
A Hybrid Enforcement Model for
Group-Centric Secure Information Sharing

Ram Krishnan
George Mason University
Email: rkrishna@gmu.edu

Ravi Sandhu
University of Texas at San Antonio

Email: ravi.sandhu@utsa.edu

Abstract—Group-Centric Secure Information Sharing (g-SIS)
is motivated by the need to dynamically share information
amongst a set of authorized users for a specific purpose. Au-
thorized group users may read and contribute new objects to
the group. An important usability objective in g-SIS is to allow
users to access group objects offline without having to contact
a server every time an access is requested. Thus a fundamental
requirement for g-SIS is that protection needs to extend to clients.
Henceforth we assume that a Trusted Reference Monitor (TRM)
is present on the client platforms that can enforce the group
policies in a trustworthy manner. In this paper, we discuss three
different approaches for realizing a scalable and high-assurance
g-SIS. In a Micro-Distribution (MD) architecture, objects are
individually encrypted for each group user. Thus the server
shares a unique key with each user. In a Super-Distribution
(SD) architecture, a single key is shared amongst all group users
and thus group objects are uniformly encrypted. SD promotes
“protect once, access when authorized”. We discuss the pros and
cons of both MD and SD architecture and propose a novel
split-key RSA based hybrid architecture. As we will see, this
architecture incorporates the high-assurance aspect from MD
and the usability and scalability advantages from SD approach
respectively. We finally outline Trusted Platform Module based
protocols to realize our hybrid g-SIS architecture. We collectively
refer to the architecture and protocols as the Enforcement Model.

I. INTRODUCTION

Secure Information Sharing (SIS) or sharing information
while protecting it is one of the earliest problems to be
recognized in computer security, and yet remains a challenging
problem to solve. The central problem is that, in a distributed
system, copies of digital information are easily made and
controls on the original typically do not carry over to the
copies. One main roadblock was the lack of hardware-rooted
trust on client platforms. The advent of Trusted Computing
Technology [2] and the feasibility to verify the trustworthiness
of software running on trusted hardware (e.g., [20]) has made
it possible to address SIS. Here, a Trusted Platform Module
(TPM), a security chip that can store keys and provide trusted
capabilities, is integrated in the system in an inseparable
manner. With this hardware-root of trust, access control can
now be trustworthily enforced on client platforms where the
content is decrypted and displayed, so as to ensure that
only authorized users get to see the content and that they
are unable to make plaintext unprotected copies. There has
been considerable interest in this approach, initially driven
by the forces of digital rights management for entertainment

Fig. 1. User Membership States.

content seeking to protect revenue but more generally seeking
to protect content for its sensitivity. An overview of SIS
motivation and solution approaches was presented in [12].

The g-SIS problem, introduced in [11], is motivated by the
need to share sensitive information amongst a group of autho-
rized users. For simplicity, we only consider read operations
and addition of new objects to the group in this paper. In g-
SIS, users may join, leave and re-join the group (figure 1).
Similarly, objects may be added, removed and re-added to
the group. Access decision is made based on the relative
membership state of user and object. For example, a user
joining a group may only access objects that are added after
join time. In another scenario, the user may also be allowed to
access objects added prior to join time. The metaphor is that
of a secure meeting room (although virtual) where members’
access depend on their participation period. For example, in a
program committee meeting, when discussing Alice’s paper,
she may be required to step out the room and thus cannot
access discussions during her absence. In another scenario,
the discussions during Alice’s absence may be recorded on
a whiteboard and she may access them on her return. Our
architecture can support a wide variety of such policies.

In [10], the authors discuss two distribution approaches,
namely Super-Distribution (SD) and Micro-Distribution (MD),
for g-SIS. In the context of g-SIS, Super-Distribution (SD)
refers to widespread distribution of protected group objects.
That is, a group object is encrypted once using a group
key and released into the infospace through any available
means such as Email, P2P, WWW, USB drives, etc. Although
any user may obtain a copy of the encrypted object, only
authorized group users may read the object using access
machines running trustworthy and verifiable software. This
can be briefly summarized as “protect once and access where
authorized”. This is significantly different from the Micro-
Distribution approach for sharing. In MD, objects are typically

custom encrypted individually for each authorized group user,
thereby incurring scalability and performance costs. In this
paper, we discuss the pros and cons of each approach and
propose a new hybrid approach. As we will see later, both
SD and MD suffers from many practical limitations and our
hybrid approach combines the advantages of SD and MD
approach and minimizes their disadvantages. We also outline
TPM-based protocols for realizing the hybrid approach.

