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Abstract. When the access control state of a system is complex, Machine
learning (ML)-based access control decision engines have demonstrated
advantages of accuracy and generalizability. This field is emerging with
multiple efforts where an ML model is trained based on either existing
access control state or historic access logs; the trained model then makes
access control decisions. This paper explores ML-based access control’s
administration problem, focusing on capturing changes in the access con-
trol state. We investigate this problem in a simulated system with Random
Forest (RF) method from a symbolic ML class and the ResNet method
from a non-symbolic one. Both classes have their respective advantages
and disadvantages for issues such as insufficient learning of new changes
and forgetting existing access information while updating the ML model.
Our experimental results show that the non-symbolic approaches perform
better than the symbolic ones while adjusting for continual (or incremen-
tal) changes in the access control state.
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1 Introduction

Machine Learning (ML) is used in the field of access control for different purposes
such as policy mining [1], attribute engineering [3] and role mining [26]. In tradi-
tional access control systems such as RBAC [31] and ABAC [15], the access control
decision engine decides accesses based on a written policy (or role assignments, in
the case of RBAC). In recent years, researchers have proposed utilizing a trained
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Fig. 1. Administration problem in ML-based access control system.

ML model to make access control decisions, possibly supplementing or even even-
tually replacing rule-based access control systems. We refer to such systems as
machine learning based access control (MLBAC) [9,10,19,22,28,35]. We briefly
discuss these methods in related work Sect. 2.2. These works have demonstrated
that, for a given ground truth of an access control state represented in the form
of authorization tuples, MLBAC models could capture that access control state
with significantly higher accuracy than the traditional access control models such
as ABAC. In addition, some works also demonstrate that MLBAC generalizes bet-
ter than traditional approaches [9,10,19,28]. (Note that generalization is the abil-
ity of a model to make accurate decisions on users and resources not explicitly seen
during policy mining or ML model training.) Even if MLBAC does not replace tra-
ditional forms of access control in practice, it could serve as an effective approach
for access control monitoring/auditing or operate in tandem with traditional sys-
tems [24,28,38].

However, access control systems are not static—changes in access control
state are inevitable. A user may be granted new permissions, or some of her
current permissions could get revoked. As shown in Fig. 1, ‘Alice’ has access to
the ‘service1’ resource. To revoke her access, the learned access control state in
MLBAC will need to be correspondingly updated such that it can react accord-
ingly to the applied change. This problem is referred to as access control admin-
istration in the access control domain [30]. Evidently, administration problems
have been thoroughly investigated for traditional approaches [18,30,36], but the
issue remains entirely unexplored for MLBAC.

Administration challenges could vary from model to model, but the prob-
lem’s importance remains unchanged. In the case of RBAC, administration activ-
ities include assigning/removing permission to/from a role, creating a new role,
and managing role hierarchy [30]. For ABAC, administration activities include
updating user/resource attributes and policy modification [33]. In such traditional
approaches, the changes are accomplished by modifying existing configurations
such as written access control policies, and attribute and role assignments. How-
ever, in MLBAC, there is no notion of a human-readable written policy to update.
If an access control state change is to be made, it requires modification of exist-
ing model. Such a modification is complicated as, in most cases, an ML model is
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a highly complex function, a tree, or even a black-box that a human user can not
directly access and modify. Often, to capture changes, one must go through a pro-
cess similar to the initial training process.

In this paper, we investigate the administration problem of MLBAC. In par-
ticular, we consider the situations where a trained ML could be either from
symbolic (e.g., RF) or non-symbolic (e.g., neural network) types. The symbolic
ML methods represent knowledge in the form of logic or a tree that distinguishes
them from non-symbolic ones, either statistical or neural [9]. To the best of our
knowledge, our proposed method is the first work towards administration in an
ML-based access control system. We summarize our contributions as follows.

– We define MLBAC administration problem and propose a methodology to
automate and systematize the MLBAC administration process.

– We develop two prototypes of administration in a system where access control
decisions are made based on either symbolic or non-symbolic ML approaches.

– We thoroughly evaluate both prototypes for the efficacy of symbolic and non-
symbolic ML approaches from an access control administration perspective.

– We demonstrate that administration in an MLBAC poses additional chal-
lenges and propose different techniques to overcome them.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 presents an overview of the MLBAC administration, its requirements,
and the administration methodology. In Sect. 4, we implement two MLBAC
administration prototypes in a simulated system and evaluate those prototypes
in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Related Work

This section discusses works where ML algorithms are proposed in the context
of an access control decision engine. One body of work in this category apply
ML for the policy administration in traditional access control system [2,6,12].
Another body of work proposes an ML model (MLBAC) in place of traditional
access control policies [9,10,19,22,28,35].

2.1 ML for Administration of Policy-Based Access Control

Researchers exploit the power of ML to administer changes in traditional policy-
based access control systems. The authors in [2] develop an adaptive access con-
trol framework for the IoT domain using RF and Neural Networks. The proposed
framework dynamically refines the access policies based on the access behaviors
of the IoT devices. Argento et al. [6] propose an ML-based approach that identi-
fies policy misconfigurations and adjusts policies at run-time. Gumma et al. [12]
propose PAMMELA, an ML-based ABAC policy administration method that
creates new rules for the proposed changes and extends existing policy.
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2.2 MLBAC

In MLBAC, an ML model makes an access control prediction, which is then
interpreted into a permit or deny decision. We briefly discuss them below.

