
QoS Aware Dependable Distributed Stream Processing

Vana Kalogeraki1∗, Dimitrios Gunopulos1, Ravi Sandhu2, Bhavani Thuraisingham3

1Department of Computer Science & Engineering, University of California Riverside
2Institute for Cyber Security, Univ. of Texas at San Antonio

3Department of Computer Science, University of Texas at Dallas
{vana, dg}@cs.ucr.edu, ravi.sandhu@utsa.edu, bxt043000@utdallas.edu

Abstract

In this paper we describe our approach for devel-
oping a QoS-aware, dependable execution environment
for large-scale distributed stream processing applica-
tions. Distributed stream processing applications have
strong timeliness and security demands. In particu-
lar, we address the following challenges: (1) propose
a real-time dependable execution model by extending
the component-based execution model with real-time
and dependability properties, and (2) develop QoS-
aware application composition and adaptation tech-
niques that employ resource management strategies and
security policies when discovering and selecting appli-
cation components. Our approach enables us to develop
a distributed stream processing environment that is pre-
dictable, secure, flexible and adaptable.

1 Introduction

There is an increasing number of emerging stream
processing applications executed on large-scale, dis-
tributed and heterogeneous computing systems. These
applications will take advantage of computers and net-
works to enable geographically distributed groups of
users to collaborate with one another, share data stored
at different locations, share computing resources to exe-
cute computer-intensive experiments and visualize the
experimental results in real-time. Such an infrastruc-
ture, coupled with advances in computational methods
and software technologies, has stimulated the interest of
users in multiple application domains. Examples of such
domains include healthcare, surveillance, industrial pro-
cess control, and financial applications. Unfortunately,
unlike current platforms, future execution environments
will be highly heterogeneous, constantly changing and

∗This research was supported by NSF Award 0627191.

of great complexity.
In this paper we focus on applications where the

data are collected or delivered as streams, being ei-
ther the output of different sensors (including optical,
such as video, feeds), or provided as streams from con-
tent providers, such as servers that provide access to
multimedia objects. This is particularly the case in
health-care or surveillance applications, where data are
collected by sensors, as well as in financial applica-
tions where it is important to follow indices over time.
We also focus on fundamentally distributed applications
where the data, and the information extracted from the
data must be made available to a set of users located in
geographically diverse positions. Such sensitive appli-
cations in emergency response, or in military and com-
mercial environments, have strong timeliness and secu-
rity requirements.

Efficient management of such a huge and widely
distributed system is a considerable challenge. In our
approach we have identified the following challenges
that we have to address to develop dependable execu-
tion environments for the future large distributed ap-
plications. First, applications have end-to-end Qual-
ity of Service (QoS) demands, including predictable la-
tency, jitter and reliability that must be satisfied simulta-
neously. The fundamental problem is that in a large-
scale environment it is difficult to determine the re-
source usage of a specific application on a specific ex-
ecution platform in advance and predict its resource re-
quirements. Current distributed object and Grid mid-
dleware technologies provide standard protocols and
platform-independent technologies that enable applica-
tions to interoperate and share heterogeneous resources
across multiple administrative domains and computing
platforms. However, (a) the distributed execution of the
applications across multiple shared nodes, (b) the unpre-
dictability in the arrival patterns of the requests and, (c)
the multiple QoS requirements that need to be satisfied
simultaneously make the prediction more complicated.

11th IEEE Symposium on Object Oriented Real-Time Distributed Computing (ISORC)

978-0-7695-3132-8/08 $25.00 © 2008 IEEE
DOI 10.1109/ISORC.2008.77

69

Second, resource changes and failures in a large-scale
system are inevitable. Processors, networks and appli-
cations frequently fail or restart, service downtimes and
routine maintenance are common processes. Predicting
in advance and handling all these changes, significantly
increases the complexity and difficulty of programming
reliable applications. Our goal is to consider such a
highly variable execution environment with significant
changes in the application behavior and the availability
of resources. Third, we need to ensure that the system
as well as applications are secure, meet real-time con-
straints, ensure data integrity and support fault tolerant
processing. This requirement is particularly important
for critical stream processing applications. Finally, it is
important for the resource management mechanisms to
be transparent and non-intrusive so that can be easily
employed by the user and thereby make them accessible
to a much wider population of application developers
and scientists.