The remainder of this paper is organized as follows. In
section II, we review the g-SIS architecture and discuss the
SD and MD approach. In section III, we present the hybrid
approach and compare the three approaches. In section IV, we
present TPM-based protocols supporting the hybrid approach
for the g-SIS architecture and in section V, we discuss related
work and conclude.

II. G-SIS ARCHITECTURE REVIEW

In this section, we review the g-SIS architecture that was
proposed in [10] and discuss the SD and MD approach for
object access in g-SIS. In the next section, we discuss our
hybrid approach that addresses the limitations of SD and MD.

An important g-SIS objective that we are interested in is to
enable offline access. We strongly believe that some degree of
offline access is highly desirable in SIS where disconnected
access attempts are likely. Offline periods of access can be
restricted by various measures such as time, usage, etc. Thus,
we expect that sometimes access decisions will be made
locally without contacting a central authority. This requires
that authorization information such as user attributes be stored
locally and used in a trustworthy manner. Nevertheless, autho-
rization information needs to be periodically refreshed with the
central authority. A motivation for offline access in the context
of SD in P2P networks in mobile devices can be found in [15].

We follow the well-known architecture-mechanism separa-
tion principle as illustrated in [21]. In this section, we assume
that the users interact with other entities using access machines
running a Trusted Reference Monitor (TRM) whose software
configuration can be verified. Authorization information such
as the group key(s) will only be available to the TRM in a
trustworthy state. Thus the TRM can faithfully enforce group
policies locally. Later, in sections IV we discuss TPM-based
protocols for interaction between various entities in the system.
It is beyond our current scope to discuss implementation model
to realize the TRM. A number of work on building trustworthy
and verifiable systems for enforcing mandatory policies using
Trusted Computing Technology can be found in the literature
(see [20], [19], [13] for example).

A. System Characterization

The g-SIS system consists of users and objects, trusted
access machines (using which users access group objects), a
Group Administrator (GA) who is responsible for updating
user and object attributes and a Control Center (CC) that
maintains the attributes. An access control policy is specified
using user and object attributes. A user’s access machine has
a Trusted Reference Monitor (TRM) that maintains a local

copy of user attributes which are refreshed periodically with
the CC so as to reflect changes, if any, in their values. There
are many approaches to trigger a refresh of user attributes.
For example, a refresh could be triggered based on time-out
or a count on the number of times the user attributes (e.g.
group key) may be used by the TRM to decrypt group objects.
Offline access to secure clock is not feasible in TPMs today
and so we take the usage count based approach for refresh
(see for example [19], [13]). Object attributes are embedded
in the object itself. An object removed from the group is listed
in the Object Revocation List (ORL) which is provided to the
TRM as part of refresh. A g-SIS system can be characterized
as follows:

User attributes {id, Join TS, Leave TS, ORL,
gKey,N}

Object attributes {id,Add TS}
Access Policy Authz(u, o, read) → o /∈ ORL(u)

∧Leave TS(u) = NULL∧
Join TS(u) ≤ Add TS(o)

User attribute Join TS is join time of a user, Leave TS is
the leave time of user (if the user has left the group, NULL
otherwise), ORL is the Object Revocation List that identifies
the list of objects that have been removed from the group
along with their history of add and remove time-stamps, gKey
represents the group keys (symmetric or asymmetric key pair)
using which objects can be encrypted and decrypted and N is
the usage count that limits usage of gKey before a refresh of
user attributes is required with CC. Object attribute Add TS is
the time at which an object was added to the group. Attribute
id represents a unique identity for each user and object. Any
access policy (based on figure 1) can be specified using these
sets of attributes. Authz here specifies that a user is allowed to
read an object as long as both the user and object are current
members of the group and the object was added after the time
at which the user joined the group. This policy is used as an
example for our discussion below but in general the CC may
instruct the TRM to enforce any such policy.

B. System Architecture

Figure 2 shows the g-SIS architecture and illustrates the
interaction between various components. The GA controls
group membership and policies. The CC is responsible for
maintaining authoritative attributes of group users and objects
on behalf of the GA.
• User Join (steps 1.1-1.4): Joining a group involves ob-

taining authorization from the GA followed by obtaining
group credentials from the CC. In step 1.1, the TRM
on user’s access machine contacts the GA and requests
authorization to join a group. The GA authorizes the
user join in step 1.2 (by setting AUTH to TRUE). The
user furnishes the authorization to join the group and the
evidence that the access machine is in a good software
state to the CC in step 1.3. The integrity evidence is a
signed hash that proves that the chain of software loaded
during the boot-up process including the system steady-

2

Fig. 2. g-SIS Architecture.

state is trustworthy. The CC remotely verifies GA’s au-
thorization, that the user’s access machine is trustworthy
(using the integrity evidence) and has a known TRM that
is responsible for enforcing g-SIS policies. In step 1.4,
the CC provisions the attributes after setting them with
appropriate values. We refer to these attributes as group
credentials or simply credentials. Note that we assume
that these credentials are provisioned in a manner such
that only the TRM in the user’s machine can access them.

