
On the Cost-Effectiveness of TrustZone Defense
on ARM Platform

Naiwei Liu1, Meng Yu2, Wanyu Zang2, and Ravi Sandhu1

1 Institute for Cyber Security and Department of Computer Science, University of
Texas at San Antonio, San Antonio TX 78249, USA

2 Roosevelt University, Chicago IL 60605, USA

Abstract. In recent years, research efforts have been made to develop
safe and secure environments for ARM platform. The ARMv8 architec-
ture brought in security features by design. However, there are still some
security problems with ARM. For example, on ARM platform, there
are risks that the system is vulnerable to cache-based attacks like side-
channel attacks. The success of such attacks highly depends on accurate
information about the victim’s cache accesses. Cortex-M series, on the
other hand, have some design so that the side-channel attack can be
prevented, but it also needs a security design to ensure the security of
the users’ privacy data. In this paper, we focus on TrustZone based ap-
proach to defend against cache-based attack on Cortex-A and Cortex-M
series chips. Our experimental evaluation and theoretical analysis show
the effectiveness and efficiency of FLUSH operations when entering and
leaving TrustZone, which helps in design defense framework based on
our research.

Keywords: ARM Platform · TrustZone · IoT Security.

1 Introduction

In Recent years, many research papers have been focusing on security design
on ARM platform. Some of security framework are designed and implemented
making use of TrustZone, a secure enclave provided by ARM on both Cortex-
A and Cortex-M series. These defense frameworks target to memory protection,
process protection and even cache protection. For example, some of the malicious
users can utilize the entry/exit of the TrustZone on ARM Cortex-A, launching
a cache-based attack, and compromising the message channel between victim
threads and the system. As a result, some research papers target to this problem
using access control of entry/exit operations, and some papers use isolated cache
protection design. The research papers and their implementations can cut down
the bandwidth of cache-based attack, with various level of overhead on the whole
system.

On the attacker side, many threats are threatening the IoT systems and de-
vices. Some of them focus on systems and some of them are based on ARM
chips. Cache in these devices becomes the research focus on both single device

2 F. Author et al.

environment and cloud with multiple devices, or even IoT network connecting
smart devices. The attacks can be very effective on extracting the users’ private
and secured data, without the permissions and access to the protected enclaves.
Side-channel attack among them is a research focus. Malicious hackers can col-
lect performance data, power consumption data or even some ’trash’ data to
try retrieving useful information. Attackers derive users’ information like cryp-
tographic keys, protected or private data by launching attack on the cache, and
analyze the information from what they get. Some attackers just try to collect
the difference in access time with different memory blocks, and predict what is
accessed frequently by the users. The difference in access time can be collected
if the attacker and the victims are sharing data in the cache.

ARM platform, on the other hand, is a different environment from traditional
x86 structures. It has different privilege levels and sets some instructions as priv-
ileged operations. For example, cache FLUSH operation on ARM is privileged.
On ARMv8-M based on Cortex-M structures, there is a much simpler structure
of instructions than other platforms. This is because that ARMv8-M is designed
to use in small smart devices. They have limited energy input and are asked to
work in a long duration. Some of the devices are powered even by some batteries
we can find in grocery stores, so the performance limitation is a thing that must
be considered when designing something about security and privacy.

In this paper, we investigate the defense effectiveness to cache based side-
channel attacks on the ARM architecture. We design several tests based on
TrustZone on both ARM cortex-A and cortex-M series chips and get the per-
formance data. These can help in design and implementation of defense, while
keeping the performance and effectiveness balanced. Overall, we have following
contributions in this paper:

– We investigate the performance overhead of TrustZone related instructions.
We analyze the percentage of TrustZone instructions in real life use cases
and calculate the overhead brought by these instructions;

– We test FLUSH operation overhead and analyze clock cycles they take on
different platforms. This helps in the evaluation of cost-effectiveness on both
FLUSH-based attack and defense sides.

