
Formal Analysis of ReBAC Policy Mining Feasibility
Shuvra Chakraborty and Ravi Sandhu

Institute for Cyber Security (ICS) and NSF Center for Security and Privacy Enhanced Cloud Computing (C-SPECC)

Department of Computer Science, The University of Texas at San Antonio

San Antonio, Texas, USA

{shuvra.chakraborty,ravi.sandhu}@utsa.edu

ABSTRACT
Relationship-Based Access Control (ReBAC) expresses authoriza-

tion in terms of various direct and indirect relationships amongst

entities, most commonly between users. The need for ReBAC policy

mining arises when an existing access control system is reformu-

lated in ReBAC. This paper considers the feasibility of ReBAC policy

mining in context of user to user authorization, such as arises in

various social and business contexts. In accordance with the pol-

icy mining literature, we assume that complete data is provided

regarding user to user authorizations for a given user set, along

with complete relationship data amongst these users comprising a

labeled relationship graph. A ReBAC policy language is also speci-

fied. ReBAC policy mining seeks to formulate a ReBAC policy with

the given policy language and relationship graph, which is exactly

equivalent to the given authorizations. ReBAC policy mining feasi-

bility problem asks whether such a policy exists and if so to provide

the policy. We investigate this problem in context of different Re-

BAC policy languages which differ in the relationships, inverse

relationships and non-relationships that can be used to build the

policy. We develop a feasibility detection algorithm and analyze its

complexity. We show that our policy languages are progressively

more expressive as we introduce additional capability. In case of

infeasibility, various solution approaches are discussed.

CCS CONCEPTS
• Security and privacy→ Access control.

KEYWORDS
Access control; Policy mining; Relationship-Based Access Control

ACM Reference Format:
Shuvra Chakraborty and Ravi Sandhu. 2021. Formal Analysis of ReBAC

Policy Mining Feasibility. In Proceedings of the Eleventh ACM Conference
on Data and Application Security and Privacy (CODASPY ’21), April 26–
28, 2021, Virtual Event, USA. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3422337.3447828

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CODASPY ’21, April 26–28, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8143-7/21/04. . . $15.00

https://doi.org/10.1145/3422337.3447828

1 INTRODUCTION
In accordancewith the emerging popularity of various Online Social

Network (OSN) applications such as Facebook, Twitter, Instagram,

LinkedIn, effective access control is required to protect the huge

amount of personal data shared online from unauthorized access.

Popular OSN systems have employed various policies to mitigate

user’s privacy concern. For instance, Facebook allows the user to set

the privacy to only himself, all friends, a particular list of friends,

or public while creating a photo album; while LinkedIn allows

the user to keep their job seeking status to be seen by recruiters

only. In addition to individual user policies, there are some policies

applied system-wide as well, for example, the profile picture is

public applies to all users on Facebook. Subsequently, academic

research has been conducted to study and develop access control

mechanisms for OSNs. Relationship-Based Access Control (ReBAC)

is a prominent one in that regard. While ReBAC is relatively new,

there is significant literature on defining the structure and features

of ReBAC models. While its primary motivation originated from

its applications in OSNs, it offers promising capabilities in more

general applications [2].

Recently, the ReBAC policy mining problem has begun to attract

attention. This problem seeks to automate the process of obtaining

an equivalent ReBAC policy when a complete access control system

along with supporting relationship data is given. ReBAC policy

mining algorithms offer promising advancement in automating

policy generation, whereas manual effort requires more time, and

could be error-prone. In this paper, we investigate the ReBAC policy

mining approach from a novel perspective. We study the feasibility

of the ReBAC policy mining process, in context of various ReBAC

rule structures.

ReBAC policy mining approaches such as [4–8] permit use of

the unique identity (id) of entities (e.g., users and resources) in the

generated ReBAC policies. Hence, ReBAC policy mining is always

feasible. We believe that use of such ids is contrary to the core

ReBAC spirit. Thereby, determining feasibility becomes a significant

question in mining ReBAC policies. In case of infeasibility, we

propose various solutions as an alternative to using ids in ReBAC

policy generation. Throughout this study, we use the terms ReBAC

policy and ReBAC rule set interchangeably.

Our central contributions in this paper are as follows.

(1) The first formal notion of ReBAC RuleSet Existence Problem

(RREP) is developed.

(2) A novel algorithm for ReBAC policy mining feasibility de-

tection is presented along with examples.

(3) RREP variations based on increasingly powerful ReBAC pol-

icy languages are identified and shown to be solved by es-

sentially the same algorithm mentioned above.

https://doi.org/10.1145/3422337.3447828
https://doi.org/10.1145/3422337.3447828
https://doi.org/10.1145/3422337.3447828

(4) Resolution of infeasibility is addressed, and a formal solution

is proposed.

(5) Significant directions of future work are discussed.

The rest of the paper is organized as follows. Section 2 discusses

relevant background for this paper. Section 3 formalizes the core Re-

BAC RuleSet Existence Problem (RREP-0) and provides a feasibility

detection algorithm along with associated proofs and complexity

analysis. Section 4 extends the RREP with different ReBAC policy

languages along with examples which demonstrate the increasing

power of these languages. Section 5 develops an infeasibility solu-

tion for RREP-0, and discusses other solution approaches. Section 6

discusses a case study and implementation details. Finally, Section

7 discusses the pros and cons of the proposed approach to ReBAC

policy mining, as well as significant directions for enhancements.

2 RELATEDWORK
The rule set existence problem has been previously defined for

Attribute-Based Access Control (ABAC) from given enumerated

authorization [9] and given Role-Based Access Control (RBAC)

authorization [10]. This paper is the first to consider this problem

in context of ReBAC. We review the literature on ReBAC models

and ReBAC policy mining below.

The recent proliferation of OSNs has accelerated the research of

finding an access control paradigm which is different from tradi-

tional dominant access control models like ABAC [17], RBAC [14],

etc. According to the early literature, ReBAC policy is character-

ized by the explicit tracking of interpersonal relationships between

users [15]. ReBAC is a general-purpose access control model which

supports the natural expression of parameterized roles, the composi-

tion of policies, and the delegation of trust [16]. A further extended

hybrid-logic based ReBAC policy is given in [3].

In general, given an OSN, users and resources are interconnected

via various types of relationships. In order to specify ReBAC poli-

cies, particular relationship directions between users and resources

can play significant roles. For example, [12] specifies ReBAC poli-

cies based on user to user (U-U) relationships in OSN. Similarly,

[1] uses resource to resource (R-R), and [11] uses resource to user

(R-U) and vice versa to express ReBAC policies. In addition, [2]

presents a comparative analysis of expressive power and perfor-

mance implications between ReBAC and ABAC features, [19] does

an extensive analysis when the OSN is updated, and [13] proposes

ReBAC to be integrated with ABAC to enhance the capability and

allows finer-grained controls.

Given an access control system along with supporting data, Re-

BAC policy mining algorithms find the equivalent ReBAC policy.

This provides partial automation to the overall migration process,

reduces cost and uses some measures to find the most efficient rule

set. A few works on ReBAC policy mining are discussed briefly

as follows. The work in [6] presents ReBAC as an object-oriented

extension of ABAC where the "class" structure is able to realize

the relationship between various entities, beyond the user and re-

sources paradigms. In [7], the work in [6] is basically extended,

where heuristic-guided greedy and grammar-based evolutionary

algorithms for ReBAC policy mining are presented. A further exten-

sion is proposed in [5], to the evolutionary ReBAC policy mining in

[7]. The extended ReBAC policy mining in [5] follows the simplifi-

cation as well as feature selection by using neural network resulting

in a more scalable and efficient algorithm. Some other ReBAC policy

mining algorithms use decision tree [4], incomplete and noisy input

data [8], and mine ReBAC policies from graph transition [18]. In

comparison with [4, 8, 18], this feasibility study is limited to static

relationship graph with complete input information only.

Compared to [4–8], our work in this paper concentrates on

whether ReBAC mining is feasible or not without altering the core

spirit of ReBAC, i.e., relationships should be the key to express

policies and use of ids is prohibited. This is a fundamental differ-

ence since ReBAC policy mining is always feasible with ids. The

feasibility issue in ReBAC policy mining has been considered for

the first time in this paper, to the best of our knowledge.

Two relatively similar research works on ABAC ruleset existence

problem can be found in [9] and [10]. In [9], where an authorization

state and supporting attribute data are given as input, ABAC ruleset

existence problem has been introduced for the first time. Based on

the definition of conflict-free partition, [9] introduces a feasibility

detection algorithm and an infeasibility correction approach. In [10],

the core solution provided in [9] has been extended to accomplish

the solution of ABAC ruleset existence problem when an RBAC

system along with supporting attribute data are given as input.

Similar to our work in this paper, [9, 10] also prohibit the use of ids

in their respective rulesets.

3 ReBAC RULESET EXISTENCE PROBLEM
This section develops the formal definition of the ReBAC RuleSet

Existence Problem (RREP). As we are going to investigate variations

of RREP later in this paper, we call the the core RREP problem

defined in this section as RREP-0.