• Add Object (steps 2.1-2.2): From here on, the user is
considered a group member. Objects may be added to
the group by users after the CC sets the Add TS (step
2.1). The CC verifies the object1 and sets the Add TS
attribute. We assume object attributes are embedded in the
object itself. The CC then releases the protected object
to the Object Source (step 2.2). The Object Source acts
as the object repository from which users may obtain
objects. It is possible for the CC itself to act as the Object
Source, but in practice, this may be an independent entity.

• Access Objects (step 3): Users may access group objects
as per the group policy using the credentials obtained
from the CC. This is locally mediated and enforced by
the TRM. Note that the objects may be obtained from
Object Source and stored locally. Because of the presence
of a TRM on user’s access machines, these objects may
be accessed offline conforming to the policy. Recall
that various access policies are possible as discussed in
section II-A.

• Attribute Refresh (steps 4.1-4.2): The TRM refreshes user
attributes with the CC periodically. More generally, g-
SIS access policy, like the one discussed in section II-A,
may be updated or replaced in these steps. A usage count
limits the number of times the credentials (e.g., gKey)
may be used to access group objects (like consumable
rights). Thus objects may be accessed until the usage

1We treat this as an abstract step because verification of object depends on
the specific application. In one case, this could simply be proof-reading while
in another it could be a verification that the content is appropriate.

Fig. 3. Super-distribution in g-SIS.

count is exhausted and the TRM will be required to
refresh user attributes in steps 4.1 and 4.2 before any
further access can be granted.

• Administrative Actions (steps 5.1-5.2 and 6.1-6.2): The
GA may have to remove a user or object from the group.
In step 5.1, the GA instructs the CC to remove a user. The
CC in turn marks the user for removal by locally setting
the user’s Leave TS attribute in step 5.2. This attribute
update is communicated to the user’s TRM during the
refresh steps 4.1 and 4.2. In the case of object remove,
an Object Revocation List or ORL is provisioned by the
CC on the user’s access machine. Thus for object removal
(steps 6.1-6.2), the object’s id, Add TS and Remove TS
are added to the ORL.

C. Super Vs Micro-Distribution based g-SIS Architecture

We now discuss SD and MD approaches for object dis-
tribution and access in the g-SIS architecture. In figure 2,
steps 2.1 and 2.2 are object distribution steps and step 3
is the offline object access step. We quickly compare and
point out the pros and cons of each approach and present
a superior hybrid approach in the following section. In this
paper, Super-Distribution (SD) refers to widespread distribu-
tion of protected group objects while only authorized users
may read them. Here all group users share a single group
key using which objects are encrypted and decrypted. Micro-
Distribution (MD) refers to custom encryption of objects for
each authorized user. Figures 3 and 4 illustrate the difference
between SD and MD in g-SIS. For simplicity, we assume that
a symmetric key is used for encrypting and decrypting objects
in both SD and MD. Our discussions below apply equally well
to SD and MD approaches using asymmetric keys.

In SD based approach all group users share a single group
key for encrypting and decrypting group objects. Thus in
SD (figure 3), an Author (a group user) creates an object,
encrypts the object using the group key (mediated by TRM)
and sends it to the CC for approval and distribution. The
CC verifies the object, time-stamps object add and releases
this protected object into the infospace (referred to as Object
Cloud) through conventional networks such as WWW, Email,
etc. or sneakernet such as USB flash drives. These are steps
2.1 and 2.2 in figure 2 for SD approach. Other group users can

3

Fig. 4. Micro-distribution in g-SIS.

obtain such encrypted objects and store them locally in his/her
access machine for later offline access. Note that group objects
need not be obtained from CC or a specific Object Source in
SD. Since the group key is shared with all group users, the
TRM can decrypt the object and display to the user offline
without involving the CC every time.