– We provide the best/worst case of defense performance based on our exper-
imental results and analysis.

The structure of this paper is as follows: in Related Work section, we intro-
duce previous research and recent research on this topic, analyzing their strong
contribution and weaknesses; in Overview section, we introduce our environ-
ments of development, structure of design and security assumptions; in Imple-
mentation section, we provide some details about our design and experiment
settings; in Evaluation section, we provide experimental results and discussion;
and in Conclusion section we have our conclusions on the research topic.

On the Cost-Effectiveness of TrustZone Defense on ARM Platform 3

2 Related Work

2.1 Cache-Based Attack

In a cloud computing system or a computer with multiple processes and threads,
the Last Level Cache (LLC) is shared among multiple processor cores, making
it vulnerable to LLC based side-channel attacks. Unlike L1 cache, LLC is much
slower than L1 cache, leading to more difficult set up for side channels. There
are different ways to launch side-channel attacks, e.g., FLUSH+RELOAD [17],
[6], PRIME+PROBE [6] [7] [11], and bus-locking [16].

For example, the FLUSH+RELOAD involves three steps. The attacker first
flushes one or more of the desired cache contents using processor-specific instruc-
tions (e.g. clflush on x86 processors). Second, the attacker waits for sufficient time
for the victim to use (or not to use) the flushed cache area. Finally, the attacker
reloads previously flushed cache lines, measuring the reload time for each one
of them to infer if it was touched by the victim. FLUSH+RELOAD strategy
has been proven very effectively in many side channel attacks on x86 architec-
ture. For example, Gulmezoglu et al. [6] recovered the AES key of OpenSSL
within 15 seconds. Yarom and Falkner [17] recover a RSA encryption key across
VMware VMs using FLUSH+RELOAD attack, and Irazoqui et al. [8] recovered
AES keys using similar attack and exploiting the vulnerabilities in cache. For
PRIME+PROBE attack, Work [11] recover AES keys in a cross-VM Xen 4.1
using PRIME+PROBE attack. Liu et al. [10] presented a PRIME+PROBE
type side-channel attack model against the LLC, which is tested to be practical
and threatens the system.

2.2 Hardware-Based Defense

Bernstein [2] suggested to add L1-table-lookup instruction to load an entire table
in L1 cache, and also load a selected table entry in a constant number of CPU
cycles. Page [12] investigated a partitioned cache architecture. Wang and Lee
[14] [15] [13] proposed new security-aware cache designs to thwart the LLC side
channel attack with low overhead. In [15], the Partition-Locked cache (PLcache)
was able to lock a sensitive cache partition into cache, and Random Permutation
cache (RPcache) randomized the mapping from memory locations to cache sets.
In [10], a novel random fill cache architecture that replaces demand fetch with
random cache fill within a configurable neighborhood window was proposed.
While the hardware solutions provide strong isolations between the victim and
the attacker, they require special hardware features that are not immediately
available form commodity processors.

2.3 Software-Based Defense

Some researchers proposed to modify applications to better protect secrets from
side-channel attacks. Brickell et al. [3] proposed three individual mitigation
strategies: compact S-box table, frequently randomized tables, and pre-loading

4 F. Author et al.

of relevant cache-lines. It compressed and randomized tables for AES. However,
it requires manually rewriting the AES implementation and is specific to AES.
Cleemput et al. [4] applied the mitigating code transformations to eliminate or
minimize key-dependent execution time variations. Crane et al. [5] proposed a
software diversity technique to transform each program unique. The approach of-
fers probabilistic protection against both online and off-line side-channel attacks.
In their work, using function or basic-block level dynamic control-flow diversity
along with static cache noise results in a performance slowdown of 1.76x-2.02x
compared to the baseline AES encryption when using 10%-50% cache noise inser-
tion. Dynamic cache noise at 10%-50% has significantly impact on performance
(2.39-2.87x slowdown). However, above software solutions are typically applica-
tion specific or incur substantial performance overhead.