3.1 Preliminaries
A user is an entity who performs operations (also called actions).

An operation is an act performed by a user on another user. A

user can be an initiator or a target of an operation. The finite (but

unbounded) set of current users is denoted as U. The finite set

of operations is denoted by OP, where each operation in OP is

independently authorized.

Given that a user requests to perform an operation on another

user, every access control system must define a checkAccess func-

tion to decide whether or not this operation is permitted or denied.

The specification of checkAccess, typically as a logical formula,

depends upon the details of the underlying access control model.

Definition 3.1. checkAccess
𝑐ℎ𝑒𝑐𝑘𝐴𝑐𝑐𝑒𝑠𝑠 : 𝑈 × 𝑈 × 𝑂𝑃 → {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} where U and OP are

finite sets of users and operations respectively. A user 𝑢 ∈ 𝑈

is allowed to perform operation 𝑜𝑝 ∈ 𝑂𝑃 on a user 𝑣 ∈ 𝑈 iff

𝑐ℎ𝑒𝑐𝑘𝐴𝑐𝑐𝑒𝑠𝑠 (𝑢, 𝑣, 𝑜𝑝) is True.

Without loss of generality, we assume OP is the singleton set {𝑜𝑝},
since each operation is independently authorized. For simplicity,

OP is thereby omitted from further definitions. For a specific access

control model𝑀 we write 𝑐ℎ𝑒𝑐𝑘𝐴𝑐𝑐𝑒𝑠𝑠𝑀 (𝑢, 𝑣).
An access request is a tuple ⟨𝑢, 𝑣⟩, where 𝑢, 𝑣 ∈ 𝑈 and 𝑢 ≠ 𝑣 ,

which specifies user 𝑢 has requested to perform operation 𝑜𝑝 on

user 𝑣 . A simple authorization system, where user to user tuples

are used directly to control access authorization is as follows.

Definition 3.2. Enumerated Authorization System (EAS)
An EAS is a tuple ⟨𝑈 ,𝐴𝑈𝑇𝐻, 𝑐ℎ𝑒𝑐𝑘𝐴𝑐𝑐𝑒𝑠𝑠𝐸𝐴𝑆 ⟩ where, 𝑈 is the fi-

nite set of users, 𝐴𝑈𝑇𝐻 ⊆ 𝑈 × 𝑈 , is the authorization relation

where ∀(𝑢, 𝑣) ∈ 𝐴𝑈𝑇𝐻.𝑢 ≠ 𝑣 , and 𝑐ℎ𝑒𝑐𝑘𝐴𝑐𝑐𝑒𝑠𝑠𝐸𝐴𝑆 (𝑢, 𝑣) ≡ (𝑢, 𝑣) ∈
𝐴𝑈𝑇𝐻 .

For example, given the set of users 𝑈 = {𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏,𝐶𝑎𝑡ℎ𝑦} and

𝐴𝑈𝑇𝐻 = {(𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏), (𝐵𝑜𝑏,𝐶𝑎𝑡ℎ𝑦)}, an access request ⟨𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏⟩
is granted whereas ⟨𝐴𝑙𝑖𝑐𝑒,𝐶𝑎𝑡ℎ𝑦⟩ is denied. 𝐴𝑈𝑇𝐻 is essentially

an access matrix.

Relationships are represented as a directed labeled graph.

Definition 3.3. Relationship Graph (RG)
The Relationship Graph RG = (𝑉 , 𝐸, Σ) of a system is a directed

labeled graph where,

i) V is the set of vertices in RG, representing the current set of users,

ii) 𝐸 ⊆ 𝑉 ×𝑉 × Σ is a finite set of labeled directed edges where Σ is

a finite set of relation type specifiers.

An edge (𝑢, 𝑣, 𝜎) ∈ 𝐸, 𝑢 ≠ 𝑣 , represents the relation 𝜎 ∈ Σ from

user 𝑢 ∈ 𝑉 to 𝑣 ∈ 𝑉 in RG where 𝜎 is the edge label.

For example, in Fig. 1 let F represent the friend relation. Then Alice

is a friend of Bob, but not vice versa, whereas Cathy is a completely

isolated user.

Direct relationships are represented as edges in RG, while indi-

rect relationships are represented as paths. For our purpose, it is

convenient to define path in two steps as follows.

Definition 3.4. Linked Sequence of Vertices
Given RG = (𝑉 , 𝐸, Σ) and a vertex pair (𝑢, 𝑣) ∈ 𝑉 × 𝑉 where 𝑢 ≠

𝑣 , a (simple) linked sequence of vertices is a set of triples where

the terminating (i.e., second) vertex of each triple is same as the

starting (i.e., first) vertex of the next triple given by ⟨(𝑢, 𝑣𝑖 , 𝜎𝑤),
(𝑣𝑖 , 𝑣 𝑗 , 𝜎𝑥), ..., (𝑣𝑘 , 𝑣𝑙 , 𝜎𝑦), (𝑣𝑙 , 𝑣, 𝜎𝑧)⟩, where𝑢, 𝑣𝑖 , 𝑣 𝑗 , ..., 𝑣𝑘 , 𝑣𝑙 , 𝑣 ∈ 𝑉 ,

and 𝜎𝑤 , 𝜎𝑥 , ..., 𝜎𝑦, 𝜎𝑧 ∈ Σ, such that once a vertex 𝑣𝑖 occurs as a start
vertex it cannot be the terminating vertex in subsequent triples.

Definition 3.5. Path in Relationship Graph
A (simple) linked sequence of vertices is a (simple) path from u to v

if each triple belongs to 𝐸 in RG, i.e., it is an edge. The path label

of a path is 𝜎𝑤𝜎𝑥𝜎𝑦𝜎𝑧 . Its length is the number of triples, or

equivalently the number of symbols in the path label.

Since we only consider simple paths in this paper we will often

drop the simple qualifier. It should be noted that Def. 3.4 and 3.5

would traditionally be merged to define a path, but separating them

makes it convenient to define path variations later in Def. 4.1. For

convenience, given a path p in RG we understand pathLabel(p) to

denote the path label of path p.

A crucial component of ReBAC is a set of rules called the ReBAC

policy, formally defined as follows:

Definition 3.6. ReBAC Policy
A ReBAC policy, 𝑃𝑂𝐿𝑅𝑒𝐵𝐴𝐶 is a tuple, given by ⟨Σ, 𝑅𝑢𝑙𝑒𝑆𝑒𝑡⟩ where:

• Σ denotes the finite set of relation type specifiers in the

system.

• RuleSet is a set of rules where, for each operation 𝑜𝑝 ∈
𝑂𝑃 , RuleSet contains the single rule 𝑅𝑢𝑙𝑒𝑜𝑝 . Each 𝑅𝑢𝑙𝑒𝑜𝑝 is

Alice

Cathy

BobF

Figure 1: RG with V = {Alice, Bob, Cathy}, E = {(Alice, Bob,
F)}, and 𝚺 = {𝑭 }.

specified using the grammar below.

𝑅𝑢𝑙𝑒𝑜𝑝 ::= 𝑅𝑢𝑙𝑒𝑜𝑝 ∨ 𝑅𝑢𝑙𝑒𝑜𝑝 | 𝑝𝑎𝑡ℎ𝑅𝑢𝑙𝑒𝐸𝑥𝑝𝑟
𝑝𝑎𝑡ℎ𝑅𝑢𝑙𝑒𝐸𝑥𝑝𝑟 ::= 𝑝𝑎𝑡ℎ𝑅𝑢𝑙𝑒𝐸𝑥𝑝𝑟 ∧ 𝑝𝑎𝑡ℎ𝑅𝑢𝑙𝑒𝐸𝑥𝑝𝑟 |

𝑝𝑎𝑡ℎ𝐿𝑎𝑏𝑒𝑙𝐸𝑥𝑝𝑟

𝑝𝑎𝑡ℎ𝐿𝑎𝑏𝑒𝑙𝐸𝑥𝑝𝑟 ::= 𝑝𝑎𝑡ℎ𝐿𝑎𝑏𝑒𝑙𝐸𝑥𝑝𝑟 .𝑝𝑎𝑡ℎ𝐿𝑎𝑏𝑒𝑙𝐸𝑥𝑝𝑟 |
𝑒𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙

𝑒𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙 ::= 𝜎 , 𝜎 ∈ Σ

Here "." is the concatenation operator. As stated earlier, it suffices

to consider OP to be a singleton, so RuleSet consists of a single

rule. The 𝑅𝑢𝑙𝑒𝑜𝑝 expression consists of disjunction of pathRuleExpr,

where each pathRuleExpr consists of conjunction of pathLabelExpr.

The pathLabelExpr is a concatenated string of relationship type

specifiers. The 𝑅𝑢𝑙𝑒𝑜𝑝 evaluation procedure is described in Def. 3.7.

This leads to the following definition of a ReBAC system.

