Uni-ARBAC: A Unified Administrative Model
for Role-Based Access Control

Prosunjit Biswas, Ravi Sandhu®™), and Ram Krishnan

Institute for Cyber Security,
University of Texas at San Antonio, San Antonio, USA
prosun.csedu@gmail.com, {ravi.sandhu,ram.krishnan}@utsa.edu

Abstract. Many of the advantages of Role Based Access Control
(RBAC) accrue from the flexibility of its administrative models. Over
the past two decades, several administrative models have been proposed
to manage user-role, permission-role and in some cases role-role rela-
tions. These models are based on different administrative principles and
bring inherent advantages and disadvantages. In this paper, we present
a unified model, named Uni-ARBAC, for administering user-role and
permission-role relations by combining many of the administrative prin-
ciples and novel concepts from prior models. For example, instead of
administering individual permissions Uni-ARBAC combines permissions
into tasks which are assigned to roles as a unit. Slightly differently, users
are assigned to user-pools from where individual users are assigned to
roles. The central concept of Uni-ARBAC is to integrate user-role and
task-role administration into a more manageable unit called an Adminis-
trative Unit (AU). AUs partition roles, tasks and user-pools and they are
organized in a rooted tree hierarchy. Administrative users are assigned to
AUs with possibility of restricting their authority to user-role assignment
or task-role assignment. While most existing models assume existence of
administrative roles for managing regular roles, we present an approach
for engineering AUs based on structured partitioning of roles and tasks.

1 Introduction

Role Based Access Control (RBAC) [6,17] is one of the most widely deployed
and studied access control models. Instead of directly assigning permissions to
users, RBAC assigns permissions to roles and users to roles. While the number of
roles in a large organization might vary from dozens to thousands, the number of
users or permissions could vary from tens of thousands to hundreds of thousands
and even millions. Thus, maintaining the user-role and permission-role relations
are the most commonly carried out administrative actions in RBAC. While some
models also speak to administering the role-role hierarchy [5,15], it is evident
that modifications to the role-role relationship can have significant impact, so
it might be advisable to keep this authority relatively centralized. Hence, we
limit our scope in this paper to decentralized administration of the user-role and
permission-role relations.

© Springer International Publishing Switzerland 2016

M. Bishop and A.C.A. Nascimento (Eds.): ISC 2016, LNCS 9866, pp. 218-230, 2016.
DOI: 10.1007/978-3-319-45871-7_14

Uni-ARBAC: A Unified Administrative Model for Role-Based Access Control 219

To a large degree the advantages of RBAC accrue from the flexibility of
administering the permission-role and user-role relations. In this regard, several
administrative models have been proposed in the literature (see Sect.2). These
models are based on different administrative principles and offer inherent advan-
tages and disadvantages. Each one incorporates some novel and putatively useful
concepts relative to the others. To our knowledge, there has been no effort so far
to comprehensively consolidate the various novel concepts introduced in differ-
ent administrative models into a coherent unified model that potentially brings
together the inherent advantages of the individual models.

In this paper, we present a novel unified model, named Uni-ARBAC, for
administering user-role and permission-role relations by combining many of the
existing administrative principles and novel concepts. For example, instead of
administering individual permissions, Uni-ARBAC combines permissions into
tasks and assigns tasks to roles. For administrative purposes, Uni-ARBAC decou-
ples users and tasks from roles following the decoupling principle of ARBAC02
[13]. Uni-ARBAC utilizes user-pools as sets of candidate users who can be
assigned to a role, while tasks act as permission-pools. One advantage of using
tasks as permission-pools is that tasks can be designed during role engineering
according to some top-down approaches (e.g. [11]). User-pools on the other hand
can be designed via the organization structure.

Uni-ARBAC integrates user-role and task-role administration into a more
manageable unit, we call Administrative Unit (AU). AUs partition roles, tasks
and user-pools, and are organized in a rooted tree hierarchy. Administrative users
are assigned to AUs with possibility of restricting their authority to user-role
assignment or task-role assignment. The partitioning of roles and tasks across
AUs leads us to propose an engineering process for AUs for given role hierarchy
and/or task hierarchy. The potential for engineering AUs in this manner is a
significant advantage of Uni-ARBAC.