In MD (figure 4), the CC shares a unique key with each
group user. In contrast, in SD the same key is shared with all
users in the group. The Author (a group user) creates an object,
encrypts the object using the author’s key shared with the CC
(mediated by TRM) and sends it to the CC for approval and
distribution. The CC approves the object, time-stamps object
add and saves it locally. These are steps 2.1 and 2.2 in figure 2
for the MD based approach. When a User requests access to
the object, the CC specifically encrypts the object with the
key shared with that User. This is a critical difference from
SD. Since objects need to be individually encrypted/prepared
for each group user, the scalability of the system is gravely
affected. Here scalability refers to performance in the context
of number of objects shared amongst group users. Since a
large number of objects may be shared within the group, the
requirement that the CC decrypt and then custom encrypt each
object for each group user affects the scalability of MD based
enforcement model. In SD, the object is encrypted once and
all authorized group users are able to access them without the
intervention of the CC. We now discuss how MD differs from
that of SD for g-SIS.
• User Join: In SD, the CC provisions the group key for

each joining user. In MD, the CC needs to create and
share a new key with each joining user. This requires
maintenance of a large number of keys.

• Object Add: In MD, the TRM would send the object to
the CC. The CC needs to encrypt this object with every
other user’s key so that it is accessible to them. This
suffers from scalability and performance issues.

• Object Access: In MD, the first time a user needs to
access an object, it needs to be obtained from the CC
where it is custom encrypted for that user. It can thereafter
be accessed offline whenever authorized. Note that every
group object needs to be initially obtained from CC in
MD. In contrast, the objects could be obtained through

Fig. 5. Hybrid approach in g-SIS.

any means in SD since all objects are encrypted with the
group key.

• Attribute Refresh, User and Object Remove: There is no
difference between SD and MD approach for g-SIS.

• Assurance and Recourse: In SD, if any one of the group
user’s access machine is compromised, the group key
can be exposed and all group objects can be read in
plaintext. A new group key can be provisioned after
recovering from the compromise—although this can only
guarantee secrecy of new objects that will be created. Due
to this single point of failure problem, the sensitivity of
information that be can be distributed using SD model
may be limited. In MD, if any one access machine is
compromised, only objects that were encrypted for the
specific user using that access machine will be com-
promised. Other group objects remain safe because they
were encrypted with different keys. In summary, in SD
a compromise can result in large-scale access violation
while in MD the violation is limited. This is the trade-
off between scalability/usability and assurance of each
model.

Clearly, the SD based architecture has important scalability
and performance benefits of simplified key management (sin-
gle key per group) and the usability and convenience of offline
access and “encrypt once and access where authorized” where
group users can quickly share objects with other users. The
MD based architecture on the other hand has important failsafe
benefits such as limited damage in case of access machine
compromise. Note that MD suffers from key management
issues regardless of whether symmetric or asymmetric key
cryptography is used. For the later, a public-private key pair
needs to be shared by the CC with each group user. A more
useful and practical architecture should combine the benefits
of SD and MD based architecture (thereby minimizing the dis-
advantages of respective approaches). The hybrid architecture
that we discuss in the following section attempts to achieve
this by using split-key RSA.

4

TABLE I
COMPARISON OF SD, MD AND HYBRID APPROACH IN G-SIS ARCHITECTURE.

Aspect SD MD Hybrid

Key type Symmetric/Asymmetric Symmetric/Asymmetric Asymmetric

Number of encryp-
tion keys per group

One One per group user shared with CC One

Number of decryp-
tion keys per group

One One per group user shared with CC One split variant for the same RSA
exponent per group user

Add object Encrypt with group key Encrypt with key shared with CC Encrypt with private key

Read object Decrypt with group key and read (en-
crypt once and access where autho-
rized). Offline access enabled through-
out.

First time, CC custom encrypts the
requested object for the user (encrypt
differently for each user). Subsequent
reads can be carried out offline.

First time, CC decrypts the object with
its split decryption key. Subsequent
reads can be carried out offline (encrypt
once and access where authorized).

Usability (with re-
spect to users)

Very high (offline access, no CC partic-
ipation).

Medium (To add object, need to en-
crypt with the key shared with the CC.
The CC in turn decrypts and custom
encrypts for each user.).

High (Encryption is performed with a
uniform encryption key).

Performance (with
respect to CC)

Very high (CC never participates in
encryption/decryption).

Medium (CC participates in decrypting
and custom encrypting each object for
each group user).

High (CC performs a one time split key
decryption operation per document).

Assurance Low (compromising one user’s access
machine exposes group key thereby po-
tentially exposing all group objects).