2 Component based Execution Model

In this section we describe our component based ex-
ecution model. Our objective is to build an environment
where the user can easily describe the application, and
the real-time and dependability requirements, and then
the system can automatically modify the application and
extend the composition entities to encode this function-
ality and define and enforce real-time and dependability
policies on components during the execution which are
essential to satisfy the user requirements.

To do that we need to develop an engine that takes as
input the application graph (that describes the applica-
tion execution) and the user requirements for QoS and
dependability and creates a new, annotated, graph that
satisfies the user requirements. Let G be the original
application graph, R the user requirements, and let M
(G, R) be the new graph. The requirements for QoS
specify parameters such as deadlines and priorities, are
given as a set of attributes. The security requirements
are given, following the UCON framework, as lists of
allowed accesses for each object. The process that will
create M (G, R) must have the following information:
generic descriptions of the components used by the ap-
plication graph G, as well as a mechanism to insert the
appropriate hooks in the components so that the required
calls to UCON can be performed automatically.

2.1 Component based Model

Composing software from reusable building blocks
(i.e., components) has been a central idea in systems
engineering. A processing service component C (or

component) is defined as a processing element that im-
plements an atomic processing function Fc on a set of
input data streams

∑
is and produces a set of output

data streams
∑
os: C = (Fc,

∑
is,
∑
os). Examples

of processing functions include aggregation, filtering
and correlation operations. Multiple instances of the
same component can exist in the system. We denote
these components as c1, .., ck. Components receive ap-
plication data streams as inputs generated from external
sources (or as the result of the execution of other appli-
cations) which are then processed by the components in
real-time to generate outputs. Components can be com-
posed dynamically to build complex distributed appli-
cations. An application is represented with an applica-
tion component graph, a directed acyclic graph, where
the vertices of the graph represent the components be-
ing invoked and the edges represent invocations between
the components. Each component in the graph can be
invoked in sequence or in parallel by multiple applica-
tions concurrently; thus, efficient sharing of components
and streams is desirable, to improve the performance and
scalability of the system.

2.2 Security Model

Recently Sandhu et al developed a new model called
UCON for usage to unify all these extensions to tradi-
tional access control in a coherent, consistent and com-
plete manner. We are extending the UCON model to
develop RT-UCON or real-time UCON for application
in the QoS aware stream processing space. Note that we
have proposed some extensions to integrate Kane Kim’s
TMO (Time Triggers Message Triggers Object) model
with UCON and presented our results in prior ISORC
conferences. We are now examining these extensions
for our distributed stream-based execution model.

In the UCON model[37], an access is not a permanent
decision, but a process lasting for some duration with re-
lated actions. Besides, actions during an access period
result in changes to subjects or objects attributes. Usage
control model has the following components: subject,
object, rights, condition and obligations. The authoriza-
tion which consists of subject, object and access rights
is the basic to access control as in traditional model. The
UCON extends the general model of access control by
including obligation and condition. The obligations are
actions that are performed by subject or user before ob-
taining access rights and conditions are system or envi-
ronmental restrictions such as system clock, system lo-
cation, and system mode and so on. The distinguishing
aspects of UCON compared to traditional models are
continuity of access decision and mutability of subject
and object attributes. There are three phases to complete

70

access decision: before usage, ongoing usage and after
usage. In UCON, access decision can be checked repeat-
edly during the access and revoked if some conditions
are not satisfied or changed. The mutability and conti-
nuity of attributes make the UCON model very power-
ful and provide seamless security administration policy.
Also, UCON model is useful to specify dynamic con-
straints and consumable access increasing or decreasing
access time. Access decision is not a single function for
subjects or objects, it interact with each other depending
on access from others.

