers have
considered caching of relationship paths [23]. In Section 6
we proposed two solutions for multilevel relationship ex-
pression in ABAC, viz., attribute composition and com-
posite attributes. Attribute composition is similar to Re-
BAC in expressing policy, while composite attribute is more
like caching of path information. Attribute composition has
polynomial complexity for authorization policy and constant
complexity for update, on the other hand composite at-
tribute has constant complexity in policy authorization and
polynomial time complexity on update to maintain relation-
ship changes.

Security and System Goals
(Objectives/Policies)

Policy Models \

‘ Enforcement Models ‘

‘ Implementation Models ‘

‘ Concrete Systems ‘

Figure 13: PEI Framework [46]

Performance also depends upon the characteristics of the
system. A number of variances regarding system charac-
teristics such as relationship dynamics, node dynamics and
density of relationships between nodes (entities) affect per-
formance. For meaningful performance comparison we need
to formally define specific comparable models considering
both approach, do their implementation and configure the
system for different dynamics (attribute dynamics, node dy-
namics, relationship dynamics and density dynamics) vari-
ances.

7.4 Choices Of Models

Attribute composition or ReBAC approach puts the load
on runtime computation, while caching or composite at-
tribute may need significant update load. If relationship
graph changes frequently, the caching or composite attribute
approach needs to have excessive updates to keep the path
information up-to-date.

The choice of models depends on node dynamics, rela-
tionship dynamics and the density of relationships between
nodes (entities) in the system. If the relationship density
of a system is high, adding or deleting a largely connected
node will affect quite a large number of relationships in the
system. For a static system or a system with non-entity at-
tribute change, regardless of whether the graph is dense or
sparse composite attribute is the best approach for relation-
ship expression. If the system has huge node dynamics and
relationship dynamics and relationship density is also high
attribute composition would be the best solution. If the
system is in the middle between these two extremes then
we can think of an hybrid approach where both attribute
composition and composite attribute are used in the same
model. For example to achieve p level relationship compo-
sition we can use m level composite attribute and n level
attribute composition where p = n x m. To specify it more
clearly we can say that a composite attribute with 4 level re-
lationship expression capability such as ffff(u) or an attribute
composition with 4 level relationship expression capability
such as f(f(f(f(u)))) can be expressed with a composite at-
tribute of 2 level relationship expression capability using 2
level attribute composition ff(ff(u)). This means ffff(u) =

f(£(f(()))) = fi(fH(w)).

Application context for security has the well established
3 layers (Policy P, Enforcement E and implementation I or
PEI) [45, 46, 47], as shown in Figure 13. Policy level P is all
about expressibility, modularity and convenience to express
policy and independent of implementation detail. From ex-
pressibility point of view both the approaches are equal as
we have already shown the equivalence of policy expression
at the P layer. E layer is responsible for enforcement ar-
chitecture wherein performance would come into considera-
tion. Depending on the dynamics characteristics we conjec-
ture that some hybrid combination of ABAC with attribute
composition and composite attribute would be optimal for
most situations.

8. CONCLUSION

In this paper we have provided an intuitive but rigor-
ous comparative study of ABAC and ReBAC, and shown
how various ReBAC features can be expressed with different
types of ABAC. Our results indicate that the relationship
between ABAC and ReBAC is subtle and variable depending
on the precise flavor of these two access control approaches
in any given model. At the same time we are able to make
some general statements about this comparison. Additional
work on comparing expressive power may yield additional
insights. More significantly we believe metrics beyond theo-
retical equivalence need to be brought into consideration to
better understand the relative advantages and disadvantages
of these two approaches. Performance is one such metrics
but others such as maintainability, robustness, and agility,
also need to be studied.

Acknowledgements

This research is partially supported by NSF Grants CNS-
1111925, CNS-1423481, CNS-1538418, and DoD ARL Grant
WI11NF-15-1-0518.

References

[1] Alloy language and tool. http://alloy.mit.edu/alloy/.
Accessed 09/2016.

OASIS, Extensible access control markup language
(XACML), v2.0 (2005).

Openstack. http://www.openstack.org/software/mitaka.
Accessed 09/2016.

Singlevalue multivalue. https://msdn.microsoft.com/en-
us/library/aa746488(v=vs.85).aspx. Accessed 09/2016.
Structured attribute. https://docops.ca.com/ca-
identity-manager/12-6-5/en/configuring /user-console-
design/configuring-profile-tabs-and-screens/field-
styles/structured-attribute-display. Accessed 09/2016.
Swift. http://docs.openstack.org/developer/swift/. Ac-
cessed 09/2016.