High (Only objects in the compromised
access machine are exposed)

High (Only objects in the compromised
access machine exposed).

III. HYBRID APPROACH USING SPLIT-KEY RSA

In this section, we present a hybrid approach that addresses
the drawbacks of SD and MD based architecture thereby
achieving the benefits of each approach.

A. Split-Key RSA

We provide a brief overview of split-key RSA (see [4], [7],
[8]) in this section. A proof that the security of split-key RSA
is equivalent to that of the classical RSA is given in [22]. In
split-key RSA, the decryption key is comprised of multiple
parts each held by various parties (or users) involved in the
decryption process. Thus if e and d denote encryption (public)
and decryption (private) keys respectively, d can be split into
n parts—d1, d2, ..., dn and shared with possibly n different
parties. Thus a message encrypted with e can be decrypted
only if all n parties participate. Without the loss of generality,
let us consider only two splits (and thus two parties) for our
discussion below.

e ∗ d = 1 mod ϕ(n) (1)
d1 ∗ d2 = d mod ϕ(n) (2)

C = Me mod n (3)

(M)d1d2
mod n = (4)

(M)d2d1
mod n =

(M)d1∗d2
mod n =

Md mod n

In the classical RSA [18], the encryption (e) and decryption
(d) keys for a given n are related by equation (1). In split-key
RSA with two splits, d can be split into two portions as guided

by equation (2). A message M is encrypted using a single
operation as shown in equation (3). Finally, the fundamental
operation of exponentiation in RSA is given by equation (4).
Thus decrypting a message M using the split keys d1 and d2
in any order in equivalent to decrypting the message using d.
Also, note that d can be split into two parts in any number
of ways, there by yielding pairs of different splits such as d1
and d2, d3 and d4, etc. Thus a message encrypted with e can
be decrypted using d1 and d2 or d3 and d4, etc.

B. Hybrid Approach in g-SIS

Figure 5 illustrates the hybrid approach. Split-RSA keys
are created for each group. When a user joins a group, the CC
creates a unique split decryption key pair (d1 and d2 for this
user), keeps one split (d2) and shares the other decryption split
key (d1) with the joining user. The CC also shares the same
encryption key (e) with every joining user. Thus, in figure 5,
the Author (a group user) adds an object by encrypting it
with e and sending it to the CC. The CC approves the object,
sets the add time-stamp and releases it into the object cloud
similar to SD. The first time other group users need to access
the object, they send a request to the CC. The CC performs
the decryption on the object using its split decryption key d2
and sends it back to the user. The user then decrypts this blob
using his/her split-key d1 (mediated by TRM) to get the final
plain-text object. The blob from CC can be stored locally and
future read accesses can be performed completely offline. Note
that, in practice, a symmetric object key would be used and
the split-key decryption operation will be carried out on the
object key instead of the entire object to minimize performance
penalty of asymmetric key operation. Table I summarizes and
compares g-SIS architectures based on SD, MD and hybrid

5

approaches. Clearly, the hybrid approach for g-SIS architecture
combines the advantages of both SD and MD approach and
minimizes their disadvantages.

IV. TPM-BASED PROTOCOLS FOR HYBRID APPROACH

In [10], the authors discuss TPm-based g-SIS protocols for
the SD based approach. In this paper, we specify protocols for
some of the important steps in the architecture in figure 2 for
the hybrid approach discussed earlier. The group credential
refresh, user leave and object remove protocols are similar
to that of the SD based protocols discussed in [10]. Due to
space constraints, we do not discuss those protocols here. We
intentionally omit some system level details in these protocols
for clarity. For example, we assume that the messages in the
presented protocols all carry a MAC (Message Authentication
Code) and are protected against replay appropriately using
well-known techniques. The focus here is on how the TPM
and TRM play a role in enforcing access policies offline
by preventing or detecting tamper of group credentials by a
malicious user.

a) Mutual Authentication: A mutual authentication pro-
tocol (such as Authenticated Diffie-Hellman [5]) is required
for any two-party communication. In g-SIS, CC and GA are
identified using certificates CertCCand CertGArespectively,
issued by a trusted Certificate Authority (CA). For simplicity,
we assume that a user is tied to an access machine and hence
is identified using the id of the TRM. A TRM is identified
by an Attestation Identity Key (AIK) certificate. At the end
of a mutual authentication protocol, the parties should have
authenticated each other and share two session keys Ks and
Km used for encryption and MAC respectively.