The UCON model encompasses the traditional model
(e.g., MAC/DAC) and RBAC[37]. Security level of
MAC and DAC and role of RBAC is adapted in UCON
using attributes which are attached to subjects and ob-
jects. The basic authorization components of UCON
and its mutability and continuity can be easily adapted
for access control to the execution model. Mutability
aspect of UCON can be used to control the scope of ac-
cess by increasing or decreasing mutable attributes such
as access time, access range and access count. The con-
dition aspect of UCON also can be useful for the exe-
cution model by means of restricting the access. The
component object can give permission or be denied dur-
ing a particular time period, which is an extension from
the idea of operations in the RBAC model. This feature
may be used within the methods to restrict its behaviors
or access from others. For example, methods can block
the access from outside by changing its attributes or an-
nounce to all other objects when the system goes into
maintenance or detect any abnormal status. Condition
also can control resource usage to limit the number of
access or scope. Through the entire system life or spe-
cific time period, conditions can be varied and security
policies can be accommodated flexibly and dynamically
to the execution scheme. This aspect of UCON is very
beneficial and efficient for the execution scheme when
its correlated with mutability. The concept of obliga-
tions also can give a useful way for access decisions.
Obligations are active actions required to be performed
on the subject side before accessing the object, so it can
be used to screen any object before the subject acquires
the access permission. Global timing synchronization
can be one example of obligation. To communicate with
each other, all objects must have the same global time
to prevent abnormal behavior among the objects or to
guarantee timing assurance.

The attributes of an object also can be controlled or
referenced by obligation aspect as well. If an object
does not allow using its resources associated with the at-
tributes by other objects with respect to obligation, then
access may be denied because it may allude to mali-
cious objects. To accomplish the above features, ob-

ject classes need to be extended to add attributes and
methods for conditions, obligations and mutability of
the UCON model. We may need to devise various meth-
ods to handle the components of the UCON model for
real-time applications.

3 Developing a QoS aware dependable
processing environment

Our plan is to develop a QoS aware dependable
stream processing environment for enabling the compo-
sition and deployment of large-scale distributed applica-
tions. The following key challenges must be addressed:

• Develop a real-time dependable execution model
by extending the component-based execution
model with real-time and dependability properties.

• Develop QoS aware component composition poli-
cies, investigating component discovery tech-
niques, resource management strategies and secu-
rity policies.

3.1 Dependable processing for the execution
model

We are now examining our extensions for our dis-
tributed stream-based execution model. We plan to in-
vestigate two aspects of dependable processing, real-
time and access control properties.
Real-time Properties. The real-time interface is de-
veloped to ensure that the QoS requirements of the ap-
plications are met. To meet real-time requirements we
need to specify parameters such as deadlines, execution
times, priorities for the applications and fine tune pa-
rameters such as resource (CPU, memory, bandwidth)
sharing, thread pools and buffer sizes for the execu-
tion environment. Our objective is to specify real-time
and QoS parameters for the components offline and deal
with the difficult problem of managing their execution at
run-time to enforce the timing constraints to meet user
requirements.

At application deployment time, a description of the
components is provided, enriched with the real-time
properties. An example of a real-time property is the
application deadline. At run-time, the system reads the
real-time properties of the components and assigns pri-
orities to threads that will carry the execution of the
components, as invoked by the application and based on
the composition policy. As the application invokes com-
ponents across multiple processors, the real-time prop-
erty (i.e., deadline) of the application is carried along
with the invocations, along with other information about

71

the application. This allows us to ensure that the real-
time property is applied to the application end-to-end.
As the application executes, the composition policies
guarantee that the execution is based on the deadline of
the application. We will first target single-threaded com-
ponent implementations (in which each component is a
single unit of control) and later address the more difficult
problem of multi-threaded component implementations.

Component policies are used to implement composi-
tion. The component policy will define the name of the
policy and the components for which the policy applies.
Policies essentially define how components interact with
their run-time environment. This separation effectively
decouples a component from its execution environment
so that the component can be deployed in different exe-
cution environments without modification to the compo-
nent. The components are managed by the system. We
employ profiling techniques to monitor the execution
times of the components and local management tech-
niques for CPU, memory, network, storage and other lo-
cal resources [18] to schedule, configure and monitor the
component execution on the local resources.

3.1.1 Access Control

For an execution model to be secure we need the se-
cure composition of many components including secure
real-time (RT) operating systems, networks, databases,
middleware, and applications. We will investigate is-
sues on enforcing access control policies for our execu-
tion model with applications running on various nodes
cooperating to support a network of applications. We
are taking advantage of some prior research results by
our team members. Some early efforts on developing
secure RT models at the MITRE Corporation [78]. We
are continuing with this effort at UT Dallas [26]. A few
efforts have been reported on incorporating security into
RT middleware, especially RT object request brokers
[41]. Designing flexible security in RT data manage-
ment systems is reported in [38]. Access control policies
specify the types of access that subjects have to objects.
These policies include role-based policies where access
to objects is granted depending on the roles of the users
and usage control policies [3]. Our team member Ravi
Sandhu from GMU is the inventor of two the prominent
access control models: Role-based access control and
Usage control (UCON) models [38]. He has demon-
strated that UCON encompasses all the other models to
date [26]. The challenge now is to incorporate UCON
based access control into our execution model. For ex-
ample, what credentials should client possess to obtain
services of read-only or read-write types from servers?
How can timing constraints and deadlines be met when
the access control policies are enforced ? How can ac-

cess control be enforced across a dynamically formed
client-server chains across multiple nodes?