Definition 3.7. ReBAC System
A ReBAC system is a tuple, ⟨𝑅𝐺, 𝑃𝑂𝐿𝑅𝑒𝐵𝐴𝐶 , 𝑐ℎ𝑒𝑐𝑘𝐴𝑐𝑐𝑒𝑠𝑠𝑅𝑒𝐵𝐴𝐶 ⟩
where 𝑐ℎ𝑒𝑐𝑘𝐴𝑐𝑐𝑒𝑠𝑠𝑅𝑒𝐵𝐴𝐶 (a:V, b:V) is evaluated as follows: (i) for

each pathLabelExpr in𝑅𝑢𝑙𝑒𝑜𝑝 substitute True if there exists a simple

path p from a to b in RG with path label pathLabelExpr, otherwise

substitute False, (ii) evaluate the resulting boolean expression.

For example, consider Fig. 1 with 𝑅𝑢𝑙𝑒𝑜𝑝 = 𝐹 . Given an access

request ⟨Alice, Bob⟩, there is a simple path from Alice to Bob with

path label F so True is substituted for F and 𝑅𝑢𝑙𝑒𝑜𝑝 evaluates to

True whereby the access request is granted.

The definitions provided above bring us to definition of the

central problem addressed in this paper.

Definition 3.8. ReBACRuleSet Existence Problem (RREP-0)
Given an EAS = ⟨U,AUTH,𝑐ℎ𝑒𝑐𝑘𝐴𝑐𝑐𝑒𝑠𝑠𝐸𝐴𝑆 ⟩ and RG = (V,E,Σ) with
V=U, does there exist a RuleSet as in Def. 3.6 so that the resulting

ReBAC system satisfies:

(∀𝑢, 𝑣 ∈ 𝑈) [𝑐ℎ𝑒𝑐𝑘𝐴𝑐𝑐𝑒𝑠𝑠𝑅𝑒𝐵𝐴𝐶 (𝑢, 𝑣) ⇔ 𝑐ℎ𝑒𝑐𝑘𝐴𝑐𝑐𝑒𝑠𝑠𝐸𝐴𝑆 (𝑢, 𝑣)]
Such a RuleSet, if it exists, is said to be a suitable RuleSet, otherwise

the problem is said to be infeasible.

For example, for the RG in Fig. 1, a suitable RuleSet exists only if the

given AUTH = {(𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏)}, with 𝑅𝑢𝑙𝑒𝑜𝑝 = 𝐹 . Any other AUTH

relation will not have a suitable ReBAC RuleSet.

RuleSet Generality
A natural question to investigate at this point is the generality of our

ReBAC RuleSet structure. We consider three criteria in this regard:

variety of entities available, expressiveness of policy language and

relationship depth. In this paper, we limit our scope to user to

user relationships only which is a common case in OSNs. More

generally, ReBAC policy mining may incorporate multiple entity

types. For example, [6] uses the familiar class-object concept in

their ReBAC rules, where each class represents a a particular entity

type and an object is an instance of a class. In comparison with

[6], we deal with a single class User. We discuss expressiveness

in Section 4 and will show by examples that our rule structure

is not the most general one. Given a vertex pair (a,b) in RG and

simple path p from a to b, the relationship depth is the length

of the path. With finite RG, the relationship depth is inherently

limited by the maximum simple path length between any vertex

pair in RG. In [6], relationship depth is provided as algorithm input.

While in our paper relationship depth is not provided as input, a

slight modification would accommodate this. Specifically, adding

a constraint in line 5 of Algorithm 1 to limit the maximum simple

path length to a provided value. Other constraints could be similarly

enforced. For example, a constraint that limits the number of path

labels used in the conjunctive term generation in line 16-17 of

Algorithm 1 to a given numeric value.

3.2 Feasibility Detection Algorithm
In this subsection, the feasibility detectionAlgorithm 1 for RREP-0 is

presented alongwith proofs and complexity analysis. The algorithm

iterates through each tuple (𝑎, 𝑏) ∈ 𝐴𝑈𝑇𝐻 , and either finds a rule

that is correct for (𝑎, 𝑏) or deems the tuple to be infeasible and

records it in failedAuthList. In each iteration it computes all possible

simple paths from a to b to find whether the resulting collection

of pathLabels is collectively satisfied by any unauthorized tuple

(i.e., a tuple not in 𝐴𝑈𝑇𝐻). The function FindAllSimplePath, which

is able to find all simple paths between any vertex pair in RG,

is described briefly in appendix A. If (a,b) is disconnected in RG

then it is infeasible. Otherwise, all possible pathLabels for (a,b) are

generated in line 9 as in Def. 3.5. If there exists any unauthorized

vertex pair which satisfies all possible pathLabels from a to b, (a,b)

is infeasible as in line 14. The 𝑅𝑢𝑙𝑒𝑜𝑝 is updated otherwise and (a,b)

is removed from further consideration, as shown in line 16-17.

At the end, if rule generation is not feasible for any particular tu-

ple in AUTH, i.e., failedAuthList is not empty, the algorithm returns

an infeasible result along with all infeasible tuples in failedAuthList.

Another alternative is to abort at the point where first infeasible

tuple is encountered if failedAuthList is not available. If rule gener-

ation is feasible for every tuple (𝑎, 𝑏) ∈ 𝐴𝑈𝑇𝐻 , 𝑅𝑢𝑙𝑒𝑜𝑝 is generated

and feasible status is returned.

Theorem 3.9. The overall complexity of RREP-0 feasibility detec-
tion Algorithm 1 is 𝑂 (|𝑉 |4 × (|𝐸 |!)).

Proof:
In order to compute Algorithm 1 complexity, Algorithm 2 and 3

in appendix A are needed to be considered first. Algorithm 2 finds

the set all possible simple paths between a vertex pair in RG using

a variant of DFS in Algorithm 3. Since it considers only simple

Algorithm 1 ReBAC RuleSet Existence Problem-0 Algorithm

Input: An EAS ⟨ U,AUTH,𝑐ℎ𝑒𝑐𝑘𝐴𝑐𝑐𝑒𝑠𝑠𝐸𝐴𝑆 ⟩ and a RG = (V,E,Σ)
where V=U

Output: Feasible/infeasible status. If feasible→ generate ReBAC

rule, return "infeasible" and set of infeasible authorization tu-

ples otherwise.

1: 𝑅𝑢𝑙𝑒𝑜𝑝 := 𝑁𝑈𝐿𝐿

2: failedAuthList := ∅
3: AUTHset := AUTH //copying AUTH

4: while ∃(𝑎, 𝑏) ∈ 𝐴𝑈𝑇𝐻𝑠𝑒𝑡 do
5: 𝑆𝑃 (𝑎, 𝑏) := FindAllSimplePath(a,b, RG) //see appendix A

6: if 𝑆𝑃 (𝑎, 𝑏) = ∅ then
7: 𝑓 𝑎𝑖𝑙𝑒𝑑𝐴𝑢𝑡ℎ𝐿𝑖𝑠𝑡 := 𝑓 𝑎𝑖𝑙𝑒𝑑𝐴𝑢𝑡ℎ𝐿𝑖𝑠𝑡 ∪ {(𝑎, 𝑏)} //Not Feasi-

ble for (a,b) tuple

8: 𝐴𝑈𝑇𝐻𝑠𝑒𝑡\ := {(𝑎, 𝑏)} and Continue
9: 𝑃𝐴𝑇𝐻𝐿𝐴𝐵𝐸𝐿(𝑎.𝑏) := {𝑝𝑎𝑡ℎ𝐿𝑎𝑏𝑒𝑙 (𝑝) |𝑝 ∈ 𝑆𝑃 (𝑎, 𝑏)}
10: for each 𝑝𝑙 ∈ 𝑃𝐴𝑇𝐻𝐿𝐴𝐵𝐸𝐿(𝑎.𝑏) do
11: 𝑆𝐴𝑇𝑎𝑏 (𝑝𝑙) = {(𝑐, 𝑑) ∈ 𝑉 ×𝑉 | there exists a simple path s

from c to d in RG, c≠d, (c,d)∉AUTH, pl=pathLabel(s)}
12: 𝑄𝑎𝑏 :=

⋂
𝑝𝑙 ∈𝑃𝐴𝑇𝐻𝐿𝐴𝐵𝐸𝐿 (𝑎.𝑏)

𝑆𝐴𝑇𝑎𝑏 (𝑝𝑙)

13: if 𝑄𝑎𝑏 ≠ ∅ then
14: 𝑓 𝑎𝑖𝑙𝑒𝑑𝐴𝑢𝑡ℎ𝐿𝑖𝑠𝑡 := 𝑓 𝑎𝑖𝑙𝑒𝑑𝐴𝑢𝑡ℎ𝐿𝑖𝑠𝑡 ∪ {(𝑎, 𝑏)} //Not Feasi-

ble for (a,b) tuple

15: 𝐴𝑈𝑇𝐻𝑠𝑒𝑡\ := {(𝑎, 𝑏)} and Continue
16: if 𝑅𝑢𝑙𝑒𝑜𝑝 is NULL then 𝑅𝑢𝑙𝑒𝑜𝑝 :=

∧
𝑝𝑙 ∈𝑃𝐴𝑇𝐻𝐿𝐴𝐵𝐸𝐿 (𝑎.𝑏)