Cappelletti et al. [9] train ML models based on user/resource attribute values
and access request logs that subsequently decide access permissions. Specifically,
the authors build a Decision Tree [29] and RF [8] classifier from the symbolic
ML class and Support Vector Machines (SVM) [11] and Multi-Layer Perceptron
(MLP) [32] from non-symbolic ones. The empirical results suggest that if the
underlying access control state is complex, a symbolic ML approach could per-
form better. The authors highlight that a system is complex if the data (e.g.,
access logs) are not easily separable according to PCA and t-SNE visualization.

Chang et al. [10] propose an ML-based time-constraint access control where
access policies are associated with the time (e.g., a user may only have access
to a resource during office hours). The authors train an SVM using each user’s
login time and a password. For any access request, the trained SVM classifies
the users into their respective groups (e.g., department) and provides desired
security access right during that period.

Karimi et al. [19] develop an ABAC-RL framework to map between access
requests and the access decisions (permit or deny). For deciding accesses, the
ABAC-RL trains a reinforcement learning (RL) agent that adapts an ABAC
policy via a feedback control loop by interacting with users and administrators.

Liu et al. [22] propose EPDE-ML transforming the access control ‘permis-
sion decision’ problem into an ‘ML classification’ problem that allows or denies
accesses. EPDE-ML uses an RF to construct a vector decision classifier to estab-
lish a permission decision engine for making access decisions.

Our prior work [28] develops DLBAC using user/resource metadata and the
existing access control state as authorization tuples. We build multiple deep neu-
ral networks, including ResNet [14], DenseNet [17], etc., that make more gener-
alized and accurate access decisions than ABAC and other ML-based methods.

Srivastava et al. [35] develop risk adaptive access control (RAdAC) for
dynamic access decisions (changes in accesses during run-time). For any access
request, the RAdAC determines the genuineness of the user, measures the risk,
and then provides access accordingly. The framework considers many dynamic
attributes such as access time, location, user history, resource sensitivity, etc.,
and experiments using a neural network and an RF algorithm.

While developing MLBAC using either symbolic [9,22,35] or non-symbolic
approaches [9,10,19,28,35], the administration problem is not investigated. In
this work, we develop an administrative framework for MLBAC.

3 MLBAC Administration

Figure 2 illustrates the overview of MLBAC administration. As depicted in the
figure, the Admin Engine, the administrative framework, takes a change request
as the input, which we refer to as a Task. We aim to incorporate the requested
Task in MLBAC administration. We assume that the Admin Engine has access to
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Fig. 2. Overview of MLBAC administration.

the user and resource metadata databases and the ML model, which is currently
being used for decision making. We refer to this ML model as Current ML Model
and denote as Fcurrent. The objective of administration in MLBAC is to modify
Fcurrent to capture the requested Task and generate an updated model. We also
refer to this updated model as Updated ML Model and designate as Fupdated.

3.1 Requirements

For the purpose of this paper, we generalize MLBAC as follows. An MLBAC
model is trained using the existing access control state of a system, along with
various pieces of available metadata values such as those of users and objects.
Since the decision engine in MLBAC is an ML model, modifying its access con-
trol state is not as obvious as that of, say, ABAC, where a rule is typically
adjusted to grant or deny existing accesses. It is often required to modify the
model itself to accommodate any authorization-related changes. Consequently,
the administrative tasks in MLBAC are somewhat simplified since we no longer
need to worry about policy and attribute updates. In this paper, we focus on
basic administrative tasks for MLBAC, including granting/revoking the access
of one or multiple users to one or more resources.

Over time, by learning from proposed changes and observing the metadata
of users and objects, MLBAC could intelligently adjust other “similar” accesses
in the system. We believe smarter access control administration is one of the
most significant benefits of MLBAC in practice, hence the focus of this work.

3.2 Problem Statement and Approach

In an ML model, to modify a piece of learned information, it is required to
iteratively update the weights of its neurons (in the case of neural network) or
parameters (for classical ML) starting with random initialization [37]. Conse-
quently, we state the MLBAC administration problem as:

‘Given an administrative task, update the MLBAC model’s weights and/or
parameters such that the updated model captures the desired changes in the access
control state.’

By desired changes, we mean both the given administrative task and addi-
tional administrative tasks that are similar to the given task. The challenge
specifically, then, is: what is the best approach to accurately learn to accommo-
date the given task and perform additional changes that are similar to the
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proposed task while keeping the existing access control state unchanged for
all other users and resources that are vastly dissimilar? We indicate similar
changes as changing access to other users and resources similar to the user and
resource given in the proposed task. However, determining whether two users
(or resources) are similar or not depends on the type of their metadata. If the
metadata is real-valued (e.g., age, salary, etc.), it is possible to automatically
determine other similar users and resources using distance measurement or clus-
tering approaches [41]. This is also applicable for ordinal categorical values,
where there is a notion of order among its values (e.g., degrees, clearances, job
roles, etc.). However, in the case for nominal categorical values (e.g., department,
expertise, etc.), there is no notion of order among them, and therefore one could
only perform an equality check based on their values.