Access control for our execution model can also be
viewed as the function of trust management and negoti-
ation. Honoring a service request from a client say C1,
depends on how much the server say S, trusts C1. What
is the guarantee here that C1 will invoke client C3 and
share the data obtained from client 2 only after inform-
ing C2? Recently there have been efforts on implement-
ing trust management and negotiation systems for vari-
ous types of information systems [11, 12]. UCON en-
compasses trust models, privacy models, dissemination
models as well as access control. Therefore investigat-
ing UCON for our execution model will address the var-
ious issues that are important to develop a dependable
programming environment.

A dependable execution model must not only satisfy
the security policies but also ensure that the timing con-
straints are met. Enforcing security policies may be time
consuming and as a result the system may possibly miss
the deadlines. For example, in the military scenario that
we described in section 2, the system may miss the dead-
line if several access control checks are performed. We
need to develop flexible policies. Therefore in order to
get the information to the war fighter as quickly as possi-
ble, security policies may have to be bypassed and later
logged. This way the administrators will know that be-
tween time T1 and T2, the policies were bypassed. As
stated earlier, we have examined UCON extensions for
the TMO model. We are examining such extensions for
the execution model.

3.2 QoS-aware Component Composition

To meet end-to-end real-time requirements for the
applications, it is important to implement composition
based on current resource availability. Our approach in-
cludes the following steps: (a) Component Discovery,
and (b) QoS aware composition.
Component Discovery. There has been a large body
of work on resource and data discovery in large-scale
systems. However, the requirements of our QoS-aware
composition are different from those of a traditional data
sharing application: First, stream processing applica-
tions have QoS demands. To select the best components
that meet the application QoS demands, we must con-
sider multiple possible candidates along with the loads
on the corresponding nodes. Second, our objective is
to implement scalable dissemination techniques and are
able to cope with frequent configuration updates.

Our approach is to employ data summarization and
dissemination to propagate component and resource in-
formation to the appropriate nodes, using a fully decen-

72

tralized and scalable mechanism. We propose to develop
data summarization techniques based on the Bloom fil-
ter data structure[7]. Bloom filter is a compact way of
representing summaries of data items stored at the nodes
and testing to see whether a given item is included in
the summary. The advantage of Bloom filters is that
they provide a tradeoff between memory and traffic re-
quirements and false positive ratio (i.e., false hits). Our
system exploits the fact that a small number of false
positives does not greatly affect the performance of our
searching mechanism. This fact makes the Bloom filter
approach highly suitable for locating components and
streams accurately and fast. Furthermore, our system
considers current processing and network loads when
composing the applications. For example, if a compo-
nent is available at two nodes, we select the component
from the least loaded node.
QoS aware composition. For each application re-
quest, the user could specify the data source, application
graph (that describes the application components and
their corresponding invocations) and real-time require-
ments. Given the component and stream specifications,
the node first queries the Bloom filters to get available
stream and component information. As mentioned ear-
lier, the Bloom filter can answer the query whether a
specific component is available at the horizon of a node.
If such a component exists, the system includes the com-
ponent as a candidate component for the required func-
tion. The node then retrieves the load condition of each
candidate component and the bandwidth in the commu-
nication links. The goal of our system is to reuse pre-
viously deployed components. We will investigate solu-
tions in which we estimate the effect of component reuse
by projecting the impact of the additional workload on
the QoS of the affected applications and ensure that a
component reuse won’t degrade unacceptably the qual-
ity of the existing streaming applications[28]. Such a
projection can assure the QoS provisioning for both cur-
rent applications and the new application admitted in the
system.