This paper makes the following contributions. We have presented a unified
model (Uni-ARBAC) for administering user-role and permission-role relation
for RBAC. Uni-ARBAC combines several novel concepts and administrative
principles from prior models into a more powerful and manageable unit called
administrative unit (AU). We proposed an engineering approach for developing
AUs. While most other administrative models assume the existence of separate
administrative roles, we relax this assumption and our approach for engineering
administrative units can also be used for engineering administrative roles.

The remainder of this paper is organized as follows. We discuss related work
in Sect. 2 highlighting the concepts we have adopted from prior administrative
models. We present our model in Sect.3 and some variations of the model in
Sect. 4. Section 5 discusses our approach for engineering AUs. We conclude the
paper in Sect. 6.

2 Background and Related Work

In this section, we review prior models for administering RBAC, emphasizing
those of their driving principles which have been incorporated in Uni-ARBAC.
These concepts and principles are summarized in Table 1.

220 P. Biswas et al.

The value of grouping permissions into a higher level abstraction has often
been recognized in the literature. Task-role based access control (TRBAC) [12]
proposes the notion of a task as a group of permissions which constitute a fun-
damental unit of business work in an enterprise. Similar to TRBAC, two-sorted
RBAC [9] and scenario-based role engineering [11] organize tasks into another
higher level abstract.

One of the central notions of RBAC administration is to separate user-role
and permission-role assignments. Introduced in ARBAC97 [15], this notion is
adopted by many other models including [13,14,16]. Uni-ARBAC accepts this
separation to be at the core of the model.

Another essential concept of ARBAC97 is to keep administration of roles
separate from regular roles. To this end, ARBAC97 introduced the concept of
administrative roles. Uni-ARBAC adopts the former separation principle, but
eschews the use of administrative roles for this purpose. Instead, Uni-ARBAC
introduces a more sophisticated construct of Administrative Units to achieve the
desired separation.

Table 1. Concepts motivating Uni-ARBAC (* denotes source of the concept)

Concepts and principles ARBAC97 | ARBACO02 | SARBAC | UARBAC | Role graph | Uni-ARBAC
[15] [13] [4,5] [10] model [18]

Task and task hierarchy v

Separation of user and v ox v v v v
permission administration

Separation of regular roles from | v/ * v v v
administration

User pools and user pool v o v
hierarchy

Administrative structure design v * v v

Reversibility and administrative v o* v
structure flexibility

Senior most administrators v * v

ARBACO02 [13] is another influential model for administrative RBAC. It doc-
uments a number of problems with ARBAC97 and introduces the notions of
user-pools and permission-pools. Uni-ARBAC adopts the user-pool and user-
pool hierarchy from ARBACO02, while on the permission side it adopts the task
and task hierarchy from [12] as discussed above.

Crampton et al. developed a model called SARBAC [4,5] based on the con-
cept of administrative scope, which confines the side effects of role hierarchy mod-
ification in a highly disciplined manner relative to ARBAC97. Notably, adminis-
trative scope becomes a means to define administrative roles which are otherwise
assumed to be given in ARBAC97 and ARBACO02. Administrative scope is math-
ematically defined based on the given role hierarchy. Uni-ARBAC incorporates
the general notion that the role hierarchy should influence the administrative
structure. However, it departs from the strict mathematical definition of SAR-
BAC to accommodate a heuristic top-down approach in designing administrative
units, based on the role-hierarchy and task-role allocation.

Uni-ARBAC: A Unified Administrative Model for Role-Based Access Control 221

The UARBAC [10] model proposes a number of principles for RBAC admin-
istration, such as scalability and flexibility, psychological acceptability and econ-
omy of mechanism. As noted earlier Uni-ARBAC departs from UARBAC on the
question of whether or not administrative permissions should be assigned to reg-
ular roles. However, all the other principles of UARBAC are considered similarly
desirable in Uni-ARBAC. As it stands some of the UARBAC principles, such as
psychological acceptability and scalability, are qualitative and difficult to con-
vincingly claim for a given model. Here we confine our attention to the two prin-
ciples of reversibility and administrative structure flexibility, which have been
explicitly adopted from UARBAC into Uni-ARBAC. The reversibility principle
requires that administrative operations should be reversible. This is incorpo-
rated in Uni-ARBAC by coupling grant and revoke operations for user-role or
task-role assignment in a single administrative unit. The principle of adminis-
trative structure flexibility (called policy neutrality in [10]) argues against the
tight coupling of administrative structure to role hierarchy, such as in SARBAC.