2.4 Recent Research on ARM TrustZone

In recent years, some papers have discussions and new research findings on ARM
platform, especially focusing on TrustZone protection. Zhang et al. [18] pro-
posed an Android protection framework using TrustZone on ARM, protecting
VoIP phone calls. It enclaves privacy data so the phone calls cannot be inter-
cepted easily by malicious eavesdropping. Amacher et al. [1] have evaluate the
performance of ARM TrustZone using TEEs and different benchmarks, but the
security concern is out of that paper’s scope. Keystone defense framework pro-
posed by Dayeol Lee and others [9] is a good example of defense framework based
on TrustZone. It enclaves protected operations and disables sharing in TLBs and
memory blocks so there’s no side-channel attack based on the vulnerability here.
However, the timing side-channel attack is out of that paper’s scope. In our dis-
cussion, there are still risks of side-channels when exiting from TrustZone, so we
need also investigate the vulnerability at the gate of security enclave.

3 Overview

3.1 Background

As multi-core processors become pervasive and the number of on-die cores in-
creases, a key design issue facing processor architects is the security layers and
policies for the on-die LLC. With LLC techniques, a CPU might only need to get
around 5% data from main memory, which can improve the efficiency of CPU
largely. In our implementations, we are using Intel i7-4790 processor, with 8Mb
SmartCache. On ARMv8 Cortex-A platform, we are using Juno r1 Development
Platform which has one A57 and one A53 processors on the board. A57 has a
2M LLC on the processor. On Cortex-M platform, we are using ARM Cortex-
M4 series chips, the development platform has 3 pipeline stages and no built-in
cache.

With the increasing complexity of computing systems, as well as multiple
level of memory access, some registers are designed to store some specific hard-
ware events. These registers are usually called hardware performance counters.

On the Cost-Effectiveness of TrustZone Defense on ARM Platform 5

We have many tools getting information from those performance counters, thus
getting the performance information.

In our implementation, we use perf to collect the execution information of
the programs. However, we cannot use perf for collecting timing information
of memory access, since it cannot be accurate enough. On this paper we use
inline assemblies and consult some related registers to measure time associated
information with our side-channels.

3.2 Design on ARM Cortex-A

According to our evaluation on current on-the-market systems and applications,
we find out that more and more Trusted Execution Environment (TEE) tech-
nologies are being used on the implementations of secure system. Besides, most of
the implementations are utilizing ARM TrustZone to protect the memory access
and critical data. As we are interested in the performance overhead of defend-
ing using FLUSH operations on exiting TrustZone, the experiments should start
from the measurements of using TrustZone, like the time cost and performance
overhead.

Our experiments on ARM Cortex-A are in three different steps. For the first
step, we test the cost of entering and exiting from TrustZone. After we get
the exact data (clock cycles) related to TrustZone, the next step is to measure
how much it takes up for the TEEs to call TrustZone related instructions or
operations. On the third step, we try to clean the cache every time the system
exiting from TrustZone, and see the performance overhead by these FLUSH
operations added to the system. As the cache gets FLUSHed every time after the
using of TrustZone, the risk of being side-channel attacked can be theoretically
cut down to non-exist.

3.3 Overview on ARM Cortex-M

Unlike ARM Cortex-A series chips, M-series chips have different structure, and
with other limitations. Most IoT devices are based on Cortex-A platform, but
still a rising trend that more products are using Cortex-M platform. As a result,
it is still valuable to investigate the defense against malicious attackers with
TrustZone. In this paper, we have similar tests on ARMv8-M platform, measur-
ing the performance of TrustZone, as well as FLUSH operation overhead. Our
experiments on Cortex-M are using ARM Versatile V2M-MPS2 Motherboard
with ARM Cortex-M4 cores. It offers 8Mb of single cycle SRAM, and 16Mb of
PSRAM. It supports the application of different ARM Cortex-M classes, from
Cortex-M0, to M3, M4, and M7. Besides these support, the development board
supports simulation of ARMv8-M.