3.2.1 Adaptive Techniques for Flexible Dependable
Execution

The assumption here is that in a distributed system
any security mechanism can be compromised and the
goal is to increase the probability the system will con-
tinue to operate in an uncompromised fashion despite
the attacks. We will investigate tradeoffs with respect to
the frequency and timing for the access control checks.
Clearly the checks can be carried out at component in-
vocation and response. This is the safest approach, but it
is more efficient to do it once at application deployment
time, if this can be done. An intermediary solution is to

do the checks occasionally, but not in every invocation.

Consider the following situation: we have a long-
lived stream processing operation, where a certain com-
ponent is repeatedly invoked. Clearly we do not have
to recheck the access control rights every time unless
we expect them to change frequently. Consider the case
where adaptation is based on changing availability of
system resources. Here we can formalize the problem
essentially in the same way that we formalize the com-
position problem, that is, if different levels of security
can be defined we can decide which level to use based
on user requirements and availability of resources. Here
we can possibly consider optimizing two objective func-
tions, (QoS and security) and either combine them into
one using a user defined formula (for example a linear
combination of the two objective functions) or optimize
them separately.

Adaptation can also be carried out on changing user
requirements. This also assumes that different levels of
security can be defined. One idea here, as described in
[30] and [42], is that processes operate at different ac-
cess levels or with different credentials. Suppose pro-
cess P1 cannot send any messages to Process P2 as spec-
ified by the policy. The security monitor will ensure that
the policy rule is enforced. Furthermore, in such a sit-
uation, P1 will not be able to write into a stream object
O that can also be read by P2. This is because if P1 can
write into O and P2 can read from O, then P1 can pass
information to P2 through O. However P1 could manip-
ulate the read locks on O and covertly send data to P2
by acquiring and releasing read locks on O at different
times. This is an example of a covert channel. So the
security solution is to deny P1 read access whenever P2
has a write lock on O. But if P1 is a time critical pro-
cess then it will need all the resources to complete its
execution. In such a situation we need rules to resolve
the conflicts. These rules may be specified by the users
depending on the requirements. If the data in object O
has to be read by P1 so that it has to be sent to the war
fighter within 5 seconds, then P2 has to wait before it
gets write access to O. The fact that there may be a po-
tential for a covert channel has to be flagged so that the
system does not let this situation repeat in order to limit
the bandwidth of the channel.

We need to examine such adaptive policies for our ex-
ecution model. The policies need to be flexible to handle
the different user requirements. The goal is to enforce
policies in such a way that for time critical applications
the system must handle malicious attacks in such a way
that the timing constraints are met. During non crisis
situations such as during peace time, it is important that
the system ensures that malicious attacks are prevented
as much as possible by denying resources to malicious

73

higher level processes.

4 Related Work

A component-based system consists of modules that
implement a given interface, standardized by an exter-
nal framework [25, 22, 23]. However, integration of
real-time or dependability functionality is still an open
research field. Work done so far includes efforts to spec-
ify real-time CORBA [13, 32], doctrines for distributed
scheduling [24] and toolkits that provide dependency
checks to support distributed embedded system devel-
opment via components [35].

Distributed stream processing [1, 9] has been the fo-
cus of many recent research efforts.Load shedding tech-
niques to trade-off processing precision with timely re-
sponse are discussed in [36]. [20] describes an archi-
tecture for distributed stream management that makes
use of in-network data aggregation to distribute the pro-
cessing and reduce the communication overhead. Co-
herency requirements are used in organizing a hierarchy
of data repositories to efficiently filter and disseminate
streaming data in [33]. The problem of object or data
discovery has been studied in the field of peer-to-peer
overlays and data summarization and rumor spreading
algorithms that offer probabilistic guarantees have been
proposed [16, 12, 29].

Several efforts have attacked the problem of service
composition in the context of multimedia streaming.
SpiderNet [14] uses a probing protocol to setup the ser-
vice graph, while in PROMISE [15] a receiver selects
senders based on characteristics such as the offered rate,
the availability, the available bandwidth, and the loss
rate. In [10] the streams are transcoded before they are
delivered to the receiver and quality adaptation is uti-
lized to address changing resource availability. In this
paper we focus on the dependable processing of streams
in addition to delivery with QoS guarantees and extend
the component based model by satisfying both real-time
and dependability requirements.

Other real-time object models include the TMO
model by Kan Kim et al [19], the AWACS models by
Bensley and the RTSORAC model by Prichard, Wolfe
et al [27].