It remains to consider the Role-Graph Administration Model [18]. It par-
titions roles into units called administrative domains. The model explicitly
includes a single highest administrative domain which includes the MaxRole
and MinRole from the underlying Role-Graph model. Uni-ARBAC adopts this
concept embodying it in the highest administrative unit at the root of the admin-
istrative unit tree hierarchy.

In addition to the administrative models discussed above, there are other
notable models developed in various applied contexts, especially in temporal /lo-
cation aware RBAC [1,2], Enterprise RBAC [7,8]), event driven RBAC [3],
administration of cryptographic RBAC [19] etc.

3 The Uni-ARBAC Model

In this section, we describe the Uni-ARBAC model, along with formal definitions.
The overall structure of Uni-ARBAC is illustrated in Fig. 1. We consider Uni-
ARBAC in two parts: the operational model for RBAC with respect to regular

Operational UA TA PA
Model A E— S — “«—»{(

roles tasks O set

<« Many-to-many relation

Administrative
Model

user pools

useer‘nR‘

TA_admin
UA_admin

<+—» many-to-one relation

AU
administrative
units

Fig. 1. The Uni-ARBAC model for user-role and task-role administration

222 P. Biswas et al.

roles and permissions, and the administrative model for administering the user-
role and task-role relations of the former. These are respectively discussed in the
following two subsections.

3.1 Uni-ARBAC Operational Model

The sets and relations in the top part of Fig. 1 represent the Uni-ARBAC opera-
tional model, which is slightly different from the standard RBAC model [6]. The
most salient difference is that there is a level of indirection in role-permission
assignment, so permissions are assigned to tasks and tasks are assigned as a
unit to roles. As discussed in Sect. 2, this additional indirection has emerged in
several different administrative models in the literature. Additionally tasks are
organized in a partial order »=;, whereby a senior task inherits all permissions
from its juniors. For example, in Fig.2(b), task t1 is senior to tasks t2 and t3,
so it inherits permissions from both of them, and so on. User-role assignment
remains unchanged from standard RBAC, so individual users are assigned to
and deassigned from roles. For simplicity, we have not considered the standard
RBAC concepts of sessions and role activation.

The Uni-ARBAC operational model is formalized in Table 2. Item I specifies
the familiar components carried over from traditional RBAC. Item II specifies
the additional components which effect the additional indirection between per-
missions and roles via tasks. Item III formalizes the interaction between the
role hierarchy, task hierarchy, and permission-task and task-role assignments.
The interaction is schematically depicted in Fig. 3 and formally expressed in the
authorized_perms function. The authorization function in item IV specifies the
authorization required for a user to exercise a permission, which is that the per-
mission must be authorized to at least one role assigned to the user. A familiar
role hierarchy from the literature and an example task hierarchy are shown in
Figs.2(a) and (b), respectively.

Table 2. Uni-ARBAC operational model

L. Traditional RBAC Sets & Relations 1II. Derived Function
- U,R and P (users, roles and permission) - authorized_perms(r : R) — 2P defined as
- RH C RxR, partial order on roles > authorized_perms(r) ={p | (At,t' € T)
- UAC U xR, user-role assignment relation @r’ eR)r=r" Atz t'A

(t,r')e TANA(p,t') € PA]}
II. Added RBAC Sets & Relations

- T, set of tasks 1V. Authorization Function
-THCTxT, partial order on tasks >; - canexercise_permission(u : U,p : P) =
- PACPxT, permission-task assignment rel. (Ir € R)[p € authorized perms(r)

- TACT xR, task-role assignment relation Au,r) e UA]

Uni-ARBAC: A Unified Administrative Model for Role-Based Access Control

(a) Role Hierarchy Director (Dir)