In practice, one could anticipate a mix of real-valued, ordinal categorical, and
nominal categorical data. The model would automatically find additional similar
administrative tasks for real-valued and ordinal categorical metadata values. For
nominal categorical metadata values, we seek input from the system administra-
tor (sysadmin) to determine the similarity between the user(resource) involved in
the proposed task and other users(resources) in the system. We assume sysadmin
will provide some ‘similarity measurement criteria’ in terms of user and resource
metadata, which we refer to asCriteria. We further illustrate its syntax in Sect. 3.3.

3.3 Terminologies

This section introduces some terminologies that we repeatedly use for the expla-
nation of administration in MLBAC.

– Authorization Tuple. An Authorization Tuple is user-permissions tuple〈
user, resource, permissions

〉
that specifies the permissions of a user to a

resource. For example, an Authorization Tuple
〈
u1, r1, {op1, op3}〉 indicates

that a user u1 has operations op1 and op3 access to a resource r1.
– Task. A Task is a change request which is expressed through a tuple of four

elements
〈
user, resource, operation, access

〉
, where the access could be either

permit or deny. For example, a Task
〈
u1, r1, op3, deny

〉
is a request to revoke

the op3 access of the user u1 to the resource r1.
– AAT (Admin Authorization Tuple). AAT is an updated Authoriza-

tion Tuple generated from an existing one based on a Task. For example,〈
u1, r1,op3, deny

〉
is a given Task. Suppose that the existing Authorization

Tuple in the system for user u1 and resource r1 is
〈
u1, r1, {op1,op3, op4}〉.

The AAT with respect to the given Task would be
〈
u1, r1, {op1, op4}〉. AAT,

in effect, is the change that the admin seeks to make.
– Criteria. Criteria is defined as a tuple of user metadata name and value pairs

and resource metadata name and value pairs that is expressed as:
〈〈〈{

umeta0∈{val0, . . . , vali}, . . . , umetam∈{val0, . . . , valj}
}
,

{
rmeta0∈{val0, . . . , valk}, . . . , rmetan∈{val0, . . . , vall}

}〉〉〉
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Fig. 3. Administration process flow in MLBAC.

where {umeta0, . . . , umetam} is a set of user metadata names,
{rmeta0, . . . , rmetan} is a set of resource metadata names, and {val0, . . . }
indicates possible values for respective metadata. For example, a sample Cri-
teria could be

〈
umeta1 ∈ {val0, val1}, rmeta4 ∈ {val2}

〉
. In this Criteria,

the possible values of umeta1 are val0 and val1, and the possible value of
rmeta4 is val2.

– Additional AAT. The Additional AAT is a set of similar AAT determined
based on users and resources similar to the user and resource in the Task.
This paper determines similar users/resources based on the input Criteria.
Section 3.4 discusses Additional AAT generation.

– OATs (Other Authorization Tuples). The OAT is a set of Authorization
Tuples in the access control system that excludes AAT and Additional AAT.

3.4 Methodology

As shown in Fig. 3, the Admin Engine generates an Admin Authorization Tuple
(AAT) for the given Task as described in Sect. 3.3. The AAT is the Authorization
Tuple that we aim to integrate into the current ML model, Fcurrent. Next, the
Admin Engine generates Additional AAT based on the Task and Criteria. Both
AAT and Additional AAT are independent of each other hence it is not required
to maintain any specific order for their generation.

We generate Additional AAT based on a set of similar users and resources
determined using Criteria, as discussed in Sect. 3.2. The Criteria consist of user
and resource metadata names and value pairs. For each user, we compare their
metadata values with respective metadata values stipulated in the Criteria. If
it matches, we call the corresponding user as the similar user. Eventually, we
determine all the similar users and follow the same approach for finding similar
resources. These similar users and resources are the candidate users and resources
for the Additional AAT generation. Next, we iterate over the list of candidate
users and candidate resources to make user-resource pairs and determine a list of
operations for each pair that the user has access to the resource and update their
access according to the given Task. The user-resource pair with their updated
access operation is an Additional AAT. Eventually, we obtain all the Additional
AAT for the given Task and Criteria by repeating the same process. (Appendix A
illustrates the pseudo-code of Additional AAT generation.) Collectively both
AAT and Additional AAT are stored in a set that we refer to as AATs. Note
that the ‘size of AATs’ indicates the number of elements in the set.
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At this point, the Admin Engine has the input (AATs) to accommodate in
its Fcurrent model and adjust the weights/ parameters to react accordingly for
the newly added changes and produce the Fupdated model. This accommoda-
tion is not straightforward, and there are multiple underlying challenges. A naive
solution to this problem could be to retrain an ML model based on newly gener-
ated AATs and original training data that we used to train the Fcurrent. While
this approach has its benefits, there are multiple shortcomings. For example, to
retrain an ML model, one always has to maintain the original training dataset
and the AATs of each administration. Also, retraining is expensive in terms of
training time and resource consumption. Therefore, it might not be practical nor
feasible for many systems to retrain an ML model to accommodate new changes.

A potential solution could be to update the weights/parameters of the
Fcurrent. However, the process of updating the weights/parameter values in an
ML model has a direct correlation with the type of model in question. Suppose
the underlying model is a classical ML algorithm such as SVM and Ensemble
Methods. In that case, an incremental machine learning (a.k.a online learning)
technique could be a prospective solution [7]. If the model is a neural network, a
possible technique could be to use fine-tuning [20]. Fine-tuning performs inter-
nal adjustments to a trained neural network’s (e.g., Fcurrent in MLBAC) weight
based on a set of given examples (AATs in the case of MLBAC).