𝑝𝑙

else 𝑅𝑢𝑙𝑒𝑜𝑝 := 𝑅𝑢𝑙𝑒𝑜𝑝 ∨
∧

𝑝𝑙 ∈𝑃𝐴𝑇𝐻𝐿𝐴𝐵𝐸𝐿 (𝑎.𝑏)
𝑝𝑙

17: 𝐴𝑈𝑇𝐻𝑠𝑒𝑡\ := {(𝑎, 𝑏)}
18: if failedAuthList is ∅ then return ("feasible", 𝑅𝑢𝑙𝑒𝑜𝑝) else re-

turn ("infeasible", 𝑅𝑢𝑙𝑒𝑜𝑝 , failedAuthList)

path, the overall complexity of Algorithm 2 is 𝑂 (|𝐸 |!), considering
|𝑉 | ≤ |𝐸 |. Therefore, the complexity of line 5 and 9 in Algorithm

1 is 𝑂 (|𝐸 |!). In line 10-11, the 𝑆𝐴𝑇𝑎𝑏 function computation takes

overall𝑂 (|𝑉 |2 × (|𝐸 |!)). The computation complexity of finding set

intersections in line 10 takes 𝑂 (|𝐸 |!). Line 13-17 produces trivial
complexity compared to the others. The while loop in line 4-17 runs

|𝐴𝑈𝑇𝐻 | < |𝑉 |2 times. Hence, the overall complexity of Algorithm

1 is 𝑂 (|𝑉 |4 × (|𝐸 |!)).
The asymptotic complexity of the current approach is high, es-

pecially because computation of all possible simple paths between

any pair of vertices in RG gives the ultimate lower bound. How-

ever, RG can be a sparse one. Also, it can be easily noticed that

pre-computing and storing all possible simple paths between any

pairs in RG regardless of the AUTH can effectively reduce the com-

putation time inside the loop. Moreover, for many such practical

problems heuristic solutions are often effective. Later in this study,

it has been discussed that our ReBAC rule structure is not the most

general one. Feasibility algorithm can certainly change based on

the variety of ReBAC rule structures. Therefore, overall complexity

of determining ReBAC policy mining feasibility can vary based on

such factors. A detailed study of these is out of scope of this paper.

The correctness proof of Algorithm 1 is as follows.

Theorem 3.10. Given a RREP-0 instance as in Def. 3.8, a suitable
RuleSet exists iff Algorithm 1 generates the 𝑅𝑢𝑙𝑒𝑜𝑝 .

Proof:
Assume, Algorithm 1 generates the 𝑅𝑢𝑙𝑒𝑜𝑝 . According to Algorithm

1, for each (𝑎, 𝑏) ∈ 𝐴𝑈𝑇𝐻 , all possible paths from a to b in RG are

searched over to find the collection of pathLabel(p) where p is a

simple path from a to b, such that there exists no unauthorized tuple

(𝑐, 𝑑) ∈ 𝑉 ×𝑉 \𝐴𝑈𝑇𝐻, 𝑐 ≠ 𝑑 where the collection of pathLabel(q) is

a superset of the collection of pathLabel(p), where q is a simple path

from c to d in RG. In Algorithm 1, 𝑅𝑢𝑙𝑒𝑜𝑝 consists of disjunctions

of such conjunction of the collection of pathLabel(p), generated

for each (𝑎, 𝑏) ∈ 𝐴𝑈𝑇𝐻 . By the definition of checkAccess in Def.

3.7, the generated 𝑅𝑢𝑙𝑒𝑜𝑝 evaluates to true for each (𝑎, 𝑏) ∈ 𝐴𝑈𝑇𝐻

while denying all (𝑐, 𝑑) ∈ 𝑉 × 𝑉 \ 𝐴𝑈𝑇𝐻, 𝑐 ≠ 𝑑 . Hence, 𝑅𝑢𝑙𝑒𝑜𝑝
constitutes a suitable RuleSet.

To prove the opposite direction, assume a suitable RuleSet𝑅𝑢𝑙𝑒 ′𝑜𝑝
constituted by Def. 3.6 exists. Therefore, by the definition of RREP-

0, 𝑅𝑢𝑙𝑒 ′𝑜𝑝 evaluates to true for each (𝑎, 𝑏) ∈ 𝐴𝑈𝑇𝐻 while denying

all unauthorized tuple (𝑐, 𝑑) ∈ 𝑉 ×𝑉 \𝐴𝑈𝑇𝐻, 𝑐 ≠ 𝑑 . By the proce-

dure of 𝑅𝑢𝑙𝑒 ′𝑜𝑝 evaluation provided in Def. 3.7, there exists at least

a conjunctive term in 𝑅𝑢𝑙𝑒 ′𝑜𝑝 which is true for a (𝑎, 𝑏) ∈ 𝐴𝑈𝑇𝐻

where for all pathLabelExprs in the corresponding conjunctive

term, there exists a simple path p from a to b in RG such that

pathLabel(p) = pathLabelExpr. According to Algorithm 1, for each

(𝑎, 𝑏) ∈ 𝐴𝑈𝑇𝐻 , all possible paths from a to b in RG are searched

over to find such conjunction of the collection of pathLabel(p) and

𝑅𝑢𝑙𝑒𝑜𝑝 consists of disjunction of such conjunctions, generated for

each (𝑎, 𝑏) ∈ 𝐴𝑈𝑇𝐻 . Thereby, Algorithm 1 generates the feasible

status and 𝑅𝑢𝑙𝑒𝑜𝑝 , where each conjunctive term denoted by t’ in

𝑅𝑢𝑙𝑒 ′𝑜𝑝 must have at least a conjunctive term 𝑡 in 𝑅𝑢𝑙𝑒𝑜𝑝 where the

pathLabels in t’ are a subset of the pathLabels in t. Hence, the claim

holds in both directions and Theorem 3.10 is proved.

RREP-0 is the core of our ReBAC feasibility analysis. An example

of ReBAC rule generation is discussed in Section 6.

4 VARIATIONS OF ReBAC RULESET
EXISTENCE PROBLEM

By definition of RREP-0 in Def. 3.8, there are three key factors which

affect the feasibility detection process: i) the authorization relation

AUTH, ii) 𝑅𝑢𝑙𝑒𝑜𝑝 structure, and iii) RG. For example, an AUTH

relation can be symmetric or asymmetric, RG can be directed or

undirected, and the 𝑅𝑢𝑙𝑒𝑜𝑝 specification grammar can be modified

to add more or less expressive power. In this section, we consider

some RREP variations focusing on ReBAC rule structure.

4.1 Proposed RREP Variations
The following discussion proposes four variations of RREP. Accord-

ing to Def. 3.3, the given RG is a directed labeled graph. Therefore,

Algorithm 1 can work with directed RG only. Given an undirected

relationship graph 𝑅𝐺𝛾 = (𝑉 , 𝐸𝛾 , Σ), an equivalent directed labeled

relationship graph RG = (𝑉 , 𝐸, Σ) can be generated by enhancing

the set of edges. For each edge (𝑎, 𝑏, 𝜎) ∈ 𝐸𝛾 , symmetric edges

(𝑎, 𝑏, 𝜎) and (𝑏, 𝑎, 𝜎) are added to E. For each (𝑢, 𝑣) ∈ 𝐴𝑈𝑇𝐻 , sym-

metric authorization tuples (𝑢, 𝑣) and (𝑣,𝑢) are added to updated

AUTH relation as well. It is evident that the undirected RG along

Table 1: Path variations in RG

Characteristics SCP SPP SCPP

(𝑎, 𝑏, 𝜎) → (𝑎, 𝑏, 𝜎) ∈ 𝐸, 𝜎 ∈ Σ

(𝑎, 𝑏, 𝜎) → (𝑎, 𝑏, 𝜎) ∉ 𝐸, 𝜎 ∈ Σ

(𝑎, 𝑏, 𝜎−1) → (𝑏, 𝑎, 𝜎) ∈ 𝐸, 𝜎−1 ∈ Σ−1

(𝑎, 𝑏, 𝜎−1) → (𝑏, 𝑎, 𝜎) ∉ 𝐸, 𝜎−1 ∈ Σ
−1

with undirected AUTH can be reduced to core RREP-0 and Algo-

rithm 1 can be deployed to solve the feasibility detection. Thus it

suffices to consider directed RG.

Before proceeding to the other variations of RREP, three ex-

tended sets of relationships are defined as follows for a given Σ.

• Σ = {𝜎 |𝜎 ∈ Σ}. For each relation type specifier 𝜎 ∈ Σ,
𝜎 denotes "no 𝜎 relation". Therefore, Σ is the set of non-

relationship type specifiers in RG.