b) Notations: X||Y refers to item X concatenated with
item Y . Key operations are represented using an underscore
and multiple items are enclosed within curly braces. Thus
{X||Y } Ks means that item X||Y is encrypted using Ks. If
AK is an asymmetric key, then {X} AK represents encryp-
tion of X using the public part of AK and {X} SignAK

represents a signature on X using the private part of AK.
Finally, {X} Km, Ks means that item X has been MAC’ed
and encrypted appropriately using keys Km and Ks respec-
tively. We use labels to refer to long cryptographic items for
convenience. For example, P : {X||Y ||Z} and a subsequent
usage of P such as {P} Ks denotes {X||Y ||Z} Ks. A
Mutual Authentication (MA) protocol run between entities
A and B is denoted MA(A:idA, B:idB) where idA and idB

are the identities of A and B respectively. For example,
MA(TRM:AIKTRM, GA:CertGA) denotes a protocol between
TRM and GA.

c) TPM Capabilities: It is beyond our current scope to
explain the TPM capabilities in detail. A thorough discussion
can be found in [2]. A TPM has a Storage Root Key (SRK),
the private part of which never leaves the TPM. SRK can be
used to encrypt data (keys or arbitrary blob) that can later be
decrypted only with the same TPM. A chain of keys can be
created (keys in the leaves encrypted with the parent and so
on and so forth) where the root key is SRK. A TPM has many

Platform Configuration Registers (PCR). A PCR is a register
that is capable of holding 160-bit SHA1 hash values. The idea
is that as a machine boots up, all the software that are loaded
is measured in sequence thus resulting in a final 160-bit SHA1
hash value that reflects the specific boot sequence of software
loaded in the main memory of the machine. This value is
registered in the PCR and an entity can read this value and
understand the trustworthiness of the machine by comparing
with a well-known PCR value.

Seal is a protected capability exposed by the TPM. In the
simplest case, a seal operation takes a key or a data blob and
appends it to a PCR value and encrypts it using the SRK. This
secret can later be unsealed only if the current PCR value in
the TPM is same as the value mentioned in the sealed blob.
Thus a seal operation allows an entity to specify the software
environment in which a blob may be accessed by any entity.

CertifyKey is another protected capability where a public
part of a key-pair and the PCR value under which the private
counterpart may be accessed, is collectively signed using the
AIK. If (Ppriv, Ppub) is an asymmetric key pair, then a certify
key operation, {Ppub||PCR} SignAIK , means that a) Ppriv

is protected using the SRK b) Ppriv is non-migratable, i.e., it
cannot be used in any other platform other than the TPM that
created it and c) Ppriv is sealed to a software state of PCR.
Thus any external entity can encrypt a secret using Ppub with
the assurance that the secret can be decrypted only under a
trustworthy platform software state reflected by PCR.

The TPM also features a monotonic counter, a hardware
counter, intended to reflect freshness of any value. For the
purpose of this paper, we assume that a running version of
the module presented in approaches such as [19] and [13] is
part of the TRM.

d) Join Protocol: Figure 6 shows the protocol for a new
user join (steps 1.1-1.4 in figure 2). In the authorization step,
the GA verifies that the user is not a current member and
returns a signature on AIKTRM. “JoinAUTH” is simply a
label that communicates the semantics that the user with the
id AIKTRM is allowed to join the group. In the provisioning
step, the TRM contacts the CC to obtain the group credentials.
The TRM needs to attest its platform software and hardware
state to the CC before the credentials can be provisioned.
First, the TRM obtains the current virtual monotonic counter
value from its counter module. The nonces used in the mutual
authentication can be reused as a nonce for this operation
(gx||gy represents Diffie-Hellman style exponents used as
nonces). Next, the TRM requests the TPM to create a non-
migratable key-pair that will be owned by the TRM. The TPM,
in response, returns TRMpub, {TRMpriv||PCR} SRK. As
discussed earlier, this message implies that the private part of
the created key-pair, TRMpriv, is sealed to a software state
of PCR. Thus TRMpriv can be unsealed in the future by
the TRM only if the software state at unseal time matches
the one specified in the PCR at seal time. If the seal-time
PCR represents a trustworthy software state, TRMpriv will
be accessible to TRM whenever the platform is in the same
trustworthy state in the future.

6

Fig. 6. Join (steps 1.1-1.4 in figure 2).