T. Ahmed, F. Patwa, and R. Sandhu. Object-to-object
relationship based access control: model and multi-
cloud demonstration. In IEEE Conference on Infor-
mation Reuse and Integration (IRI). IEEE, 2016.

M. Barr and C. Wells. Category theory for computing
science. In Prentice Hall, page 6, 1998.

P. Bennett, I. Ray, and R. France. Analysis of a re-
lationship based access control model. In Proceedings
of the Eighth International C* Conference on Computer
Science & Software Engineering, pages 1-8. ACM, 2015.

69

[10] E. Bertino, P. Samarati, and S. Jajodia. An ex-
tended authorization model for relational databases.
IEEE Transactions on Knowledge and Data Engineer-
ing, 9(1):85-101, 1997.

J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-
policy attribute-based encryption. In 2007 IEEE sym-
posium on security and privacy (SP’07), pages 321-334.
IEEE, 2007.

G. Bruns, P. W. Fong, I. Siahaan, and M. Huth.
Relationship-based access control: its expression and
enforcement through hybrid logic. In ACM CODASPY,
pages 117-124, 2012.

B. Carminati, E. Ferrari, R. Heatherly, M. Kantar-
cioglu, and B. Thuraisingham. A semantic web based
framework for social network access control. In Pro-
ceedings of the 14th ACM Symposium on Access Control
Models and Technologies, SACMAT ’09, pages 177186,
New York, NY, USA, 2009. ACM.

B. Carminati, E. Ferrari, and A. Perego. Rule-based ac-
cess control for social networks. In OTM Confederated
International Conferences: On the Move to Meaningful
Internet Systems, pages 1734-1744. Springer, 2006.

B. Carminati, E. Ferrari, and A. Perego. Enforcing ac-
cess control in web-based social networks. ACM Trans-
actions on Information and System Security (TISSEC),
13(1):6, 20009.

D. Chadwick. Understanding X.500: The Directory.
Chapman & Hall, Ltd., London, UK, 1994.

M. Chase. Multi-authority attribute based encryption.
In Theory of Cryptography Conference, pages 515—-534.
Springer, 2007.

P. P.-S. Chen. The entity-relationship model toward a
unified view of data. ACM Transactions on Database
Systems (TODS), 1(1):9-36, 1976.

Y. Cheng, K. Bijon, and R. Sandhu. Extended ReBAC
administrative models with cascading revocation and
provenance support. In Proceedings of the 21st ACM on
Symposium on Access Control Models and Technologies,
pages 161-170. ACM, 2016.

Y. Cheng, J. Park, and R. Sandhu. Relationship-based
access control for online social networks: Beyond user-
to-user relationships. In International Conference on
Privacy, Security, Risk and Trust (PASSAT), pages
646-655. IEEE, 2012.

Y. Cheng, J. Park, and R. Sandhu. A user-to-user
relationship-based access control model for online so-
cial networks. In Data and applications security and
privacy XX VI, pages 8-24. Springer, 2012.

Y. Cheng, J. Park, and R. Sandhu. Attribute-aware
relationship-based access control for online social net-
works. In IFIP Annual Conference on Data and Appli-
cations Security and Privacy, pages 292—-306. Springer,
2014.

J. Crampton and J. Sellwood. Caching and auditing
in the RPPM model. In International Workshop on
Security and Trust Management, pages 49-64. Springer,
2014.

J. Crampton and J. Sellwood. Path conditions and
principal matching: a new approach to access control.
In Proceedings of the 19th ACM symposium on Access
control models and technologies, pages 187-198. ACM,
2014.

[25] J. Crampton and J. Sellwood. ARPPM: Administra-

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

23]

24]

[27]

[28]

[29]

[36]

[37]

[38]

tion in the RPPM model. In Proceedings of the Sizth
ACM Conference on Data and Application Security and
Privacy, pages 219-230. ACM, 2016.

J. Crampton and J. Sellwood. Inter-ReBAC: inter-
operation of relationship-based access control model in-
stances. In IFIP Annual Conference on Data and Ap-
plications Security and Privacy, pages 96—-105. Springer,
2016.

R. Fagin. On an authorization mechanism. ACM Trans-
actions on Database Systems (TODS), 3(3):310-319,
1978.

P. W. Fong. Relationship-based access control: protec-
tion model and policy language. In Proceedings of the
first ACM conference on Data and application security
and privacy, pages 191-202. ACM, 2011.