• Σ−1 = {𝜎−1 |𝜎 ∈ Σ}. For each relation type specifier 𝜎 ∈ Σ,
𝜎−1 denotes "inverse 𝜎 relation". Therefore, Σ−1 is the set of
inverse relation type specifiers in RG.

• Σ
−1

= {𝜎−1 |𝜎 ∈ Σ}. Here, Σ−1 denotes the set of non-

relationship inverse relation type specifiers in RG.

The inverse non-relationship specifier 𝜎−1 is not considered, since
as shown in Appendix B it is equivalent to 𝜎−1 and hence redundant.
There is no redundancy amongst 𝜎, 𝜎−1 and 𝜎−1, as we will see in
Section 6.

RREP-0 uses simple path definition in RG. In order to specify

extensions to RREP-0, three path variations in RG are defined as

follows utilizing the extended relation types defined above.

Definition 4.1. Path Variations in RG
The definition of (simple) linked sequence of vertices in Def. 3.4

is extended to include the extended symbols in Σ, Σ−1 and Σ
−1
, in

addition to Σ. The definition of (simple) path in Def. 3.5 is extended

as summarized in Table 1 to give the following three extended

notions of path.

i) Simple Complementary Path (SCP) allows symbols from Σ
and Σ respectively requiring the triple to be an edge or not

an edge as indicated in the top two rows of Table 1.

ii) Simple Permissive Path (SPP) allows symbols from Σ and

Σ−1 respectively requiring the triple to be an edge or the

inverse of an edge as in the first and third rows of Table 1.

iii) Simple Complementary Permissive Path (SCPP) allows sym-

bols from Σ, Σ, Σ−1 and Σ
−1

respectively requiring the triple

to be an edge, not an edge, the inverse of an edge or the

inverse of a “not an edge” as in the four rows of Table 1.

Based on the three path definitions introduced above, three vari-

ations of RREP problem, named as RREP-1, RREP-2, and RREP-3

are defined as follows.

Definition 4.2. RREP-1, RREP-2, and RREP-3
Given the definition of RREP-0 as in Def. 3.8, the definitions of

RREP-1, RREP-2, and RREP-3 are similar, except for distinctions

noted in Table 2.

Table 2: RREP variations

(a) RREP-0 (b) RREP-1 (c) RREP-2 (d) RREP-3

RuleSet as

in Def. 3.6

𝑒𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙 ::=

𝜎 |𝜎
𝑒𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙 ::=

𝜎 |𝜎−1
𝑒𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙 ::=

𝜎 |𝜎 |𝜎−1 |𝜎−1
check

Access as

in Def. 3.7

simple path

is replaced

by SCP

simple path

is replaced

by SPP

simple path

is replaced

by SCPP

Alice

Cathy

Bob
F

Figure 2: RG of Fig. 1 enhancedwith non-relationship edges.

Alice

Cathy

Bob
F

F-1

Figure 3: RG of Fig. 1 enhanced with inverse edges.

Table 2 describes the distinctions of RREP-1 to 3 in terms of

comparison with RREP-0 features. Table 2 shows that RREP-1 to

3 vary from RREP-0 based on two related aspects: RuleSet and

checkAccess definitions. Row 1 of Table 2 shows that, the 𝑅𝑢𝑙𝑒𝑜𝑝
grammar specified for RREP-1 to 3 vary in edgeLabel definitions

only, compared to RREP-0 RuleSet definition as in Def. 3.6. Row 2 of

Table 2 shows that 𝑅𝑢𝑙𝑒𝑜𝑝 of RREP-1 to 3 uses the same evaluation

criteria compared to RREP-0, except simple path is changed to SCP,

SPP and SCPP respectively.

4.2 Reduction of RREP Variations
The major difference between RREP-0 and the proposed variations

RREP-1 to RREP-3 is that simple path definition in RREP-0 consists

of given edges in RG, whereas SCP, SPP and SCPP bring additional

“virtual edges” into consideration. We can reduce the enhanced path

definitions of SCP, SPP and SCPP to the traditional path definition

by enhancing the original RGwith these virtual edges. Given the RG

of Fig. 1, its enhancements with additional edges for SCP, SPP and

Alice

Cathy

Bob

F
F-1

-1

-1

-1

Figure 4: RG of Fig. 1 enhanced with non-relationship, in-
verse and non-relationship inverse edges.

SCPP are respectively shown in Figs. 2, 3 and 4. These enhancements

are formally stated as follows.

Definition 4.3. Enhancements of RG
Given a directed labeled relationship graph RG = (𝑉 , 𝐸, Σ), let

• 𝐸 = {(𝑢, 𝑣, 𝜎) | 𝑢 ≠ 𝑣 ∧ (𝑢, 𝑣, 𝜎) ∉ 𝐸}
These are called non-relationship edges.

• 𝐸−1 = {(𝑢, 𝑣, 𝜎−1) | 𝑢 ≠ 𝑣 ∧ (𝑣,𝑢, 𝜎) ∈ 𝐸}
These are called inverse edges.

• 𝐸
−1

= {(𝑢, 𝑣, 𝜎−1) |𝑢 ≠ 𝑣 ∧ (𝑣,𝑢, 𝜎) ∉ 𝐸}
These are called non-relationship inverse edges.

The enhanced RG, denoted RGE, is defined as follows:

• For RREP-1: RGE = (𝑉 , 𝐸 ∪ 𝐸, Σ ∪ Σ)
• For RREP-2: RGE = (𝑉 , 𝐸 ∪ 𝐸−1, Σ ∪ Σ−1)
• For RREP-3: RGE = (𝑉 , 𝐸∪𝐸∪𝐸−1∪𝐸

−1
, Σ∪Σ∪Σ−1∪Σ

−1)

Note that RGE imposes some consistency requirements such as

(𝑢, 𝑣, 𝜎) is an edge in RGE iff (𝑢, 𝑣, 𝜎) is not an edge in RGE.

The lemma below follows trivially from the definitions.

Lemma 4.4. There is an SCP (respectively SPP, SCPP) p from u to
v with pathLabel(p) in RG iff there is a simple path p from u to v in
RGE for RREP-1 (respectively RREP-2, RREP-3) with pathLabel(p).

It follows that Algorithm 1 for RREP-0 with correspondingly

enhanced RG can be used to solve the feasibility detection problem

for RREP-1, RREP-2 and RREP-3 as well.

4.3 Limitation of RREP-0 to RREP-3
It is easy to construct examples that are beyond the scope of the

variations discussed above. In the RGs of both Fig. 5 and Fig. 6, there

are two simple paths from Alice to Ray with path labels "F.F" and

"F.F.F". However, there is a significant difference between the two

RGs. In Fig. 5 the simple paths from Alice to Ray are disjoint with

respect to their edges, while this is not so for Fig. 6. Specification of

disjoint paths is not possible in our rule structure variations. In the

most general case any computable property of RG can be utilized

in the rule structure.

A ReBAC policy language for user to user relationship is pre-

sented in [12]. Although [12] offers different rule structures for

accessing user, target user as well as system administrator views, a

basic comparative study between the rule set structure of our work

and the ReBAC policy presented in [12] is as follows.

Alice

Cathy Bob

RayFTom
F

F F

F

Figure 5

Alice

Bob

RayFTom
F

F F

Figure 6

(1) In [12], each pathLabelExpr is limited by the maximum num-

ber of edges allowed in the path, specified as hopcount. Our

rule structure does not allow such numeric value on edge

count in RG. Moreover, [12] offers negative pathLabelExpr,

that means an entire relationship pattern that must not exist

from accessing user to target user in the RG. In our work, al-

lowing non-relationship edges accomplish the fact of travers-

ing the graph in "not in a relationship" directions, however,

its semantics is completely different.

(2) Repeating a relationship pattern unlimited (*) or 0/1 times

(?) has been included in [12]. Our ReBAC policy can accom-

plish the similar task by repeating the rule expressions as

many times as desired. Note that infinite repetitions are not

possible for simple paths in a finite graph.

(3) The rule evaluation in [12] can start from a particular user

as noted in the rule, but our ReBAC policy evaluation starts

from any node in RG, therefore, can be referred as system

policy. For both of the works, pathLabelExprs are constituted

by using disjunction and conjunction operators.

From the discussions above, it can be summarized that, our rule

structure lacks some features as compared to [12] such as hopcount

on the pathLabelExpr, enhances a few such as allowing comple-

mentary and permissive path in RG, and has similar structure such

as use of disjunction and conjunction of pathLabelExpr.

5 PROPOSED INFEASIBILITY SOLUTIONS
In this section we propose a solution to infeasibility in RREP-0

and illustrated by examples. Other possible direction of solution

approaches and limitations will be discussed briefly.

Alice

Cathy

BobF

Ray

F

F

F

Figure 7: RREP-0 infeasibility example.

Alice

Cathy

BobF

Ray

Priority=4 Priority=1

Priority=3Priority=2

F

F

F

Figure 8: Adding "priority" attribute to Fig. 7.