These semantics can be communicated to a challenger (CC
in this case) using the TPM’s CertifyKey capability. The
CertifyKey command takes the TRMpub key and the private
part’s associated PCR and a nonce and signs them using the
AIKTRM. Again, note that the nonce used here is the same
as the ones used for mutual authentication which reflects
the freshness of the certified key blob. The TPM will sign
TRMpub using AIKTRM (which is a key of type AIK) only
if TRMpub is non-migratable. That is, the TRM key-pair
can never be accessed using any TPM other than the TPM
that created the key-pair. Thus the CC can get the following
assurance by looking at the certified key (message labeled
as R). The private counter-part of TRMpub can be accessed
only if the software state of the platform is as represented by
PCR. If the CC knows the hash-value of a well-known trusted
platform state, it can verify this value against the reported PCR
and decide to trust the TRM or not. The TRM further gathers
the platform credentials (which reflects the trustworthiness
of the hardware). Finally, the TRM sends the GA’s join
authorization (P), current virtual monotonic counter value (Q),
the certified TRM key (R) and the platform credentials (S) to
the CC. The CC verifies these values and returns the group
credentials encrypted with a symmetric key K which in turn is
encrypted with TRMpub. As one can see, the group credentials
(e.g. gEncKey and gDecKeyUser) can be accessed only by
using TRMpriv. But TRMpriv is accessible to the TRM only
if the platform is in the same software state as specified at

Fig. 7. Add (steps 2.1-2.2 in figure 2).

Fig. 8. Object Read (first time).

seal-time and only in the same platform it was created in.
If all is well, the TRM can access the group credentials and
access objects as per group policy.

e) Object Add and Offline Access Protocol: The object
to be added is first sent to the CC for approval (figure 7). The
CC sets the add time-stamp, signs it and the object is ready
for sharing with other users.

We assume that the objects that need to be read (step 3 in
figure 2) are available locally in the user’s access machine via
super-distribution. In the hybrid approach, the first time the
user requests to access an object (figure 8), the TRM requests
the CC to do a split key decryption operation on the object.
The CC checks if the user is authorized to read the object,
fetches the split decryption key shared with the requesting
user, performs a decryption operation using its split key and
returns the blob to the TRM. The TRM can then perform
decryption using its portion of the split key and display the
object to the user. The TRM may also encrypt the object using
a symmetric object key and store locally for future accesses.

Fig. 9. Object Read (subsequent accesses).

7

Subsequently, when a user requests access to an object
(figure 9), the TRM sends a request to unseal the group
credentials to the TPM. Recall that the group credentials were
sealed to a trusted platform state at join time. Hence the
TPM will unseal it only if the current platform state is still
trustworthy. The TRM then reads the current counter value
and verifies that it is greater than or equal to currentCount
specified in the unsealed group credential. This check prevents
a replay of old credentials that could be launched by the user or
other malware. Since the counter will be incremented on every
use of the group credential and the counter being monotonic,
the currentCount value in the older group credentials will
be less than the value that was read. The TRM also checks
that the current counter value is lesser than or equal to the
refreshCount specified in the unsealed credential. This check
verifies that the usage count on the group credential has not
yet been exhausted. Thus if the policy allows access to the
object (see section II-A), the TRM increments the counter,
decrypts the object and allows the user to read the object.
Note that the user or malware can never make or hijack copies
of plaintext object. The TRM allows the user to read the
object only under a protected memory section that it controls.
If the usage count is exhausted (i.e., refreshCount reached),
the group credential needs to be refreshed before any further
access will be allowed.

V. RELATED WORK AND CONCLUSION

We presented a flexible g-SIS architecture that supports SD,
MD and a hybrid approach for object distribution and offline
access. We also presented TPM-based protocols for interaction
between various entities in the g-SIS architecture using the
hybrid approach. The g-SIS problem was introduced in [12],
[11] and a discussion on SD and MD and TPM based protocols
for the SD approach were presented in [10]. However, the SD
and MD approach suffers from various practical issues. In this
paper, we addressed the limitations of SD and MD by using
a novel hybrid approach using split-key RSA and outlined
TPM-based protocols for the hybrid approach.

Solution approaches for SD using specialized hardware or
purely software-based architectures for Digital Rights Manage-
ment of entertainment content are plentiful in literature ([1],
[17], [23]). Mori et al [14] was the first to propose the concept
of SD—although it was applied to widespread distribution
of software, the usage of which needs to be authorized and
monitored using specialized hardware. In [16], the authors
classify security architectures for information dissemination
based on three major factors: virtual machine that employs
control functions on objects to be accessed, control set that
specify the access rights and usage rules and distribution
style which specifies whether the objects are pushed to users
or the users obtain them from an external repository. In [6],
Gallery et al discuss the application of Trusted Computing in
the delivery of video content (broadcast services) to mobile
receivers which use legacy Conditional Access Systems for
protection. An SD infrastructure for secure storage, retrieval
and use of copyrighted data in mobile devices can be found

in [9]. The solution is based on secure multimedia card
extensions for mobile phones. A classification and analysis of
current content distribution networks and technologies (called
Darknet) can be found in [3]. Our work is different in that
it focuses on the g-SIS enforcement model for enabling SD,
MD and Hybrid approach in open platforms using Trusted
Computing Technology.