Early security model include the discretionary ac-
cess control models (DAC) and mandatory access con-
trol models (MAC) [2], [21]. In the 1990s there were
many activities on developing different kinds of access
control models. Notable are Sandhu’s models on RBAC
[31] and UCON [26]. In addition, security models for
the semantic web [39], XML [5], [4] and RDF [8] have
been developed. More recently there has been work on
Trust, Privacy and Dissemination models [37], [6].

Integrating security and real-time systems research
include the work reported by Thuraisingham Son et al,
[42], [34] and the work on dependable semantic web and
real-time dependable data mining by Thuraisingham et
al [40] and the Secure TMO research being carried out
at the University of Texas at Dallas by Jung-in and Thu-
raisingham [17].

5 Conclusions

In this paper we have proposed a QoS-aware de-
pendable stream processing environment to deal with
the challenges of real-time and secure processing of
data streams in large-scale systems. It is our impera-
tive design objective to develop an environment where
the users can easily describe the stream processing ap-
plication and define its real-time and dependability re-
quirements, and then the system can extend the compo-
sition entities to encode this functionality and enforce
real-time and dependability policies on components ex-
ecuting on the system resources to satisfy the user re-
quirements. Our approach aims to provide a flexible and
adaptable dependable execution environment.

References

[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,
M. Cherniack, J. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik.
The design of the borealis stream processing engine. In
Proceedings of CIDR, Asilomar, CA, January 2005.

[2] D. Bell and L. Lapadula. Secure computer systems :
Unified exposition and multics interpretation. Technical
report ESD-TR-75-306 MITRE Corporation, 1975.

[3] E. Bensley, P. Krupp, M. Squadrito, and B. Thuraising-
ham. Design of an object-oriented data manager and in-
frastructure for real-tine command and control system.
Proceedings IEEE WORDS, 1996.

[4] E. Bertino, B. Carminati, E. Ferrari, and B. M. Thurais-
ingham. Selective and authentic third-party distribution
of xml documents. IEEE Transactions on Knowledge
and Data Engineering, 16:1263–1278, 2004.

[5] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti. Pro-
tection and administration of xml data sources. IEEE
Transactions on Knowledge and Data Engineering,
43(3):237–260, 2002.

[6] E. Bertino, E. Ferrari, and A. C. Squicciarini. Trust-
x: A peer-to-peer framework for trust establishment.
IEEE Transactions on Knowledge and Data Engineer-
ing, 16(7):827–842, 2004.

[7] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, July 1970.

[8] B. Carminati, E. Ferrari, and B. M. Thuraisingham. Us-
ing rdf for policy specification and enforcement. Pro-
ceedings DEXA Workshops, pages 163–167, 2004.

74

[9] S. Chandrasekaran, O. Cooper, A. Deshpande,
M. Franklin, J. Hellerstein, W. Hong, S. Krishna-
murthy, S. Madden, V. Raman, F. Reiss, and M. Shah.
Telegraphcq: Continuous dataflow processing for an
uncertain world. In Proceedings of CIDR, Asilomar,
CA, January 2003.

[10] F. Chen, T.Repantis, and V. Kalogeraki. Coordinated
media streaming and transcoding in peer-to-peer sys-
tems. In Proceedings of the 19th International Parallel
and Distributed Processing Symposium, IPDPS, Denver,
CO, April 2005.

[11] F. Cuenca-Acuna and T. Nguyen. Self-managing fed-
erated services. In Proceedings of the 23rd IEEE In-
ternational Symposium on Reliable Distributed Systems,
SRDS, Florianopolis, Brazil, October 2004.

[12] A. Datta, M. Hauswirth, and K. Aberer. Updates in
highly unreliable, replicated peer-to-peer systems. In
Proceedings of the 23rd IEEE International Conference
on Distributed Computing Systems, ICDCS, Providence,
RI, USA, May 2003.

[13] O. M. Group. Realtime corba joint revised submission,
Mar. 1999.

[14] X. Gu and K. Nahrstedt. Distributed multimedia ser-
vice composition with statistical QoS assurances. IEEE
Transactions on Multimedia, 8(1):141–151, 2006.

[15] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhar-
gava. PROMISE: Peer-to-peer media streaming using
collectcast. In Proceedings of the 11th ACM Interna-
tional Conference on Multimedia, Berkeley, CA, USA,
November 2003.

[16] M. Jelasity and A. Montresor. Epidemic-style proactive
aggregation in large overlay networks. In Proceedings
of ICDCS, Tokyo, Japan, March 2004.