4 MLBAC Administration Prototype

This section implements two prototypes of MLBAC administration using ML
models from symbolic and non-symbolic classes. We experiment with MLBAC
administration to assess how well it reacts to the administrative changes. We
apply MLBAC administration in a synthetically generated extensive system with
thousands of users and resources. The following sections briefly introduce the
simulated system, the ML models, and different administration strategies.

4.1 System for MLBAC Administration Experimentation

Access control administration is a continuous process where one could expect
many change requests during the life of a system. A limited number of real-world
access control-related datasets are available from Amazon [4,5]. These datasets
have been used extensively in the literature for ML model training and ABAC
policy mining and evaluating how accurately the trained model or mined policy
can decide accesses [1,9,27,28]. For any access control administration experi-
ment, we need a system where we will have continuous change requests during
the system’s life. The Amazon datasets in themselves do not provide such admin-
istrative tasks. Our prior work [28] provides a dataset1 named u5k-r5k-auth12k
for a simulated access control system. We created the dataset using the data gen-
eration algorithm proposed by Xu et al. [39] (see Appendix B). The simulated

1 https://github.com/dlbac/DlbacAlpha/tree/main/dataset/synthetic.

https://github.com/dlbac/DlbacAlpha/tree/main/dataset/synthetic
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system has around five thousand users and five thousand resources. Also, there
are eight user and eight resource metadata for each user and resource, respec-
tively, and four operations. The dataset contains nominal categorical metadata
values, as integers, of which each value denotes a category. (Section 3.2 briefly
discussed nominal and ordinal categorical data.) When visualizing the dataset
using t-SNE [23], we found that the samples overlap significantly and are not
easily separable, indicating the simulated system is fairly complex [9,28] (see
Appendix C). We train ML models for MLBAC using this dataset.

4.2 Symbolic and Non-symbolic ML Models

Among symbolic approaches, the RF algorithm got special attention in the access
control domain due to its expressiveness of a decision in the form of a rule [9,
22,35]. RF can achieve excellent performance in capturing the access control
state of a system. However, if the access control state of the underlying system
is complicated, a non-symbolic method such as a neural network-based system
shows superior performance compared to the symbolic ones [9,28]. In this work,
we develop an MLBAC administration prototype with an RF from the symbolic
class to determine its efficiency from an administration perspective, which we
refer to as RF-MLBAC. We also investigate another prototype with the neural
network from the non-symbolic type. In particular, we consider ResNet [14] as
our candidate neural network and refer to it as ResNet-MLBAC. We note that
one could use other neural networks, including MLP [32], DenseNet [17], etc.,
although we do not anticipate any significant changes in our results.

Both RF and ResNet in MLBAC take user/resource metadata values as input
to make corresponding access control decisions. Since the metadata values in our
dataset are categorical, we encode them before applying them to the model [13].
Our experiment’s ResNet architecture has a depth of 8, and the RF has 100
estimators (decision trees in the forest). As the dataset has four different opera-
tions, both models output the probability of granting the permission for a related
operation. Given a feature vector x of the user and resource metadata, the ML
model is defined as a prediction function f : ŷ = f(x), where ŷ is the predicted
label or permission (grant (1) or deny (0)) of the operation op, obtained from
comparing the probability of granting the permission from the output of the ML
model with a threshold. We consider a threshold of 0.5 for our experiment.

4.3 Administration Strategies in MLBAC

We follow multiple strategies for accommodating a given Task in MLBAC.
From a Task perspective, we propose single-Task and multi-Task administration
approaches. Also, we examine two learning strategies that include retraining and
sequential learning. We discuss them below.

Single-Task Administration. We administer each Task individually and
replace the current ML model (Fcurrent) with the updated model (Fupdated).
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Fig. 4. Multi-task administration process flow in MLBAC.

In this case, we simulate that the sysadmin updates the underlying ML model
after receiving any new Task. For single-Task administration, the Admin Engine
determines AATs (i.e., both AAT and Additional AAT) for the given Task and
then apply the generated AATs for the administration. Figure 3 is an illustration
of single-Task administration.

Multi-task Administration. In practice, sysadmin may receive multiple
unique Tasks together, or they may wait for additional Tasks to accumulate
before initiating an administration. To simulate this, we investigate administra-
tions with multiple simultaneous Tasks in MLBAC, which we refer to multi-Task
administration. In this case, Admin Engine determines AATs for each Task indi-
vidually and combines them. Then, the combined AATs are used for the adminis-
tration. We use the term Task count to refer to the number of Tasks we consider
for a multi-Task administration. Figure 4 illustrates the multi-Task administra-
tion process for n-Tasks. We experiment with 2-Tasks, 3-Tasks, and 6-Tasks
administration for multi-Task administration with Task counts 2, 3, and 6.

Retraining. A naive solution to the administration problem could be to retrain
an ML model based on newly generated AATs and initial training data that we
used to train the Fcurrent. The idea is to train a fresh model from scratch with
the dataset that combines both initial training data and the samples generated
for the respective Task (AATs in case of MLBAC)), as shown in Fig. 5 (left).
The trained model will replace the existing Fcurrent model.

Retraining may not be feasible or practical for many systems due to some rea-
sons. For instance, this process requires storing the entire initial training data for
future administration. Also, retraining is expensive in terms of computation time
and resource consumption. Model training is one of the most time-consuming
parts of ML-based applications. One needs to spend the same amount of time to
accommodate any new change in an existing system. Besides, retraining an ML
model produces a new model that does not hold any previous history of access
change and only portrays the data provided during training.