REFERENCES

[1] Architecture of windows media rights management.
http://www.microsoft.com/windows/windowsmedia/drm/default.aspx.

[2] TCG Specification Architecture Overview.
http://www.trustedcomputinggroup.org.

[3] P. Biddle, P. England, M. Peinado, and B. Willman. The Darknet and
the future of content distribution. Proc. of ACM Work. on DRM, 2002.

[4] C. Boyd. Digital multisignatures. In Cryptography and Coding, pages
241–246, Oxford University Press, 1989.

[5] W. Diffie, P. Oorschot, and M. Wiener. Authentication and authenticated
key exchanges. Designs, Codes and Cryptography, 2(2):107–125, 1992.

[6] E. Gallery, A. Tomlinson, and R. Delicata. Application of trusted
computing to secure video broadcasts to mobile receivers. Tech Report
RHUL-MA-2005-8, Dept. of Mathematics, Univ. of London, 2005.

[7] R. Ganesan. Yaksha: Augmenting Kerberos with public key cryptogra-
phy. In Proc. of the Symp. on Network and Dist. Syst. Security, 1995.

[8] R. Ganesan. Yaksha: Towards reusable security infrastructures. PhD
Thesis. Johns Hopkins University, 1996.

[9] T. Hatakeyama, H. Maruyama, and T. Chiba. Web computing. Superdis-
tribution and the security of music content. Fujitsu, 2001.

[10] R. Krishnan and R. Sandhu. Enforcement Architecture and Implementa-
tion Model for Group-Centric Information Sharing. To appear in Proc.
of 1st International Workshop on Security and Comm. Networks, 2009.

[11] R. Krishnan, R. Sandhu, J. Niu, and W. Winsborough. A conceptual
framework for group-centric secure information sharing. Proc. of 4th
ACM Symposium on Information, Computer and Comm. Security, 2009.

[12] R. Krishnan, R. Sandhu, and K. Ranganathan. PEI models towards
scalable, usable and high-assurance information sharing. Proc. of 12th
ACM Symposium on Access Control Models and Technologies, 2007.

[13] U. Kühn, M. Selhorst, and C. Stüble. Realizing property-based attesta-
tion and sealing with commonly available hard- and software. In Proc.
of ACM workshop on Scalable trusted computing, 2007.

[14] R. Mori and M. Kawahara. Superdistribution: The concept and the
architecture. The Transactions of the IEICE, 73(7):1133–1146, 1990.

[15] A. Osterhues, A. R. Sadeghi, M. Wolf, C. Stüble, and N. Asokan. Secur-
ing Peer-to-peer Distributions for Mobile Devices. In 4th Information
Security Practice and Experience Conference, 2008.

[16] J. Park, R. Sandhu, and J. Schifalacqua. Security architectures for
controlled digital information dissemination. ACSAC, 2000.

[17] B. Popescu, B. Crispo, A. Tanenbaum, and F. Kamperman. A DRM
security architecture for home networks. Proceedings of the 4th ACM
workshop on Digital rights management, pages 1–10, 2004.

[18] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21:120–126, 1978.

[19] A. Sadeghi, M. Scheibel, C. Stüble, and M. Wolf. Play it once again,
Sam-Enforcing stateful licenses on open platforms. In 2nd Workshop
on Advances in Trusted Computing, 2006.

[20] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
implementation of a TCG-based integrity measurement architecture.
Proc. of the 13th USENIX Security Symposium, 13:16–16, 2004.

[21] R. Sandhu. Engineering authority and trust in cyberspace: the OM-AM
and RBAC way. In Proc. of 5th ACM workshop on RBAC, 2000.

[22] R. Sandhu, M. Bellare, and R. Ganesan. Password-enabled PKI: Virtual
smartcards versus virtual soft tokens. In Proceedings of the 1st Annual
PKI Research Workshop, 2002.

[23] S. Sovio, N. Asokan, and K. Nyberg. Defining authorization domains
using virtual devices. Symposium on Applications and the Internet
Workshops, pages 331–336, 2003.

8