As mentioned above, on Cortex-M4 series chips, there is no built-in cache.
However, the memory structure on M4 is different from other structures like
x86 and Cortex-A. On that platform, memory blocks are allocated in fixed or-
der, taking their assigned responsibilities. It is quite different from dynamic
allocation, and is to the consideration of power consumption and performance

6 F. Author et al.

overhead. Among these memory blocks, some are acting as ’cache-in-memory’,
so we can still see them working like cache and operate some instructions to read
the working status of it.

The experiments are in two different steps. First, we measure the time cost
entering and exiting from TrustZone. Next, we implement a program with Trust-
Zone entry/exit instructions, as well as protected running steps. We then test
it with controlling of the frequency of entry/exit instructions. We measure the
FLUSH operation overhead according to different frequencies, and discuss the
defense using FLUSH when exiting from TrustZone.

3.4 Threat Model and Assumptions

In this paper, we assume that the operating system is not compromised so that
the attackers are forced to use covert channels or side channels without explic-
itly violating access control policies enforced by the operating system or other
protection mechanisms. We assume that the attacker has sufficient privilege to
access the memory access time. This is also needed for the covert channel, and
for the performance analysis of the covert channel.

4 Implementations

4.1 Process Structure on Cortex-A Platform

As mentioned above, the very first step for our experiment is to calculate the
cost of entering and exiting from the TrustZone. On ARM Cortex-A Platform,
an instruction smc is used for connecting the secure world and non-secure world.
While in normal non-secure world, some code could call privileged smc instruc-
tion. Then, secure world monitor will be triggered after validation. After execu-
tion of secure code, the return of the execution also calls smc to get back to the
normal world. There are many open-source test platform to measure the world
switch latency, and in this experiment, we use the well-known QEMU to test. It
had been developed since the first patch published in 2011, and been patched by
many manufacturers including Samsung, utilizing ARM TrustZone for security
design.

The process structure is show at Figure 1. When there are smc instructions
trigger the TrustZone entry/exit, we trap the instructions and start using perf
and other time measurement tools to calculate clock cycles they take to finish
switching between trust environment and outside memory. We also FLUSH cache
every time when we exit from TrustZone and see the difference in performance
overhead by different frequency of TrustZone related instructions.

4.2 Process Structure on Cortex-M Platform

On ARM-v8 platform, SG/BXNS instructions are used to enter and exit from
TrustZone. As there were almost no proper TEEs for ARMv8-M on the market as

On the Cost-Effectiveness of TrustZone Defense on ARM Platform 7

we were testing, we use a testing program instead. SG (Secure Gate) instruction
is called by non-secure world code that wants to trigger TrustZone protection.
Unlike Cortex-A structure, on ARMv8-M, the page table is not used, so the
memory is fully mapped with different regions. When SG instruction is called,
the reserved regions for secure world are used to execute the protected part
of the code. After the secure execution within TrustZone, the code has an exit
called BXNS/BLXNS (Back to Non-Secure) that can lead the execution to other
region besides protected ones by TrustZone. We make use of the mechanism of
this, and the structure of the testing program is as Figure 2 shows.

Non-Secure Memory TrustZone Memory

QEMU triggers TZ;
smc Instructions

QEMU Protected

Environment

smc InstructionsOther Non-Secure Code;

Trap and calculate

Clock cycles

vTime

Measurement

FLUSH before

EXIT

Fig. 1. Process Structure on Cortex-A

Non-Secure Memory TrustZone Memory

BL SecureFunc;
SG

ADDS r0, r0, #1

ADDS r0, r0, #1

…

BXNS/BLXNS lr
Other Non-Secure Code;

Flush Cache:

STR <Ry>,[<Rt>,#0xF64];

STR <Ry>,[<Rt>,#0xF58];