/\

Cloud Project Lead (CPL) Mobile Project Lead (MPL)

N T

Cloud Engineer (CE) Quality Englneer Cloud Mobile Engineer (ME) Quality Engineer Mobile
(QEM)

\/

Cloud Developers (CD) Mobile Developers (MD)

Developers (Dev)
\

Employee (Emp)

223

(b) Task Hierarchy

t1: Project Management

t2: Cloud Project t6: Mobile Project
Management Management
t3: Development Plan t4: Test Plan (Cloud) t7: Development Plan t8: Test Plan (Mobile)
(Cloud) (Mobile)
t5: Cloud Repository t9: Mobile Repository
Management £10: Access to Virtual Machines Management

t11: Campus Access
t12: Job Benefits

(c) User-Pool
Hierarchy Director Pool (DP) Developers Pool (DevP) Employee Pool (EP)

/\

Cloud Team Pool (CTP) Mobile Team Pool (MTP)

Cloud Project Lead Mobile Project Lead
Pool (CPLP) Pool (MPLP)

(d) Administrative Unit Management Unit

Hierarchy Tasks: {t1}
Roles: {Dir}
User Pools:{DP}

T

: Cloud Unit : Common Jobs Unit Mobile Unit

| Tasks:i{t2, 13, t4, t5} ; Tasks:{t10, t11, t12} Tasks:{t6, 17, t8, t9}

| Rolesi{CPL, CE, QEC,CD} | | Roles: {Dev, Emp} Roles: {MPL. ME, QEM, MD}
i User-Pools: {CTP, CPLP} : User-Pools:{EP, DevP} i ! User-Pools: {MTP, MPLP}

Fig. 2. Examples of Uni-ARBAC hierarchies

224 P. Biswas et al.

& Creo)

> T’ roles(au)
L (t,r)er4 administrative
7® % unit, au *
3 user_poois“(au) tasks”(au)
>t
DL =)
Fig. 3. Interaction of role and task Fig. 4. Scope of control of an AU

hierarchies in operational model

3.2 TUni-ARBAC Administrative Model

We now turn to the Uni-ARBAC administrative model illustrated in the lower
part of Fig. 1, and formalized in Table 3. The administrative model introduces
a number of additional components. First we have the notion of user-pools and
user-pool hierarchy adopted from ARBACO02 [13]. An example user-pool hierar-
chy is shown in Fig.2(c). This example has three independent user-pools DP,
DevP and EP, with DevP being senior to a number of other user-pools, i.e.,
CTP, CPLP, MTP and MPLP. Motivation for the user-pool hierarchy in this
instance is by virtue of qualifications, so every user in the CPLP pool is also eli-
gible to be a developer in the DevP pool. The hierarchy obviates the need to do
multiple assignments of a user to both pools in such cases. Users are assigned to
user-pools via the UUPA user to user-pool assignment relation. The user-pool
notion is formally specified in item I of Table 3.

The central mechanism in Uni-ARBAC is the administrative unit. The set
of administrative units is denoted as AU, while individual administrative units
are indicated as au, au;, au;, etc. Uni-ARBAC requires that each au manages
an exclusive set of roles which is not under the purview of another au. The roles
function in item II of Table 3 is a partitioning assignment in that it must satisfy
the requirements that roles(au;) N roles(au;) = O for au; # auy, and J,,c ap
roles(au) = R. The effect of partitioning is that each role is allocated to exactly
one au for administration. Each au only manages the roles it is directly assigned.
The effect of the role hierarchy is limited to the operational model.

The partitioning concept is further applied in Uni-ARBAC to tasks and user-
pools via the tasks and user_pools functions in item II of Table 3. These func-
tions must satisfy the requirements tasks(au;) N tasks(au;) = 0 for au; # au;,
Uaueau tasks(au) = T, user_pools(au;) N user_pools(au;) = O for au; # au;,
and (J,,c 4y user_pools(au) = UP.