P. W. Fong, M. Anwar, and Z. Zhao. A privacy preser-
vation model for facebook-style social network systems.
In Computer Security—-ESORICS 2009, pages 303-320.
Springer, 2009.

P. W. Fong and I. Siahaan. Relationship-based access
control policies and their policy languages. In Pro-
ceedings of the 16th ACM symposium on Access control
models and technologies, pages 51-60. ACM, 2011.

J. Gallier. Discrete mathematics. In PWS Publishing,
page 118. Springer, 2011.

P. P. Griffiths and B. W. Wade. An authorization mech-
anism for a relational database system. ACM Trans-
actions on Database Systems (TODS), 1(3):242-255,
1976.

V. C. Hu, D. Ferrariolo, R. Kuhn, A. Schnitzer, K. San-
dlin, R. Miller, and S. Karen. Guide to attribute based
access control (ABAC) definitions and considerations.
In NIST Special Publication 800-162, SIN 13, 2014.
X. Jin. Attribute-Based Access Control Models and Im-
plementation in Cloud Infrastructure as a Service. PhD
thesis, UTSA, 2014.

X. Jin, R. Krishnan, and R. Sandhu. A unified
attribute-based access control model covering DAC,
MAC and RBAC. In IFIP Annual Conference on Data
and Applications Security and Privacy, pages 41-55.
Springer, 2012.

J. Kolter, R. Schillinger, and G. Pernul. A privacy-
enhanced attribute-based access control system. In
IFIP Annual Conference on Data and Applications Se-
curity and Privacy, pages 129-143. Springer, 2007.

M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou. Scal-
able and secure sharing of personal health records in
cloud computing using attribute-based encryption. vol-
ume 24, pages 131-143. IEEE, 2013.

R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based
encryption with non-monotonic access structures. In
Proceedings of the 14th ACM conference on Computer
and communications security, pages 195-203. ACM,
2007.

J. Pang and Y. Zhang. A new access control scheme for
facebook-style social networks. Computers € Security,
54:44-59, 2015.

J. Park and R. Sandhu. The UCONabc usage control
model. ACM Trans. Inf. Syst. Secur., 2004.

B. Qin, H. Deng, Q. Wu, J. Domingo-Ferrer, D. Nac-
cache, and Y. Zhou. Flexible attribute-based encryp-
tion applicable to secure e-healthcare records. vol-
ume 14, pages 499-511. Springer, 2015.

70

42]

(43]

(44]

(45]

[46]

[47]

(48]

(49]

[50]

[51]

S. Z. R. Rizvi and P. W. Fong. Interoperability of
relationship-and role-based access control. In Proceed-
ings of the Sizth ACM Conference on Data and Ap-
plication Security and Privacy, pages 231-242. ACM,
2016.

S. Z. R. Rizvi, P. W. Fong, J. Crampton, and J. Sell-
wood. Relationship-based access control for an open-
source medical records system. In Proceedings of the
20th ACM Symposium on Access Control Models and
Technologies, pages 113-124. ACM, 2015.

A. Sahai and B. Waters. Fuzzy identity-based encryp-
tion. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages
457-473. Springer, 2005.

R. Sandhu. Engineering authority and trust in cy-
berspace: The om-am and rbac way. In Proceedings of
the fifth ACM workshop on Role-based access control,
pages 111-119. ACM, 2000.

R. Sandhu. The PEI framework for application-centric
security. In Security and Communication Networks
(IWSCN), 2009 Proceedings of the 1st International
Workshop on, pages 1-6. IEEE, 2009.

R. Sandhu, K. Ranganathan, and X. Zhang. Secure
information sharing enabled by trusted computing and
PEI models. In Proceedings of the 2006 ACM Sym-
posium on Information, computer and communications
security, pages 2-12. ACM, 2006.

H. Shen. A semantic-aware attribute-based access con-
trol model for web services. In International Conference
on Algorithms and Architectures for Parallel Process-
ing, pages 693-703. Springer, 2009.

S. D. Stoller. An administrative model for relationship-
based access control. In Data and Applications Security
and Privacy XXIX, pages 53—68. Springer, 2015.

M. V. Tripunitara and N. Li. A theory for comparing
the expressive power of access control modelsl. vol-
ume 15, pages 231-272. IOS Press, 2007.

E. Yuan and J. Tong. Attributed based access con-
trol (ABAC) for web services. In Proceedings of the
IEEE International Conference on Web Services, ICWS
’05, pages 561-569, Washington, DC, USA, 2005. IEEE
Computer Society.