STR <Ry>,[<Rt>,#0xF78];
Outer Loop

Inner LoopTime

Measurement

Fig. 2. Process Structure on Cortex-M

The term ’cache’ here on ARMv8-M is part of normal memory being set
as ’cacheable’. In other words, it is a region set aside for possible cache using.
On Cortex-A series chips or x86 chips, cache flush operations are just some
instructions with privileges. However, the case are different on ARMv8-M. The
allocation of a memory address to a cache address is defined by the designers
of the applications. Because of the special structure of ARMv8-M, the cache
FLUSH operations are sets of DSB (Data Synchronization Barrier) operations,
with address-related instructions.

5 Evaluation

In this section, we introduce our experimental results and discussions, both on
ARM Cortex-A and Cortex-M platforms.

5.1 Experimental Results

Cost of Entering and Exiting from TrustZone on Cortex-A QEMU
with ARM TrustZone provides us a variety of tests. The tests behave as we
users initiating secure operations from user mode. The test functions validate
the TrustZone features of QEMU, and utilizing the features of the functions
themselves. We have tests on read/write from non-secure world to secure world
and vice versa. The results are shown as Table 1 shows.

8 F. Author et al.

Table 1. TrustZone-Related Instruction Cost on Cortex-A

Tests Direction Average cost (Clock Cycles) Time on 800Mhz

P0 nonsecure check register access Non-secure to Secure 1950 2.43us

P0 secure check register access Secure to Non-secure 2200 2.75us

Percentage of TrustZone-Related Instructions We write a script based
on the above write/read code. In the script, there is a loop called in and runs
several times as a workload. We use Ubuntu 16.10 as the normal world OS,
with 26 processes running on background, including the workload we use for
testing. We count the smc-related instructions that belongs to TrustZone-related
operations, and analyze the attributions of them. According to our test, the
instructions takes up less than 6% of the total instructions running, with these
three different categories as shown on Table 2.

Table 2. Different Categories of TrustZone-Related Instructions

Type Percentage

Non-secure to
Secure Test R/W

2.87%

Secure to
Non-secure Test R/W

2.91%

Others (Access from
Background)

0.01%

In normal using conditions, however, the manufacturers are not using Trust-
Zone that often. Thus, the test here can be the upper bound or ’worst case’
of the utilization of TrustZone-Related instructions. Normally, the non-secure
world does not have to call in the secure world too often.

Performance Overhead by FLUSH Operations It is already known that
ARM TrustZone on Cortex-A series are not going to clean the cache when ex-
iting from the secure world to non-secure world. As a result, there are possi-
bilities for the attackers to make the most of the last level cache and conduct
cache-based attacks. For example, the side-channel attack of FLUSH+RELOAD,
PRIME+PROBE are both found practical on the environment with TrustZone
on ARM Cortex-A, some even with a fiercely high bandwidth. On the other
hand, if we can FLUSH the cache every time on the ’exit’ to the normal non-
secure world, then it can be expected that the bandwidth of the side-channel
attack can be limited to a number that is worthless to the attackers to gather
the information possibly leaked by the smc operations.

We still test the performance using our test model. In this test, we are adding
cache FLUSH operations on every smc instruction that calling exit from the
secure world to non-secure world. On that situation, we measure the performance
overhead by comparing the clock cycles of execution. At the same time, we

On the Cost-Effectiveness of TrustZone Defense on ARM Platform 9

change the percentage of TrustZone-related instructions to see the difference in
the overhead. The results are shown on Figure 3 and Figure 4.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
TrustZone Related Instruction Percentage(%)

0

2

4

6

8

10

12

O
ve

rh
ea

d(
%

)

Fig. 3. TrustZone Related Instructions
and Their Overhead

0 20 40 60 80 100 120 140 160
TrustZone Entry/Exit Frequency (Hz)

0

5

10

15

20

25

O
ve

rh
ea

d
(%

)

Fig. 4. TrustZone Entry/Exit Frequency
and FLUSH Overhead

Experimental Results on ARMv8-M According to our experiments, the
testing case triggering TrustZone operations SG and BXNS. As every region
is fixed in the memory, the costs of entering and exiting from TrustZone are
surprisingly much lower than ARM Cortex-A series chips. The results are shown
at Table 3.