In this manner an administrative unit manages a explicitly assigned partition
of roles, to which it can assign users from an assigned partition of user-pools and
tasks from an assigned partition of tasks. Unlike for roles, Uni-ARBAC extends
the authority of an aw to junior tasks and user-pools, for which purpose we
define the tasks™ and user_pools* functions in item IIT of Table 3. The net effect

Uni-ARBAC: A Unified Administrative Model for Role-Based Access Control 225

Table 3. Uni-ARBAC administrative model

L. User-Pools Sets & Relations V. Authorization Functions
- UP, set of user-pools - can_manage_task_role(u : U,t : T,r : R) =
- UPH C UP x UP, partial order >, (Fau;, au;)[(u,au;) € TAadminA
-UUPAC U x UP, user to user-pool auj zqy auj Ar € roles(auj) At € tasks™ (auj)]

assignment relation |- can_manage_user_role(uy : U,up : U,r :R) =
(Jau;, auj)[(uy,au;) € UA_adminA

II. AU and Partitioned Assignments auj >qy AUj AT € roles(auj) AJupeUP)
[(up,up) € UUPA A up € user_pools™(au;)]

- AU, set of administrative units
- roles(au : AU) — 2R, assignment of roles
- tasks(au : AU) - 2T, assignment of tasks
- user_pools(au : AU) — 2UP,

assignment of user-pools

VI. Administrative Actions

- assign_task_to_role(u : U,t: T,r: R)
Authorization:
can_manage_task_role(u,t,r) = True
Effect: TA’ = TAU{(t,r)}

- revoke_task_from_role(u : U,t: T,r : R)
Authorization:
can_manage_task_role(u,t,r) = True
Effect: TA’ = TA\{(t,7)}

- assign_user_to_role(uy : U,up : U,r: R)
Authorization:

.. . . can_manage_user_role(uy,uy,r) = True
IV. Administrative User Assignments Effect: UA’ = UAU {(u, 7))

-TA_admin CU x AU
-UA_admin CU x AU

I11. Derived Functions
- tasks*(au : AU) — 27T, defined as
tasks*(au) = {t"| (At € tasks(au))t >; t'}
- user_pools*(au : AU) — 2UP ‘and
user_pools*(au) = {up” | (Jup €
user_pools(au))up =yp up’}

- revoke_user_from_role(uy : U,up : U,r : R)

Authorization:
-AUH C AU x AU, rooted tree can_manage_user_role(uy,uy,r) = True
partial order >4, Effect: UA’ = UA\{(u, 7))}

is illustrated in Fig. 4, and further discussed in context of item V of Table3. An
example partitioning of roles, tasks and user-pools across four administrative
units is shown in Fig. 2(d). We also note that for a given au it is permissible to
assign an empty partition of roles, tasks or user-pools. While, such situations
may be unusual, the model does not prohibit them.

Next we consider assignment of users to administrative units (item IV of
Table 3). Users can be assigned via the TA_admin or the UA_admin relation.
The former authorizes the task-role assigment power of an au, while the latter
authorizes the user-role assignment power. In this way, these two capabilities
can be separately assigned to users, even though they are coupled in the au.
This embodies the separation of user and permission assignment principle of
Sect. 2. A user assigned to any au via T'A_admin or UA _admin is said to be an
administrative user.

For convenience in maintaining the T'A_admin and UA _admin relations,
Uni-ARBAC also defines a hierarchy »=,, on administrative units. Assignment
of user u to a senior au; for task-role administration, i.e., (u,au;) € T A_admin,
effectively also assigns u for task-role administration to all au; for au; =4, au;.
Likewise for (u, au;) € UA_admin. For simplicity, Uni-ARBAC requires >, to

226 P. Biswas et al.

TA_Admin -
au, UA_Admin
= | @]
a; 2y auﬁ roles °

au; 2 gy a”/§ roles

user-pool*

@,
Fig. 5. Task-role authorization Fig. 6. User-role authorization

be a rooted tree hierarchy. One effect of this is that there is a seniormost au. An
example administrative units tree is shown in Fig. 2(d).

The authorization functions of Uni-ARBAC are specified in item V
of Table3 as boolean functions that return true or false. The function
can-manage_task_role(u : U,t : T,r : R) specifies the conditions for user u to
assign/revoke task t to/from role r. The requirement is schematically depicted
in Fig.5. User u must be assigned as a TA_Admin to the unique administra-
tive unit au; which has jurisdiction over role r, or alternately so assigned to an
administrative unit au; =4, au;. In either case task ¢ must be assigned to au;
or be junior to a task assigned to au;.