Administration of Machine Learning Based Access Control 199

Fig. 5. Retraining (left) vs. sequential learning (right) strategies.

Sequential Learning. Sequentially learning Tasks is vital for developing an
autonomous system. It reflects how a human learner identifies the materials
to be learned [16,25]. We also embrace this learning phenomenon to administer
MLBAC, as illustrated in Fig. 5 (right). As shown, for Task-1, the Admin Engine
utilizes the Fcurrent and AATs of Task-1 to update the existing model and
generate Fupdated model. This Fupdated model replaces the Fcurrent model for
deciding accesses and acts as input for the Task-2 administration.

Sequential Learning Process and Its Effect. For sequential administration
in RF, we append additional estimators that learn new changes while keeping
existing estimators untouched. Even though this method is not as efficient as
incremental learning in other classical approaches, we did not find any better
strategy for RF in the literature. For each single-Task administration, we append
two estimators in the RF model. We append 5, 8, and 10 estimators for 2-Tasks,
3-Tasks, and 6-Tasks administration, respectively. Note that we performed trial
and error with more estimators; however, increasing this number of estimators
was efficient in performance and model size. On the other hand, for ResNet, we
employ the fine-tuning technique (discussed in Sect. 3.4) to incrementally learn
new changes and update the network’s weights accordingly.

However, one of the major challenges of sequential learning is maintaining
the existing access control state unchanged. An ML model could forget previous
knowledge while learning new information. For example, Alice has read and write
access to a resource projectA, and Bob has only read access to another resource
projectB. Sysadmin received a Task ‘to permit Bob with the write access to pro-
jectB ’. After administering the requested Task, the system correctly updates the
access control state such that Bob has both read and write access to the pro-
jectB. However, there might be a case that the updated system could not make
the correct access decision for Alice to the projectA. In other words, the system
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forgot Alice’s access to projectA. Formally, in ML arena, this phenomenon is
known as catastrophic forgetting [21,40]. In the case of RF, this is not a problem
as the technique we followed does not modify existing estimators in the model
but append new ones. However, this is a significant challenge for neural networks
since the knowledge of the previously learned Task(s) starts decaying with the
incorporation of the new Task [21].

Overcoming Catastrophic Forgetting in MLBAC. Catastrophic forget-
ting is a well-known problem in machine learning while updating the model,
especially when dealing with a neural network. Fortunately, this is a well-studied
problem in ML literature, and different approaches have been proposed to over-
come this hurdle [16,34,40]. One of the common strategies is to replay previous
knowledge in the form of training data (the dataset used to train the network)
with new samples (AATs in MLBAC) during fine-tuning [34]. It may not be
practical to store the training data in many applications if the samples are too
large (e.g., image, video, etc.). However, this is not an issue for MLBAC as it
works based on numerical user and resource metadata and attributes values.
In our simulated system, each training sample is a vector of user and resource
numerical metadata. Other real-world datasets [27] are also similar, which indi-
cates the feasibility of storing the prior training data for MLBAC. To minimize
the required storing space, we reserve a quarter of all the original training sam-
ples instead of keeping the entire training dataset, which we refer to as Replay
Data. The Admin Engine can access the Replay Data and add them during
administration along with AATs for the correspondent Task. After performing
an administration, we append a quarter of AATs to the Replay Data, which
reflects the current task’s information during the next administration. Admin
Engine ensures that the AATs and Replay Data are mutually exclusive.

5 Evaluation

This section measures the performance for our simulated system to determine
the feasibility and efficacy of the proposed strategies for MLBAC administration.

5.1 Evaluation Methodology

We experiment and evaluate administration performance in RF-MLBAC and
ResNet-MLBAC prototypes on u5k-r5k-auth12k dataset. The dataset has
around twelve thousand samples (Authorization Tuples). We use 80% of the
samples for training and 20% for testing the ML models. After initial training,
the trained models’ (RF and ResNet) performances are above 99% for the test
samples, respectively, implying that Fcurrent is highly accurate in making access
decisions.

We create a set of Tasks to simulate that the sysadmin received all those
Tasks one by one during the system’s life span. To that extent, we randomly
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Fig. 6. AATs performance in RF-MLBAC. (Color figure online)

construct eighteen distinct Tasks from the u5k-r5k-auth12k dataset with dif-
ferent kinds of Criteria (Appendix D). For example, the Task Id t-1 indicates
the first Task and a Task:

〈
uid = 259, rid = 112, op3, permit

〉
means a user

with uid = 259 needs op3 access to a resource with rid = 112. Also, the Crite-
ria:

〈
umeta0 ∈ {9}, umeta6 ∈ {6}, rmeta0 ∈ {9}, rmeta3 ∈ {46}〉 specifies the

user whose umeta0 and umeta6 metadata values are 6 and 9, respectively, could
have op3 access to resources with rmeta0 and rmeta3 metadata values 9 and 46,
respectively. Besides, based on the Task and Criteria, the number of generated
Additional AAT is 42, and combining the AAT gives an AATs of size 43. We
ensure that every Task is independent concerning its change request and pur-
pose. While updating the model, we use 80% of the AATs for training and 20%
for testing the updated ML model. We have created a repository on GitHub con-
sisting of the source code, dataset, and respective AATs, OATs, and ReplayData
for each Task.2

We evaluate the administration performance in terms of accuracy. We define
the accuracy as the measure (in percentage) of correct access authorization for a
user to a resource with respect to the actual access control state (ground truth).