5.1 Proposed Infeasibility Correction
Given a RREP-0 instance as in Def. 3.8, if no suitable RuleSet ex-

ists (i.e., Algorithm 1 returns infeasible result) we say there is an

infeasibility problem. In such cases we can make a suitable RuleSet

generation possible by adding new relationships as follows.

i) Select a symbol 𝑜𝑝 ∉ Σ.
ii) Add the path expression 𝑜𝑝 as a disjunction to the generated

𝑅𝑢𝑙𝑒𝑜𝑝 by Algorithm 1 to construct 𝑅𝑢𝑙𝑒𝑜𝑝 ∨ 𝑜𝑝 .

iii) For each (𝑢, 𝑣) ∈ 𝑓 𝑎𝑖𝑙𝑒𝑑𝐴𝑢𝑡ℎ𝐿𝑖𝑠𝑡 add an edge (u,v,op) to E

in RG.

Theorem 5.1. The infeasibility correction solution above is correct
for the modified RREP-0 problem with modified RG and Σ.

Proof:
For each (𝑢, 𝑣) ∈ 𝐴𝑈𝑇𝐻 , where Algorithm 1 fails to generate the

rule, the proposed solution above adds an edge from u to v in RG

with edge label 𝑜𝑝 . It is trivial that a simple path of length 1 with

pathLabelExpr 𝑜𝑝 thereby exists in the modified RG for each such

(𝑢, 𝑣) ∈ 𝑓 𝑎𝑖𝑙𝑒𝑑𝐴𝑢𝑡ℎ𝐿𝑖𝑠𝑡 , generated by Algorithm 1. Therefore, the

pathLabelExpr 𝑜𝑝 turns true for each such infeasible authorization

tuples only.

Fig. 7 presents an RG the set of users𝑉 = {𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏,𝐶𝑎𝑡ℎ𝑦, 𝑅𝑎𝑦},
the set of edges E = {(𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏, 𝐹), (𝐵𝑜𝑏,𝐶𝑎𝑡ℎ𝑦, 𝐹), (𝐶𝑎𝑡ℎ𝑦, 𝑅𝑎𝑦, 𝐹),
(𝑅𝑎𝑦,𝐴𝑙𝑖𝑐𝑒, 𝐹)}, and the set of relation type specifiers, Σ = {𝐹 }.
Let AUTH = {(𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏), (𝐶𝑎𝑡ℎ𝑦, 𝑅𝑎𝑦)}. According to the RuleSet
structure given in Def. 3.6, RREP-0 fails since there exists a single

simple path from Alice to Bob, where path label is F. However, "F"

is also true for (Alice, Bob), (Bob, Cathy), (Cathy, Ray), and (Ray,

Alice). The same scenario occurs while finding rule for (Cathy, Ray).

Therefore, the given AUTH is concluded as infeasible by Algorithm

1, and failedAuthList contains both (Alice, Bob) and (Cathy, Ray).

According to the solution above, two additional edges (Alice, Bob,

op) and (Cathy, Ray, op) are added to E, and Σ is updated to {𝐹, 𝑜𝑝}.
The generated 𝑅𝑢𝑙𝑒𝑜𝑝 is op.

5.2 Alternate Infeasibility Correction
An alternate approach to infeasibility correction is to add an at-

tribute named "priority" to each vertex in the RG, illustrated by ex-

ample as follows. Consider the solution provided in Fig. 8, given the

prior infeasibility example: AUTH = {(𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏), (𝐶𝑎𝑡ℎ𝑦, 𝑅𝑎𝑦)}
and RG is as shown in Fig. 7. Each user vertex in the given RG in

Fig. 7 has been assigned a positive integer priority value, and the

ordered sequence of vertex priority values associated with the path

p from vertex a to b in RG is the same order followed by the ver-

tices through the path p. For example, ordered sequence of vertex

priority values associated with the path from Alice to Ray in Fig.

8 is ⟨4, 1, 3, 2⟩. The 𝑅𝑢𝑙𝑒𝑜𝑝 given in Def. 3.6 is modified in order to

accommodate the use of priority value as follows:

𝑅𝑢𝑙𝑒𝑜𝑝 ::= 𝑅𝑢𝑙𝑒𝑜𝑝 ∨ 𝑅𝑢𝑙𝑒𝑜𝑝 | 𝑝𝑎𝑡ℎ𝑅𝑢𝑙𝑒𝐸𝑥𝑝𝑟
𝑝𝑎𝑡ℎ𝑅𝑢𝑙𝑒𝐸𝑥𝑝𝑟 ::= 𝑝𝑎𝑡ℎ𝑅𝑢𝑙𝑒𝐸𝑥𝑝𝑟 ∧ 𝑝𝑎𝑡ℎ𝑅𝑢𝑙𝑒𝐸𝑥𝑝𝑟 |

(𝑝𝑎𝑡ℎ𝐿𝑎𝑏𝑒𝑙𝐸𝑥𝑝𝑟, 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑂𝑟𝑑𝑒𝑟)
𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑂𝑟𝑑𝑒𝑟 ::=> | < | 𝜙
𝑝𝑎𝑡ℎ𝐿𝑎𝑏𝑒𝑙𝐸𝑥𝑝𝑟 ::= 𝑝𝑎𝑡ℎ𝐿𝑎𝑏𝑒𝑙𝐸𝑥𝑝𝑟 .𝑝𝑎𝑡ℎ𝐿𝑎𝑏𝑒𝑙𝐸𝑥𝑝𝑟 | 𝑒𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙
𝑒𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙 ::= 𝜎 , 𝜎 ∈ Σ
where >,<, and 𝜙 represent increasing, decreasing and don’t care

orders, respectively, and pathRuleExpr consists of conjunction of

(pathLabelExpr, priorityOrder) pairs.

The evaluation procedure of 𝑐ℎ𝑒𝑐𝑘𝐴𝑐𝑐𝑒𝑠𝑠𝑅𝑒𝐵𝐴𝐶 (a:V, b:V) in a

ReBAC system with the specified 𝑅𝑢𝑙𝑒𝑜𝑝 is as follows:

(i) for each (pathLabelExpr, Order) pair in 𝑅𝑢𝑙𝑒𝑜𝑝 substitute True

if there exists a simple path p from a to b in RG with path label

pathLabelExpr where the ordered sequence of vertex priority values

associated with path p follows the priorityOrder order, otherwise

substitute False, (ii) evaluate the resulting boolean expression.

Let’s recall the AUTH = {(𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏), (𝐶𝑎𝑡ℎ𝑦, 𝑅𝑎𝑦)} noted ear-

lier for Fig. 7. According to the proposed 𝑅𝑢𝑙𝑒𝑜𝑝 structure, the

generated 𝑅𝑢𝑙𝑒𝑜𝑝 = (𝐹, <) solves the infeasibility because the sim-

ple path labeled F from Alice to Bob follows the decreasing order as

4 > 2. The same case occurs for (Cathy, Ray) since 3 > 2, whereas

(Bob, Cathy) and (Ray, Alice) do not.

5.3 Limitations of Current Infeasibility
Solution

The infeasibility solution provided in Section 5 adds only a sin-

gle pathLabelExpr "op" to the 𝑅𝑢𝑙𝑒𝑜𝑝 , regardless of the number

of infeasible tuples in the AUTH, adding |𝐴𝑈𝑇𝐻 | number of ad-

ditional edges in RG in the worst case. To clarify more with an

example, given the RG in Fig. 9 and the set of authorization tu-

ples {(𝐴𝑙𝑖𝑐𝑒, 𝑅𝑎𝑦), (𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏), (𝐴𝑙𝑖𝑐𝑒,𝐶𝑎𝑡ℎ𝑦)}, this solution adds

three edges with label 𝑜𝑝 originating from Alice to Bob, Ray, and

Cathy, respectively. Therefore, the 𝑅𝑢𝑙𝑒𝑜𝑝 is "op". However, a so-

lution fewer added edges can be obtained for the given AUTH by

Alice

Cathy

Bob

Ray
F

Tom

F

F

Figure 9

adding a single edge from Alice to Tom labeled as "op". It is clearly

evident that the edge from Alice to Tom creates simple paths from

Alice to Ray, Bob, and Cathy. Therefore, the possible 𝑅𝑢𝑙𝑒𝑜𝑝 for

the given AUTH is "op.F". This demonstrates the trade-off between

minimum size of rule and adding minimum number edges in RG

to correct infeasibility. The solution of Subsection 5.1 keeps the

given RG unchanged while adding new relationship edges to RG.

An alternative approach could be to remove some edges from the

given RG.

6 CASE STUDIES
In this section we present case studies to show the relative power

of the rule structures of RREP variations defined in this paper. We

also discuss the need for rule optimization.

Consider the RG shown in Fig. 10(a), along with its inverse,

non-relationship and non-relationship inverse edges shown in Figs.