The can-manage_user_role(uy : U,uq : U,r : R) similarly specifies the con-
ditions for user u; to assign/revoke user uy to/from role r, and is schematically
depicted in Fig. 6. User u; must be assigned as U A_Admin to the unique admin-
istrative unit au; which has jurisdiction over role r, or alternately to an admin-
istrative unit au; =4, au;. In either case user us must be assigned via UUPA
to a user-pool which is directly assigned to au; or to some user-pool junior to a
user-pool directly assigned to au,;.

Item VI of Table 3 formalizes the four administrative actions of Uni-ARBAC.
Assigning and revoking have the same authorization and the effect is self-
explanatory. The alignment of authorization for assign and revoke embodies
the principle of reversibility of administrative actions discussed in Sect. 2.

3.3 Uni-ARBAC Invariants

Invariants are properties that hold for the lifetime. For the moment assume we
start with an initial state in which both T'A and U A are empty, i.e., the roles have
no tasks or users assigned. Let us denote T'A where all possible T'A assignments
have been made as T'A,,,4.. It is evident that,

TAnmae = U {(t,r)|t € tasks™(au) Ar € roles(au)}.
au€ AU

Because of reversibility of assign and revoke, and the independence of each
assignment from another, in any state T'A must satisfy

D CTACTAnu- (1)

Uni-ARBAC: A Unified Administrative Model for Role-Based Access Control 227

It is further evident that any value of T'A bounded as in Eq. 1 is realizable. We
can either build up from an empty T'A or build down from T'A,,,4.. In fact we
can take the system from any value of TA compliant with Eq.1 to any other
compliant value. Further, we can relax our assumption of an empty T A in the
initial state. Any initial state with T'A compliant with Eq. 1 will ensure that T'A is
maintained within these bounds. Finally, let T'Ag denote T'A in the initial state.
Any (t,r) € TAo/T Apae cannot be revoked and will persist in all subsequent
states. These observations can be proved formally but are quite evident. As an
example, the upper bound of TA for the administrative unit hierarchy of Fig. 2(d)
does not contain the pair of (¢1,CPL). Thus the task ¢1 cannot be assigned to
the role C'PL using the instance of the AUs in Fig. 2(d).

We can make similar observations with respect to the maximal possible values
of UA as follows,

UAmas = U {(u,7)|(3up € UP)[(u,up) € UUPA AT € roles(au) A up € user_pools™ (au)]}
au€ AU

so UA is bounded as follows.

D CUACUAma (2)

4 Variations of Uni-ARBAC

In this section we discuss some variations of Uni-ARBAC which materially alter
the characteristics of the model. Uni-ARBAC has a rich structure so it is not
surprising that many variations are possible. Some are relatively incremental,
such as allowing the administrative hierarchy to be a general partial order rather
than a rooted tree. Here we discuss a few variations that raise some substantial
policy issues.

4.1 Aggressive Inheritance Model

In this variation we allow a senior au to do more than simply the sum of what
the au itself is authorized to do plus what each of the junior au’s are allowed. To
be concrete consider the AU hierarchy of Fig. 2(d), and an administrative user u
assigned as T'A_admin and U A_admin to the Management Unit administrative
unit. This user also inherits membership in the Cloud Unit and Mobile Unit
administrative units. User u is thereby authorized, for example, to assign task
t2 to role CPL and users from user-pool CTP to role CPL. However, u cannot
make assignments across the junior administrative units, such as task t2 to
role MPL and users from user-pool MTP to role CPL. We denote this form of
inheritance in the AU hierarchy as membership inheritance.