5.2 Results

To evaluate the administration performance in RF-MLBAC and ResNet-MLBAC,
we assess how accurately the Fupdated model can capture the AATs (both AAT
and Additional AAT). We also evaluate how well it can preserve the access control
state of all other users and resources (OATs as described in Sect. 3.3).

We experiment and evaluate the performance for all eighteen Tasks with
single-Task and multi-Task administrations. For multi-Task administration, we
consider 2-Tasks, 3-Tasks, and 6-Tasks. For example, a 3-Tasks administra-
tion indicates, we use three different Tasks together for an administration. In
the single-Task administration, it requires eighteen different administration to

2 https://github.com/dlbac/MLBAC-Administration.

https://github.com/dlbac/MLBAC-Administration
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accomplish all the 18 Tasks as it administer one Task at a time. For multi-Task
administration, the number of administration reduces with an increase in Task
count. For example, for 3-Tasks administration, it requires six different multi-
Task administrations to finish all the eighteen Tasks.

Administration Performance in RF-MLBAC

Retraining. As discussed, retraining is a naive approach and inefficient for both
data and computation. We evaluate the retraining performance in the Fupdated

model. We assess both AATs and OATs performance for single-Task and multi-
Task (2, 3, and 6 Tasks) administrations. For OATs, the Fupdated model is as
accurate as of the initial trained model with more than 99% accuracy. This
performance is consistent across all the single and multi-Tasks administrations.
However, in the case of AATs, as demonstrated in Fig. 6a, the accuracy range
is 40% to 80%. In almost all the circumstances, the accuracy is inconsistent
except for six-Tasks administration that shows a better and more persistent
result across administrations with 60% accuracy. Overall, the low AATs perfor-
mance indicates that the RF model can capture only a portion of new changes
while accommodating the proposed Task.

Sequential Learning. We perform the same evaluation for sequential learning
and apply both single and multi-Tasks administrations. Similar to retraining,
the OATs performance is over 99% across administrations and consistent, indi-
cating that the RF model could preserve the existing access control state bet-
ter. This excellent result indicates that the RF model did not forget the initial
access control state. This result is anticipated because RF-MLBAC appends new
estimators to comprehend proposed changes instead of modifying their existing
estimators while learning new changes.

However, we see a very opposite scenario in AATs performance. As shown in
Fig. 6b, the accuracy of AATs varies in the range of 40% to 70%. For single-Task
and two-Tasks administrations (green and orange lines in the figure), the AATs
performance seems highly inconsistent compared to what we see for six-Tasks
administration (blue line). However, the accuracy of six-Tasks administration is
about 55%, which indicates that considering many Tasks together for a single
administration may not provide a better result. On the contrary, the three-Tasks
administration shows a consistent performance with around 60% accuracy across
Tasks, suggesting an RF model’s multi-Tasks administration with around three
Tasks could be a potential administration to consider.

Administration performance in ResNet-MLBAC

Sequential Learning. Training a neural network from scratch is computation-
ally costly, which is neither efficient nor feasible in access control. As a result,
we did not take the naive (retraining) approach for this prototype. To begin
with administration in ResNet-MLBAC, we administer the first three Tasks (t-
1 to t-3) as a single-Task administration without providing any Replay Data
to see the impact of sequential learning in the existing access control state. As
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Fig. 7. Administration Performance in ResNet-MLBAC for Sequential Learning.

shown in Fig. 7a, the updated network captures the authorization for AATs with
excellent accuracy, as opposed to what we observed in RF-MLBAC. However, for
OATs, we see a lower accuracy (below 90%) in all three cases, indicating the net-
work forgot (catastrophic forgetting) the access control state of a good amount
of existing users and resources while learning new information. To overcome
that, we apply Replay Data (as discussed in Sect. 4.3) along with AATs during
administration. Figure 7b illustrates that combining Replay Data with AATs
helps ResNet-MLBAC administration to significantly reduce the catastrophic
forgetting. As shown in the figure, the accuracy of OATs is now above 99%
across all three Tasks. Such a significant increase in OAT performance implies
the remarkable impact of Replay Data in overcoming catastrophic forgetting.

Further, we experiment with all eighteen Tasks for single and multi-Task
administrations. Figure 8a and Fig. 8b demonstrate the performance of AATs
and OATs, respectively. As illustrated, the AATs performance range is 96% to
99% accuracy, significantly better than what we observed in the RF-MLBAC.
As we see in the figures, for both AATs and OATs, the performance of 6-Tasks
administration is low compared to other multi-Task administrations. Such infe-
rior results indicate the infeasibility of using many Tasks under a multi-Task
administration in ResNet-MLBAC administration. Similarly, the performance
of AATs in single-Task administration is inconsistent across all the Tasks, which
signifies that using single-Task administration in ResNet-MLBAC may produce
very unstable performance. However, for both 2-Tasks and 3-Tasks multi-Task
administrations, the result is persistent and progressing for both AATs and
OATs, thereby proving feasible and better for ResNet-MLBAC administration.