Table 3. TrustZone-Related Instructions Cost on ARMv8-M

Operation Direction Cost on Average (Clock Cycles)

SG Non-Secure to Secure 3.5

BXNS/BLXNS Secure to Non-Secure 5.2

We measure the performance of the FLUSH operations using our testing pro-
gram shown at Figure 2. We add FLUSH operations before executing BXNS/BLXNS
operations to ensure there is nothing left when exiting from TrustZone. We mea-
sure the overhead by the FLUSH operations, and we also change the outer loop to
have different frequencies of TrustZone entries and exits. The results are shown
at Figure 5.

5.2 Discussions

TrustZone Usage Frequency and Flush Overhead According to our exper-
imental results, on ARMv8 platform, the system is connecting with TrustZone
with very low frequency, taking up less than 10% of the instructions at most.
Some specific instructions trigger the secure gate of TrustZone. However, when

10 F. Author et al.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70 80 90 100

X: TrustZone Entry Frequency (Hz);

Y: %Overhead by Clock cycles;

Fig. 5. TrustZone Entry/Exit Frequency and FLUSH Overhead on ARMv8-M

the contexts running in secured memory finish, TrustZone does not clean the
cache before exit, leaving some risks here. Based on low frequency and over-
head from TrustZone related instructions, we can FLUSH the cache every time
when exiting from TrustZone, and still keep a low overhead of less than 20% on
Cortex-A chips. This design will let the system manufacturer to put protected or
private contexts into TrustZone and with no worries about side-channel attack
when exiting from it.

TrustZone Discussion on Cortex-M Unlike Cortex-A series, ARMv8-M
based on Cortex-M structure is designed to have low energy cost and with much
simpler system, which is thought to fit for mobile or home devices. At this case,
the performance overhead brought by security protection should be controlled in
a very low number. According to our experimental results, on Cortex-M struc-
ture, the secure gate instructions take much less clock cycles to execute, making
it a good choice on the basis of security design. When we add FLUSH opera-
tions on exit instructions, we have even lower overhead comparing with Cortex-A
chips, having less than 10% overhead at most. It is a practical design for the man-
ufacturer to introduce and not hard to develop. On the other hand, they could
put protected data and instructions into the secure enclave of TrustZone.

Cache Based Defense on ARM Platform Though we have no perfect way to
take the place of validating cache and cleaning the TLB entries, we still have some
idea for possible solutions, because there are some potential for speeding up and
getting better performance. For example, we can move the FLUSH operations
out from the privileged level, and try implementing another framework to ensure

On the Cost-Effectiveness of TrustZone Defense on ARM Platform 11

the security of this type of operations, while maintaining low overhead. In this
paper, we quantitatively discuss the security design for dealing with FLUSH
operation requests, and there are still some more topics to research on.

6 Conclusion

In this paper, we have some discussion on the effectiveness and cost of attack and
defense based on ARM platform. We start from investigating the cache-based
attacks. Then we design and implement some tests on ARM platform, both on
ARM Cortex-A and ARMv8-M series chips. It is shown that the side-channel
attack and other types of exploitations are practical and serious, causing loss
to users’ privacy and security. From our experimental results, TrustZone can
be utilized to help defending against side-channel and covert channel attacks,
but it must have an adaptive ways to manage cache operations. On the other
hand, it is practical to implement FLUSH based defense on ARM platform, with
reasonable overhead and good effectiveness.