With the alternate aggressive inheritance we allow cross assignments across
junior administrative units by a senior administrator. There is clearly a major
policy difference between the two forms of inheritance. The senior au effectively
serves as a single consolidated au with freedom to assign any task to any role,
and users from any user-pool to any role. With aggressive inheritance the user

228 P. Biswas et al.

Table 4. Uni-ARBAC with aggressive inheritance

V’. Modified Authorization Functions
- can_manage.task_role(u : U,t : T,r : R) = (Jau;, auj, aug)[(u, au;) € TA_adminA
auj >qy aUj A au; =g, aug Ar € roles(auj) At € tasks*(auy)]
- can_manage_user_role(uy : U,up : U,r: R) = (Jau;, auj, auy)[(uy,au;) € UA_admin
Aauj gy aujA aj zqy aug Ar € roles(auj)A (up € UP)[(up,up) € UUPAA
up € user_pools™(auy)]

u discussed above will be able to assign t2 to role MPL and users from user-
pool MTP to role CPL. Perhaps more dangerously, user u will be able to assign
task t1 to MPL. The effect of aggressive inheritance is formally stated in the
modified authorization functions of Table 4. Everything else from Table 3 applies
unchanged to Uni-ARBAC with aggressive inheritance. The senior most au at
the root of the AU hierarchy can assign any task to any role and any user
(assuming every user is in at least one user-pool) to any role, so T A0 = T X R
and UA,nqa: = U X R. Equations 1 and 2 continue to hold. Other less aggressive
variations can also be considered.

4.2 No Self-administration Model

Consider the administrative actions assign_user_to_role(uy : U,uz : U, : R) and
revoke_user_from_role(u; : U,us : U,r : R) of Table3 item VI. In general, u;
can equal us, so it is permissible for u; to assign and revoke himself to and from
roles. In some contexts, this may be considered as a conflict of interest. To avoid
this, an additional check that u; # us can be added to the can_manage_user _role
authorization function of Table 3.

5 Engineering Administrative Units

There can be different meaningful AU hierarchies for a given set of roles. For
example, for the roles in Fig.2(a), two different instances of AUs are given in
Figs.2(d) and 7, based on different partitioning of the roles. Crampton and
Loizou partition roles in defining ‘administrative scopes’ in [5] to confine the
side effects of role hierarchy modification in a highly disciplined manner. The
AU structure in Fig. 2(d) is based on the partitioning of roles defined in admin-
istrative scope.

As we have argued, one particular partition is not suitable for all require-
ments. UARBAC [10] argues that role partitioning according to administrative
scope does not work well for all different types of role hierarchies and there
should be flexibility in the administration structure.

We develop the following simple and flexible partitioning heuristics, which
are applicable to many different types of hierarchies and can be configured to
produce different partitions for a given set of roles or tasks.

Uni-ARBAC: A Unified Administrative Model for Role-Based Access Control 229

i Management Unit
i tasks: {t1}

i roles: {Dir}

i user pools: {DP}

T

Developers Unit i H Project Leads Unit Employee Unit
tasks: {t10} H itasks: {t2, t6} tasks: {t11, t12}
roles: {Dev} H iroles: {CPL, MPL} roles: {Emp}
user pools:{DevP} H %user pools: {MPLP, CPLP} user pools: {EP}

Cloud Eng. Unit H Mobile Eng. Unit
tasks:{t3, t4, t5} itasks:{t7, 8, t9}
roles:{CE, QEC, CD} iroles:{ME, QEM, MD}
user pools: {CTP} iuser pools: {CTP}

Fig. 7. Alternate AUs for roles, tasks and user-pools as given in Fig. 2

1. Most senior roles in the role hierarchy contain critical tasks. They should be
administered separately. Similarly, most junior roles contain tasks that most
other roles inherit. They should also be administered separately.

2. For rest of the roles, iteratively select the most senior and most junior roles
until all roles are partitioned.

After partitioning and specifying role set for each AU, we can populate tasks
in the AUs using given task-role allocation. Scenario based top-down approach
for engineering roles [11] derives tasks in an intermediate process and assign
them to roles. Thus, we believe, the process of engineering roles can be utilized
to derive task-role allocation. On the other hand, the process of engineering
user-pools and allocating them in AUs, assigning administrative users into AUs
should also be carried out to develop working AUs. We do not further elaborate
these issues here.