Summary of Performance in RF-MLBAC and ResNet-MLBAC. Based
on AATs and OATs performance in both prototypes, it is evident that the
RF-MLBAC shows better results in preserving the existing access control state.
It was expected as we did not change the estimators of the initial RF model. How-
ever, the AATs performance in RF-MLBAC is extremely low, indicating it could
not well capture proposed changes. Besides, it has other drawbacks from model
size and optimization perspectives. The size of the trained model gradually grows
with the addition of new estimators in it. Also, each administration needs trial
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Fig. 8. Performance in ResNet-MLBAC.

and error to determine an optimal number of new estimators to append that
correlates with how many Task one consider for a multi-Task administration.
On the other hand, ResNet-MLBAC administration shows a better accuracy for
AATs and comparable performance in OATs, indicating it could better capture
proposed changes while retaining the existing access control state intact.

Administration Cost Evaluation in RF-MLBAC and ResNet-MLBAC
We evaluate administration costs for both administration prototypes concern-
ing computation time for an administration. We observe that RF-MLBAC
administration generally takes less than a second to complete an administra-
tion (considering a maximum of 18 Tasks for an administration). On the con-
trary, ResNet-MLBAC administration is slower than RF-MLBAC and varies
with the increase of Tasks count for each administration, as depicted in Fig. 9.
We measure the computation cost of single-Task and multi-Task administrations
in ResNet-MLBAC to identify how administration time varies with the increase
in Task count and how many Tasks are feasible for a single administration. We
consider different sizes (1, 3, 6, 9, 12, 15, and 18 Tasks) multi-Task administra-
tion.

As shown in Fig. 9, it needs 10 s for a single-Task administration, which is the
same for 3, 6, and 9-Tasks administrations, and becomes double for 12, 15, and
18-Tasks administrations. From a performance perspective, for 3 and 6-Tasks
administrations, we see a balanced accuracy in AATs and OATs. Such results
suggest the feasibility of using multi-Task administration in ResNet-MLBAC.
However, considering many Tasks together (e.g., 12 or 15-Tasks administration)
decreases the OATs performance, justifying the infeasibility of administering too
many Tasks together under a single administration.
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Fig. 9. Administration cost in ResNet-MLBAC for sequential learning.

6 Conclusion

This paper explores the access control administration problem for MLBAC. We
review administration requirements in the same context and propose an admin-
istrative framework for MLBAC administration. We implement two prototypes,
RF-MLBAC and ResNet-MLBAC, on a simulated system applying ML algo-
rithms from symbolic and non-symbolic classes. Due to the uniqueness of the
MLBAC administration problem, there are many underlying challenges, such
as insufficient learning of the proposed changes and forgetting existing access
information. We propose different strategies to overcome them. Also, we thor-
oughly evaluate both prototypes. Our empirical results summarize that the non-
symbolic approach performs better than the symbolic one while adjusting for
new changes in MLBAC administration.

Acknowledgements. We would like to thank the CREST Center For Security And
Privacy Enhanced Cloud Computing (C-SPECC) through the National Science Foun-
dation (NSF) (Grant Award #1736209) and the NSF Division of Computer and Net-
work Systems (CNS) (Grant Award #1553696) for their support and contributions to
this research.

A Additional AAT Generation

We depict the pseudo-code of Additional AAT generation in Algorithm 1.

B Data Generation

In our earlier work [28], we simulate a system using the data generation approach
proposed by Xu et al. [39]. The algorithm generates a set of attributes for users
and resources and a set of rules based on those attributes. Each rule is a tuple of
the form 〈UAE ,RAE , OP,C〉, where UAE is the user attribute expression, RAE
is the resource attribute expression, C is the set of constraints, and OP is a set
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Algorithm 1: Additional AAT Generation
inputs: Task, Criteria
output: Additional AAT
data: uList[ ] and rList[ ] are the list of all users and resources,

respectively, with their metadata values in the system
generateAdditionalAAT (Task, Criteria)

additionalAAT[ ] = Ø//An empty list of Additional AAT
//The extractOperationAccess is a utility function that takes a Task,
//and returns operation and access from the Task
operationt, accesst = extractOperationAccess(Task)
//getSimilarUsers and getSimilarResources are the utility functions
//that take list of all users and resources, respectively,
//and the Criteria, and return similar users and resources
candidateUsers[ ] = getSimilarUsers(uList, Criteria)
candidateResources[ ] = getSimilarResources(rList, Criteria)
//getAccessOperations is a utility function that takes a user and
//resource, returns user’s set of access operations to the resource
foreach userc in candidateUsers do

foreach resourcec in candidateResources do
Opc[ ] = getAccessOperations(userc, resourcec)
if Opc �= ∅ then

if (accesst = permit AND operationt not in Opc) OR
(accesst = deny AND operationt in Opc) then

cAAT [ ] = Ø
cAAT.append(userc)
cAAT.append(resourcec)
if accesst = permit then

Opc.append(operationt)
else

Opc.remove(operationt)
end
cAAT.append(Opc)
additionalAAT.append(cAAT)

end
end

end
end
return additionalAAT

of operations. The attribute expressions express the sets of users and resources
to which a rule applies. A user will be authorized to operate on a resource if
the user satisfies the UAE, the resource satisfies the RAE, and both the user
and resource meet the constraint stated in the rule. For each rule, the algorithm
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generates a set of users that satisfy the rule and then generates resources where
for each resource, there is at least one user available to satisfy the rule.