In the future, we need to develop some defense framework on ARM platform,
based on FLUSH operations and secure gate entry/exit instructions. The chal-
lenge will be the difference in structures of ARMv8 platform, and real-life limi-
tations like power consumption, portable needs and other challenges. However,
it is promising that ARM platform can provide the users with an environment
in balance of performance, privacy, security and good mobility as well.

7 Acknowledgements

This paper and research project are sponsored by NSF CREST Grant HRD-
1736209 and NSF Grant 1634441. The grants are for security research on cloud
and systems. This research is performed in the Institute for Cyber Security (ICS)
lab in University of Texas at San Antonio, and Computer Science Department
in Roosevelt University.

References

1. Julien Amacher and Valerio Schiavoni. On the performance of arm trustzone.
In IFIP International Conference on Distributed Applications and Interoperable
Systems, pages 133–151. Springer, 2019.

2. Daniel J. Bernstein. Cache-timing attacks on aes. Technical report, 2005.

3. Ernie Brickell, Gary Graunke, Michael Neve, and Jean-Pierre Seifert. Software
mitigations to hedge aes against cache-based software side channel vulnerabilities,
2006.

4. Jeroen V. Cleemput, Bart Coppens, and Bjorn De Sutter. Compiler mitigations
for time attacks on modern x86 processors. ACM Trans. Archit. Code Optim.,
8(4):23:1–23:20, January 2012.

12 F. Author et al.

5. Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael
Franz. Thwarting cache side-channel attacks through dynamic software diversity.
In 22nd Annual Network and Distributed System Security Symposium, NDSS 2015,
San Diego, California, USA, February 8-11, 2014, 2015.

6. Berk Gülmezoğlu, Mehmet Sinan İnci, Gorka Irazoqui, Thomas Eisenbarth, and
Berk Sunar. A Faster and More Realistic Flush+Reload Attack on AES, pages
111–126. Springer International Publishing, Cham, 2015.

7. Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$a: A shared cache attack
that works across cores and defies vm sandboxing – and its application to aes. In
The proceedings of 2015 IEEE Symposium on Security and Privacy, pages 591–604,
San Jose, CA, 17-21, May 2015. IEEE.

8. Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. Wait a
Minute! A fast, Cross-VM Attack on AES, pages 299–319. Springer International
Publishing, Cham, 2014.

9. Dayeol Lee, David Kohlbrenner, Shweta Shinde, Dawn Song, and Krste Asanović.
Keystone: A framework for architecting tees. arXiv preprint arXiv:1907.10119,
2019.

10. F. Liu and R. B. Lee. Random fill cache architecture. In 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 203–215, Dec
2014.

11. F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache side-channel
attacks are practical. In 2015 IEEE Symposium on Security and Privacy, pages
605–622, May 2015.

12. D. Page. Partitioned cache architecture as a side-channel defence mechanism, 2005.
page@cs.bris.ac.uk 13017 received 22 Aug 2005.

13. Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-sgx: Eradicating
controlled-channel attacks against enclave programs. In Proceedings of the 2017
Annual Network and Distributed System Security Symposium (NDSS), San Diego,
CA, 2017.

14. Zhenghong Wang and R. B. Lee. A novel cache architecture with enhanced per-
formance and security. In 2008 41st IEEE/ACM International Symposium on
Microarchitecture, pages 83–93, Nov 2008.

15. Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting software
cache-based side channel attacks. In Proceedings of the 34th Annual International
Symposium on Computer Architecture, ISCA ’07, pages 494–505, 2007.

16. Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the hyper-space: High-
bandwidth and reliable covert channel attacks inside the cloud. IEEE/ACM Trans.
Netw., 23(2):603–614, April 2015.

17. Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 719–732, San Diego, CA, August 2014. USENIX
Association.

18. Pengcheng Zhang, Zongbin Liu, Cunqing Ma, Lingchen Zhang, and Donglei Han.
Kpam: A key protection framework for mobile devices based on two-party com-
putation. In 2019 IEEE Symposium on Computers and Communications (ISCC),
pages 1–6. IEEE, 2019.