[17] K. Jungin and B. Thuraisingham. Secure tmo. IEEE
ISORC, April 2006.

[18] V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser.
Dynamic scheduling for soft real-time distributed object
systems. In Proceedings of the IEEE Third International
Symposium on Object-Oriented Real-Time Distributed
Computing, pages 114–121, Newport, CA, March 2000.

[19] K. H. K. Kim, Y. Li, S. Liu, M. Kim, and D. Kim. Rmmc
programming model and support execution engine in the
tmo programming scheme. Proceedings IEEE ISORC,
pages 34–43, 2005.

[20] V. Kumar, B. Cooper, Z. Cai, G. Eisenhauer, and
K. Schwan. Resource-aware distributed stream manage-
ment using dynamic overlays. In Proceedings of ICDCS,
Columbus, OH, June 2005.

[21] C. E. Landwehr. Formal models for computer security.
ACM Comput. Surv., 13(3):247–278, 1981.

[22] Microsoft. Com: Delivering on the promises of compo-
nent technology.

[23] S. Microsystems. Enterprise javabeans technology.
[24] Object Management Group. Dynamic Scheduling. Re-

vised Submission, orbos/00-08-12, August 2000.
[25] Object Management Group. The Common Object Re-

quest Broker: Architecture and Specification. Edition
2.4, formal/00-10-01, October 2000.

[26] J. Park and R. S. Sandhu. The uconabc usage con-
trol model. ACM Trans. Inf. Syst. Secur., 7(1):128–174,
2004.

[27] J. J. Prichard, L. C. DiPippo, J. Peckham, and V. F.
Wolfe. Rtsorac: A real-time object-oriented database
model. DEXA, pages 601–610, 1994.

[28] T. Repantis, X. Gu, and V. Kalogeraki. Synergy:
Sharing-aware component composition for distributed
stream processing systems. In Proceedings of the
CM/IFIP/USENIX 7th International Middleware Con-
ference (Middleware 2006), Melbourne, Australia, Nov-
Dec 2006.

[29] S. Rhea and J. Kubiatowicz. Probabilistic location and
routing. In Proceedings of IEEE INFOCOM 2002, New
York, NY, USA, June 2002.

[30] R. D. S. Son and B. Thuraisingham. An adaptive pol-
icy for improved timeliness in secure database systems.
Proceedings of the IFIP Database Security Conference,
pages 199–214, 1995.

[31] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE Com-
puter, 29(2):38–47, 1996.

[32] D. C. Schmidt and F. Kuhns. An overview of the real-
time corba specification. Computer, 33(6):56–63, 2000.

[33] S. Shah, K. Ramamritham, and C. Ravishankar. Client
assignment in content dissemination networks for dy-
namic data. In Proceedings of VLDB, Trondheim, Nor-
way, September 2005.

[34] S. H. Son, R. Mukkamala, and R. David. Integrating
security and real-time requirements using covert channel
capacity. IEEE Transactions on Knowledge and Data
Engineering, 12(6):865–879, 2000.

[35] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu,
M. Humphrey, and B. Ellis. Vest: An aspect-based com-
position tool for real-time systems. In IEEE RTAS, pages
58–69, 2003.

[36] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and
M. Stonebraker. Load shedding in a data stream man-
ager. In Proc. of VLDB, Berlin, Germany, Sept. 2003.

[37] R. K. Thomas and R. S. Sandhu. Towards a multi-
dimensional characterization of dissemination control.
Proceedings POLICY, 2004.

[38] B. Thuraisingham. Multilevel security for distributed
database systems - ii. Computers and Security, 10, De-
cember 1991.

[39] B. Thuraisingham. Security standards for the semantic
web. Computer Standards and Interface, March 2005.

[40] B. Thuraisingham, C. Clifton, J. Maurer, and M. Ceruti.
Real-time dependable data mining. Proceedings of IEEE
ISORC, May 2005.

[41] B. M. Thuraisingham. Mandatory security in object-
oriented database systems. ACM OOPSLA, pages 203–
210, 1989.

[42] B. M. Thuraisingham and J. A. Maurer. Information
survivability for evolvable and adaptable real-time com-
mand and control systems. IEEE Trans. on Knowledge
and Data Engineering, 11(1):228–238, 1999.

75