Finally, we create (or update if it already exists) an Authorization Tuple
with a new operation for each generated user, resource, and operation combina-
tion that satisfies a rule. Each user and resource has eight user metadata and
eight resource metadata in the simulated system. Also, there are four different
operations (op1, op2, op3, op4 ) in the system, where a user could have access
to one or more operations to a resource. For example, an Authorization Tuple
for a user with uid = 101 and a resource with rid = 212 with {op1, op3} access
is mapped in the dataset as

〈
101|212|3 9 2 6 13 19 30 55 | 10 21 78 3 9 13 29

23 |〈1 0 1 0〉〉, where 3 9 2 6 13 19 30 55 and 10 21 78 3 9 13 29 23 represents
user’s and resource’s eight metadata values, respectively.

C Dataset Visualization

We visualize the u5k-r5k-auth12k dataset using the t-SNE plot [23]. We project
16 user-resource metadata to 2-dimensional feature space and plot them in
Fig. 10. The plot’s samples (represented by dots) overlap significantly. Users
with similar metadata values have different access and are not easily separable.

Fig. 10. t-SNE visualization of the u5k-r5k-auth12k Dataset.

D List of Simulated Task and Criteria

We simulate eighteen distinct Tasks from the u5k-r5k-auth12k dataset with
different kinds of Criteria and report them in Table 1.
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Table 1. List of task and criteria.

Task Id Task Criteria Size of
AATs

t-1
〈
uid = 259, rid = 112, op3, permit

〉 〈
umeta0 ∈ {9}, umeta6 ∈ {6}, rmeta0 ∈ {9}, rmeta3 ∈ {46}〉

43
t-2

〈
uid = 4624, rid = 4634, op4, deny

〉 〈
umeta2 ∈ {58, 49}, umeta3 ∈ {39}, rmeta3 ∈ {39}〉

94
t-3

〈
uid = 1992, rid = 1858, op1, permit

〉 〈
umeta2 ∈ {11}, rmeta2 ∈ {11}, rmeta3 ∈ {48, 91}〉

92
t-4

〈
uid = 5049, rid = 5177, op4, permit

〉 〈
umeta1 ∈ {6}, umeta4 ∈ {47, 71}, rmeta1 ∈ {6}〉

215
t-5

〈
uid = 2034, rid = 2041, op2, deny

〉 〈
umeta4 ∈ {10}, rmeta1 ∈ {6, 10}, rmeta4 ∈ {10}〉

75
t-6

〈
uid = 1348, rid = 1083, op2, permit

〉 〈
umeta3 ∈ {46, 50, 53}, umeta5 ∈ {13}, rmeta3 ∈ {46, 50, 53}, rmeta5 ∈ {13}〉

187
t-7

〈
uid = 1345, rid = 1092, op4, permit

〉 〈
umeta0 ∈ {24, 64}, umeta6 ∈ {7}, rmeta0 ∈ {24, 64}, rmeta6 ∈ {7}〉

139
t-8

〈
uid = 442, rid = 580, op3, permit

〉 〈
umeta3 ∈ {49}, umeta5 ∈ {47, 111}, rmeta5 ∈ {47, 111}, rmeta7 ∈ {49}〉

134
t-9

〈
uid = 2599, rid = 2593, op1, permit

〉 〈
umeta0 ∈ {11}, umeta1 ∈ {17}, rmeta0 ∈ {11}, rmeta1 ∈ {17}〉

66
t-10

〈
uid = 4112, rid = 1241, op2, permit

〉 〈
umeta1 ∈ {18}, rmeta1 ∈ {18}, rmeta3 ∈ {45, 47, 113}〉

75
t-11

〈
uid = 2135, rid = 4875, op3, deny

〉 〈
umeta2 ∈ {13}, umeta4 ∈ {71, 96}, rmeta2 ∈ {13}, rmeta4 ∈ {71, 96}〉

118
t-12

〈
uid = 660, rid = 560, op1, permit

〉 〈
umeta3 ∈ {88}, umeta5 ∈ {48, 111}, rmeta5 ∈ {48, 111}, rmeta7 ∈ {88}〉

107
t-13

〈
uid = 2019, rid = 2056, op2, deny

〉 〈
umeta4 ∈ {12}, rmeta1 ∈ {78, 82}, rmeta4 ∈ {12}〉

121
t-14

〈
uid = 1228, rid = 1088, op1, permit

〉 〈
umeta2 ∈ {11, 63}, umeta5 ∈ {20}, rmeta5 ∈ {20}〉

97
t-15

〈
uid = 2825, rid = 3044, op2, permit

〉 〈
umeta6 ∈ {8}, rmeta1 /∈ {6, 10}, rmeta2 ∈ {61, 62}, rmeta6 ∈ {8}〉

107
t-16

〈
uid = 965, rid = 861, op4, permit

〉 〈
umeta3 ∈ {45}, umeta7 ∈ {20}, rmeta3 ∈ {45}, rmeta6 ∈ {20}〉

63
t-17

〈
uid = 3745, rid = 3843, op3, permit

〉 〈
umeta0 ∈ {31}, umeta6 ∈ {2, 5, 9, 18}, umeta7 ∈ {4, 13}, rmeta0 ∈ {31}〉

83
t-18

〈
uid = 2488, rid = 2495, op3, permit

〉 〈
umeta1 ∈ {58}, rmeta1 ∈ {58}, rmeta2 ∈ {58, 61}〉

116
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