10(b), 11(a) and 11(b). For different values of AUTH we get different

feasibility results as follows, where we understand that Algorithm

1 will be run with correspondingly enhanced RGs (i.e., Fig. 10(a)

for RREP-0, union of Figs. 10(a) and 11(a) for RREP-1, union of Figs.

10(a) and 10(b) for RREP-2, and union of Figs. 10(a), 10(b), 11(a) and

11(b) for RREP-3).

(1) Let AUTH = {(Ray,Cathy), (Bob,Cathy)}. Then Algorithm 1

will return success for RREP-0, RREP-1, RREP-2 and RREP-3.

Note that feasibility of RREP-0 always implies feasibility of

RREP-1, RREP-2 and RREP-3 since the simple path of RREP-

0 is included in the enhanced path definitions of the latter.

The rule returned for RREP-0 and RREP-2 is F∨F which is

logically equivalent to F. The rules generated for RREP-1 and

RREP-3 are more complex due to the increased number of

paths in the enhanced RGs.

(2) Let AUTH = {(Cathy,Ray), (Cathy,Bob)}. For RREP-0 and

RREP-1 Algorithm 1 will return failure. For RREP-2 it will

return F
−1∨F−1. The formula for RREP-3 is more complex.

(3) Let, AUTH = {(Alice, Bob), (Alice, Cathy), (Alice, Ray), (Bob,

Alice), (Bob, Ray), (Cathy, Alice), (Cathy, Bob), (Cathy,Ray),

(Ray, Alice), (Ray,Bob)}. For RREP-0 and RREP-2 Algorithm

1 will return failure. For RREP-1 and RREP-3 it will return

success with complex formulae due to the multiplicity of

paths in the enhanced RGs.

(4) Let’s consider, AUTH= {(Ray,Cathy), (Bob,Cathy), (Cathy,Ray),

(Cathy,Bob), (Alice, Cathy)}. For RREP-0, RREP-1 and RREP-2

F

Alice

Cathy

Bob

Ray

F

Alice

Cathy

Bob

Ray
F-1

F-1

(a) (b)

Figure 10: (a) Given RG
(b) Inverse edges for RG of Fig. 10(a)

Alice

Cathy

Bob

Ray

-1

Alice

Cathy

Bob

Ray

-1

-1

-1

-1

-1

-1

-1

-1

-1

(a) (b)

Figure 11: (a) Non-relationship edges for RG of Fig. 10(a)
(b) Non-relationship inverse edges for RG of Fig. 10(a)

Algorithm 1 will return failure. For RREP-3 it will return suc-

cess with a complex formula which would logically reduce

to 𝐹
−1
.𝐹

−1
.𝐹 ∨ 𝐹−1.

These examples establish that the rule structure of RREP-3 is strictly

more expressive than RREP-0, RREP-1 and RREP-2. Note that RREP-

0 is the weakest as argued above. RREP-1 and RREP-2 are incompa-

rable.

The generated rule may contain unnecessary path labels in con-

junctive terms if all possible path labels are being used. Therefore, a

few simple rule optimization techniques are used in the implemen-

tation. As stated in Algorithm 1, for any tuple (a,b) in AUTH, all

possible path labels from a to b are AND’ed to form the conjunctive

term after determining the feasibility. Instead of using all possible

path labels, the smallest possible subset of those is used to form

the conjunctive term such that it does not evaluate to true for any

unauthorized tuple. For example, given the RG in Fig.10(a), and an

EAS where V is identical and set of authorization relations AUTH

= {(𝐴𝑙𝑖𝑐𝑒, 𝑅𝑎𝑦), (𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏)}, the 𝑅𝑢𝑙𝑒𝑜𝑝 computed using RREP-3

by Algorithm 1 comprises a conjunction of 24 terms as follows:

𝐹 .𝐹−1 ∧ 𝐹
−1 ∧ 𝐹 .𝐹 ∧ 𝐹

−1
.𝐹 ∧ 𝐹 .𝐹

−1 ∧ 𝐹
−1
.𝐹

−1
.𝐹−1 ∧ 𝐹

−1
.𝐹 .𝐹 ∧

𝐹
−1
.𝐹−1∧𝐹−1 .𝐹−1 .𝐹∧𝐹 .𝐹−1 .𝐹−1∧𝐹 .𝐹−1 .𝐹∧𝐹−1 .𝐹−1 .𝐹−1∧𝐹 .𝐹 .𝐹∧

𝐹 .𝐹 .𝐹
−1∧𝐹−1 .𝐹 .𝐹−1∧𝐹−1 .𝐹−1 .𝐹∧𝐹 .𝐹−1 .𝐹∧𝐹 .𝐹 .𝐹∧𝐹∧𝐹−1 .𝐹 .𝐹−1∧

𝐹 .𝐹
−1
.𝐹−1 ∧ 𝐹

−1
.𝐹 .𝐹 ∧ 𝐹

−1
.𝐹

−1 ∧ 𝐹 .𝐹 .𝐹−1

Both tuples (Alice, Bob) and (Alice, Ray) in AUTH would generate

this conjunction since they have the same set of path labels. After

applying the specified smallest possible subset of path labels in a

conjunctive term technique, the specified 𝑅𝑢𝑙𝑒𝑜𝑝 turns into signifi-

cantly smaller rule, given by 𝐹 .𝐹−1. Another way of rule minimiza-

tion is: after completion of rule generation, a conjunctive term in the

generated rule, say c1, removes all conjunctive terms c2 in the rule

if all path labels in c1 are included in c2. The Java implementation

of feasibility detection along with the described rule minimization

techniques can be found here (https://github.com/shuvrac7/Formal-

Analysis-of-ReBAC-Policy-Mining-Feasibility.git).

7 FUTURE RESEARCH
The RREP has been introduced for the first time in this paper. Here,

a few directions for future enhancement will be addressed briefly.

(1) The proposed feasibility detection Algorithm 1 produces

overall exponential asymptotic complexity, considering the

rule minimization applied in the implementation. Given a

directed RG = (𝑉 , 𝐸, Σ) and an EAS as defined in Def. 3.3 and

3.2, respectively, Algorithm 1 needs to compute all possible

simple paths for all (𝑢, 𝑣) ∈ 𝑉 × 𝑉 ,𝑢 ≠ 𝑣 . In the worst

case, the total possible path labels in RG can be estimated as

follows:

• The length of simple path from for any (𝑢, 𝑣) ∈ 𝑉×𝑉 ,𝑢 ≠ 𝑣

in RG ranges from 1 to (|𝑉 | − 1), where V is the set of

users in the system.

• Given the finite set of relation type specifiers Σ, for all
possible simple paths of length 1, the number of possible

path labels in RG is |Σ|. By using the same concept, for all

possible simple paths of length 2, the number of possible

path labels in RG is |Σ| × |Σ|. Therefore, for all possible
simple paths of length |𝑉 | −1, the total number of possible

path labels in RG is |Σ| |𝑉 |−1
.

• Therefore, given a graph RG, all possible path labels con-

sidering all possible simple paths in RG is: Σ + Σ2 + Σ3 +
... + Σ |𝑉 |−1

.

A significant form of improvement in the current approach

would be to reduce computation complexity.

(2) In this paper, the context to ReBAC rule set structure is

restricted to RREP-0 to RREP-3. The feasibility detection

algorithm depends on the intended rule set structure, as

shown in the paper. Adding new features to the existing

rule structures, how much modification does the feasibility

detection algorithm need when some new features are added

to rule structure, which features make the rule structures

more general in practical scenario, etc., can be interesting

research problems.

(3) An advanced direction could be: given any ReBAC rule struc-

ture, can the process of the feasibility detection be completely

automated?

(4) Here, some solution approaches to infeasibility have been

discussed. More efficient solution approaches can be pro-

posed, which remained as open research problem.

(5) In this study, no loops are allowed in RG.What could be done

in order to manage such a RG with self loops, as well as path

including cycles? Our current algorithm would work with

path including cycles where length limit is given if slightly

modified. We have not investigated cycles without length

limits.

https://github.com/shuvrac7/Formal-Analysis-of-ReBAC-Policy-Mining-Feasibility.git
https://github.com/shuvrac7/Formal-Analysis-of-ReBAC-Policy-Mining-Feasibility.git

(6) Only exact solutions have been considered so far. Is having

inexact solution reduce computation complexity? In that

case, what are the factors needed to be considered?

(7) Extend the feasibility problem definition as well as infeasib-

lity solutions beyond user to user context.

ACKNOWLEDGEMENT
This work is partially supported by NSF CRESTGrant HRD-1736209.

REFERENCES
[1] Tahmina Ahmed, Farhan Patwa, and Ravi Sandhu. 2016. Object-to-Object

Relationship-Based Access Control: Model and Multi-Cloud Demonstration (In-

vited Paper). In 2016 IEEE 17th International Conference on Information Reuse and
Integration (IRI). 297–304.

[2] Tahmina Ahmed, Ravi Sandhu, and Jaehong Park. 2017. Classifying and Com-

paring Attribute-Based and Relationship-Based Access Control. In Proceedings
of the Seventh ACM on Conference on Data and Application Security and Privacy
(Scottsdale, Arizona, USA) (CODASPY ’17). Association for Computing Machinery,

New York, NY, USA, 59–70.