6 Conclusion

In this paper, we present Uni-ARBAC, a unified model for administering user-
role and task-role relations in Role Based Access Control. It combines various
novel concepts and administrative principles from prior works. It integrates user-
role and permission-role administration into a manageable unit, we call Adminis-
trative Unit. While most of the previous models assume existence of administra-
tive roles for managing regular roles, we relax this assumption and our approach
for engineering administrative units can be used for engineering administrative
roles.

Nonetheless, Uni-ARBAC has limitations. It uses several sets and relations
of which it administers only task-role and user-role relations. Further research
in this area is needed to realize a complete model.

Acknowledgement. This research is partially supported by NSF Grants CNS-
1111925 and CNS-1423481.

230

P. Biswas et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Bertino, E., Bonatti, P.A., Ferrari, E.: TRBAC: a temporal role-based access con-

trol model. TISSEC 4(3), 191-233 (2001)

. Bertino, E., Catania, B., Damiani, M.L., Perlasca, P.. GEO-RBAC: a spatially

aware RBAC. In: Proceedings of 10th SACMAT, pp. 29-37. ACM (2005)
Bonatti, P., Galdi, C., Torres, D.: ERBAC: event-driven RBAC. In: Proceedings
of 18th SACMAT, pp. 125-136. ACM (2013)

. Crampton, J.: Understanding and developing role-based administrative models. In:

Proceedings of 12th ACM CCS, pp. 158-167 (2005)

Crampton, J., Loizou, G.: Administrative scope: a foundation for role-based admin-
istrative models. ACM TISSEC 6(2), 201-231 (2003)

Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM TISSEC 4(3), 224-274 (2001)
Kern, A.: Advanced features for enterprise-wide role-based access control. In: Pro-
ceedings of 18th ACSAC, pp. 333-342. IEEE (2002)

Kern, A., Schaad, A., Moffett, J.: An administration concept for the enterprise
role-based access control model. In: Proceedings of 8t¢h ACM SACMAT, pp. 3-11
(2003)

Kuijper, W., Ermolaev, V.: Sorting out role based access control. In: Proceedings
of 19th ACM SACMAT, pp. 63-74 (2014)

Li, N., Mao, Z.: Administration in role-based access control. In: Proceedings of 2nd
ACM ASIACCS, pp. 127-138 (2007)

Neumann, G., Strembeck, M.: A scenario-driven role engineering process for func-
tional RBAC roles. In: Proceedings of 7th ACM SACMAT, pp. 33-42 (2002)

Oh, S., Park, S.: Task-role-based access control model. Inf. Syst. 28(6), 533-562
(2003)

Oh, S., Sandhu, R.: A model for role administration using organization structure.
In: Proceedings of 7th ACM SACMAT, pp. 155-162 (2002)

Sandhu, R.: The ASCAA principles for next-generation role-based access control.
In: Proceedings of 3rd ARES (2008)

Sandhu, R., Bhamidipati, V., Munawer, Q.: The ARBAC97 model for role-based
administration of roles. ACM TISSEC 2(1), 105-135 (1999)

Sandhu, R., Munawer, Q.: The ARBAC99 model for administration of roles. In:
Proceedings of 15th Annual ACSAC, pp. 229-238. IEEE (1999)

Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. Computer 29(2), 38-47 (1996)

Wang, H., Osborn, S.L.: An administrative model for role graphs. In: De Capitani
di Vimercati, S., Ray, I., Ray, I. (eds.) Data and Applications Security XVII. IFIP,
vol. 142, pp. 302-315. Springer, New York (2004)

Zhou, L., Varadharajan, V., Hitchens, M.: Secure administration of cryptographic
role-based access control for large-scale cloud storage systems. JCSS 80(8), 1518—
1533 (2014)

	Uni-ARBAC: A Unified Administrative Model for Role-Based Access Control
	1 Introduction
	2 Background and Related Work
	3 The Uni-ARBAC Model
	3.1 Uni-ARBAC Operational Model
	3.2 Uni-ARBAC Administrative Model
	3.3 Uni-ARBAC Invariants

	4 Variations of Uni-ARBAC
	4.1 Aggressive Inheritance Model
	4.2 No Self-administration Model

	5 Engineering Administrative Units
	6 Conclusion
	References