[3] Glenn Bruns, PhilipW.L. Fong, Ida Siahaan, andMichael Huth. 2012. Relationship-

Based Access Control: Its Expression and Enforcement through Hybrid Logic

(CODASPY ’12). Association for Computing Machinery, New York, NY, USA,

117–124.

[4] Thang Bui and Scott D. Stoller. 2020. A Decision Tree Learning Approach

for Mining Relationship-Based Access Control Policies. In Proceedings of the
25th ACM Symposium on Access Control Models and Technologies (Barcelona,
Spain) (SACMAT ’20). Association for Computing Machinery, New York, NY,

USA, 167–178.

[5] Thang Bui, Scott D. Stoller, and Hieu Le. 2019. Efficient and Extensible Policy

Mining for Relationship-Based Access Control. In Proceedings of the 24th ACM
Symposium onAccess Control Models and Technologies (Toronto ON, Canada) (SAC-
MAT ’19). Association for Computing Machinery, New York, NY, USA, 161–172.

[6] Thang Bui, Scott D. Stoller, and Jiajie Li. 2017. Mining Relationship-Based Access

Control Policies. In Proceedings of the 22nd ACM on Symposium on Access Control
Models and Technologies (Indianapolis, Indiana, USA) (SACMAT ’17 Abstracts).
Association for Computing Machinery, New York, NY, USA, 239–246.

[7] Thang Bui, Scott D. Stoller, and Jiajie Li. 2019. Greedy and evolutionary algorithms

for mining relationship-based access control policies. Computers Security 80

(2019), 317 – 333.

[8] Thang Bui, Scott D. Stoller, and Jiajie Li. 2019. Mining Relationship-Based Access

Control Policies from Incomplete and Noisy Data. In Foundations and Practice
of Security, Nur Zincir-Heywood, Guillaume Bonfante, Mourad Debbabi, and

Joaquin Garcia-Alfaro (Eds.). Springer International Publishing, Cham, 267–284.

[9] Shuvra Chakraborty, Ravi Sandhu, and Ram Krishnan. 2019. On the Feasibility

of Attribute-Based Access Control Policy Mining. In 2019 IEEE 20th International
Conference on Information Reuse and Integration for Data Science (IRI). 245–252.

[10] Shuvra Chakraborty, Ravi Sandhu, and Ram Krishnan. 2020. On the Feasibility

of RBAC to ABAC Policy Mining: A Formal Analysis. In Secure Knowledge Man-
agement In Artificial Intelligence Era. Springer Singapore, Singapore, 147–163.

[11] Y. Cheng, J. Park, and R. Sandhu. 2012. Relationship-Based Access Control for

Online Social Networks: Beyond User-to-User Relationships. In 2012 International
Conference on Privacy, Security, Risk and Trust and 2012 International Confernece
on Social Computing. 646–655.

[12] Yuan Cheng, Jaehong Park, and Ravi Sandhu. 2012. A User-to-User Relationship-

Based Access Control Model for Online Social Networks. In Data and Applications
Security and Privacy XXVI". Springer Berlin Heidelberg, Berlin, Heidelberg, 8–24.

[13] Yuan Cheng, Jaehong Park, and Ravi Sandhu. 2014. Attribute-Aware Relationship-

Based Access Control for Online Social Networks. In Data and Applications
Security and Privacy XXVIII, Vijay Atluri and Günther Pernul (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 292–306.

[14] David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and Ramaswamy

Chandramouli. 2001. Proposed NIST standard for role-based access control. ACM
TISSEC 4, 3 (2001), 224–274.

[15] Philip W.L. Fong. 2011. Relationship-Based Access Control: Protection Model and

Policy Language. In Proceedings of the First ACM Conference on Data and Applica-
tion Security and Privacy (San Antonio, TX, USA) (CODASPY ’11). Association
for Computing Machinery, New York, NY, USA, 191–202.

[16] Philip W.L. Fong and Ida Siahaan. 2011. Relationship-Based Access Control

Policies and Their Policy Languages. In Proceedings of the 16th ACM Symposium
on Access Control Models and Technologies (Innsbruck, Austria) (SACMAT ’11).
Association for Computing Machinery, New York, NY, USA, 51–60.

[17] Vincent CHu et al. 2014. Guide to attribute based access control (ABAC) definition

and considerations. NIST Special Publication 800 (2014), 162.

[18] Padmavathi Iyer and Amirreza Masoumzadeh. 2019. Generalized Mining of

Relationship-Based Access Control Policies in Evolving Systems. In Proceedings
of the 24th ACM Symposium on Access Control Models and Technologies (Toronto
ON, Canada) (SACMAT ’19). Association for Computing Machinery, New York,

NY, USA, 135–140.

[19] Amirreza Masoumzadeh. 2018. Security Analysis of Relationship-Based Access

Control Policies (CODASPY ’18). Association for Computing Machinery, New

York, NY, USA, 186–195.

A PATH GENERATION ALGORITHM

Algorithm 2 FindAllSimplePath

Input: Vertex source, vertex dest, 𝑅𝐺 = (𝑉 , 𝐸, Σ)
Output: Set of all simple paths from source to dest in RG

1: //visitVertex is a map where visitVertex[𝑢 ∈ 𝑉] = white means

"not visited", visitVertex[𝑢 ∈ 𝑉] = grey means "visited but not

finished yet"

2: //visitEdge is a map where visitEdge[𝑒 ∈ 𝐸]=white means "not

visited", visitEdge[𝑒 ∈ 𝐸]=grey means "visited but not finished

yet"

3: for 𝑢 ∈ 𝑉 do
4: visitVertex[u]:=white

5: for 𝑒 ∈ 𝐸 do
6: visitEdge[e]:=white

7: PS := ∅
8: Modified-DFS-Visit(source, dest, RG, PS, ⟨⟩) //assuming vis-

itVertex and visitEdge are globally defined

9: return PS

Algorithm 3Modified-DFS-Visit

Input: vertex src, vertex dest, 𝑅𝐺 (𝑉 , 𝐸, Σ), PS, tempPath

Output: Path generation from src to dest in RG

1: if src == dest then
2: 𝑃𝑆∪ := 𝑡𝑒𝑚𝑝𝑃𝑎𝑡ℎ

3: return
4: visitVertex[src]:=grey

5: for each edge 𝑒 ∈ 𝐸, where e=(x,y,𝜎) and x=src do
6: if visitEdge[e] == white and visitVertex[y] == white then
7: Modified-DFS-Vist(y,dest,RG,PS,appendSeq(tempPath,e))

//appendSeq() is a trivial function which appends edge

e to the path sequence, tempPath and returns the new

ordered path sequence

8: visitVertex[src]:=white

9: for each edge 𝑒 ∈ 𝐸, where e=(x,y,𝜎) and x=src do
10: visitEdge[e] := white

11: return

For completeness, the algorithm used for all possible path gener-

ation in Algorithm 1, called FindAllSimplePath has been included.

Given a RG and a vertex pair (source,dest), algorithm FindAllSim-

plePath returns the set of all possible simple paths from source to

dest in RG. It is basically a modified form of core Depth-First-Search

from vertex source to vertex dest in RG.

σ-1

σ

σ

σ−1

Co
nt

inu
es

…

σ

Figure 12: Given a 𝝈 ∈ 𝚺, 𝝈−1
≡ 𝝈−1 where solid and dotted

lines represent the edges that must and must not exist, re-
spectively.

B INVERSE NON-RELATIONSHIP EDGE
Given a 𝜎 ∈ Σ, 𝜎−1 is called the inverse non-relationship of 𝜎 .

We show that 𝜎−1 ≡ 𝜎−1. Fig. 12 shows a sequence of equiva-

lences going from top to bottom, or vice versa, which establish this.

Relationships that cannot exist are shown in dotted lines while

relationships that must exist are shown in solid lines. From top to

bottom, a relationship 𝜎−1 from a to b precludes a relationship of

𝜎−1 from a to b, which in turn precludes a relationship of 𝜎 from b

to a. Thereby there is a non-relationship 𝜎 from b to a, and finally

its inverse 𝜎−1 from a to b. The argument in reverse holds from

bottom to top.

	Abstract
	1 Introduction
	2 Related Work
	3 ReBAC RuleSet Existence Problem
	3.1 Preliminaries
	3.2 Feasibility Detection Algorithm

	4 Variations of ReBAC Ruleset Existence Problem
	4.1 Proposed RREP Variations
	4.2 Reduction of RREP Variations
	4.3 Limitation of RREP-0 to RREP-3

	5 Proposed Infeasibility Solutions
	5.1 Proposed Infeasibility Correction
	5.2 Alternate Infeasibility Correction
	5.3 Limitations of Current Infeasibility Solution

	6 Case Studies
	7 Future Research
	References
	A Path generation algorithm
	B Inverse non-relationship edge

