
On the Feasibility of RBAC to ABAC
Policy Mining: A Formal Analysis

Shuvra Chakraborty1,2(B), Ravi Sandhu1,2, and Ram Krishnan1,3

1 Institute for Cyber Security, University of Texas at San Antonio,
San Antonio, TX, USA

{shuvra.chakraborty,ravi.sandhu,ram.krishnan}@utsa.edu
2 Department of Computer Science, University of Texas at San Antonio,

San Antonio, TX, USA
3 Department of Electrical and Computer Engineering,

University of Texas at San Antonio, San Antonio, TX, USA

Abstract. Given a Role-Based Access Control (RBAC) system along
with supporting attribute data, the process of automated migration to an
Attribute-Based Access Control (ABAC) system is a particular instance
of the ABAC policy-mining problem. In this paper, we formulate and
investigate the feasibility problem of RBAC to ABAC policy mining.
Specifically, the ABAC RuleSet Existence problem is introduced formally
for the first time in RBAC context. In case of infeasibility, the notion
of ABAC RuleSet Infeasibility Correction is formalized and a solution
developed utilizing role-based attributes.

Keywords: Attribute-Based Access Control · ABAC policy mining ·
Feasibility · RBAC · Rule mining

1 Introduction

Following its inception in the mid-nineties, Role-Based Access Control (RBAC)
[3,10] has achieved clear dominance over other contemporary access control mod-
els and remains prevalent. In recent years, the emerging interest in the Attribute-
Based Access Control (ABAC) model as an evolution of RBAC motivates the
practical problem of migrating to ABAC from existing access control models.

While there have been differing opinions about which one of RBAC or ABAC
is more flexible, scalable, auditable, and provides better support for dynamic
environments [12], the benefits of ABAC are increasingly evident. ABAC can
be configured to do Discretionary Access Control (DAC), Mandatory Access
Control (MAC) and RBAC [7]. It is suitable for large enterprises and notably
overcomes some limitations of RBAC such as role explosion [5]. Consequently,
ABAC has attracted interest across industry, government applications, and is the
fastest-growing access control model today [4]. Therefore, converting an already
deployed access control system to an ABAC system is an emerging research
problem. Based on this context, ABAC policy mining [11,15] is the process of
c© Springer Nature Singapore Pte Ltd. 2020
S. K. Sahay et al. (Eds.): SKM 2019, CCIS 1186, pp. 147–163, 2020.
https://doi.org/10.1007/978-981-15-3817-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3817-9_9&domain=pdf
https://doi.org/10.1007/978-981-15-3817-9_9

148 S. Chakraborty et al.

automated migration to an equivalent ABAC policy when an existing access
control model along with supporting data is given. Such automation reduces the
manual effort needed for migration as well as time and possibilities of error [15].

ABAC policy mining problem was first mentioned by Xu and Stoller [15]
where, given user-permission relation, consistent ABAC policy rules with gen-
eralized constraints are generated. In [1], the ABAC RuleSet Existence problem
was introduced where the feasibility of consistent ABAC policy generation was
investigated when an enumerated authorization system along with attribute data
is given. In this paper, we study another instance of the general feasibility prob-
lem: migration to the ABAC system when an RBAC system and accompanying
attribute data are provided. To the best of our knowledge, we have formalized
this problem in RBAC context for the first time.

Our major contributions in this paper are as follows.

• We have introduced the idea of partition-based ABAC RuleSet Existence
problem in the RBAC context for the first time.

• An approach for determining ABAC RuleSet Existence as well as a correction
procedure (in the case of infeasibility) has been presented with examples.
Role-based attributes are defined in this context to remove infeasibility.

• Some significant directions for future enhancement are identified.

The rest of the paper is organized as follows. Section 2 defines RBAC and
ABAC terminologies to facilitate further discussions. Section 3 introduces ABAC
RuleSet Existence and infeasibility correction problems along with associated
definitions. In Sect. 4, an infeasibility solution approach utilizing role-based
attributes is presented, along with associated proofs. Section 5 presents some
future work directions. Finally, Sect. 6 gives a brief discussion of related work.

2 RBAC and ABAC Terminologies

This section represents the RBAC and ABAC related terminologies of the cur-
rent work. Although the ABAC terminologies were defined in our previous paper
[1], these are also included here for completeness. They are identified by explicit
reference to corresponding definition in our work [1]. There are some other defi-
nitions from our previous work [1], which are included in the subsequent sections;
they are customized in RBAC context and marked as adapted.

Every access control system should specify and enforce a function checkAc-
cess (Def. 1, [1]) which is typically a logical formula. This function abstracts
the evaluation of an access request from underlying implementation details of
the system. Given a complete access control system, a user u ∈ U is allowed to
perform an operation op ∈ OP on object o ∈ O iff checkAccess(u, o, op) is True
where U , O and OP are the sets of users, objects and operations in the system,
respectively.

The key component of RBAC system is role [3], an intermediary between
user and permissions in the system. For example, all users assigned to a role
“manager” may practice all permissions associated with that role. A complete
RBAC system is defined as follows:

On the Feasibility of RBAC to ABAC Policy Mining: A Formal Analysis 149

Table 1. RBAC system of Example 1

Roles RPA RUA authPerm authUser

r1 {(o1, op1)} {u1} {(o1, op1), (o3, op1)} {u1}
r2 {(o2, op2)} {u3} {(o2, op2)} {u3}
r3 {(o3, op1)} {u4, u5} {(o3, op1)} {u1, u4, u5}
r4 {(o1, op1), (o3, op1)} {u2} {(o1, op1), (o3, op1)} {u2}

Definition 1. RBAC system
An RBAC system 〈U,O,OP,Roles,RPA,RUA, RH, checkAccessRBAC〉 is a
tuple where,

1. U, O, and OP are finite sets of users, objects, and operations, respectively.
2. P = O×OP , is the set of all possible permissions in the system. A permission

p ∈ P is an object-operation pair where ops(p) and obj(p) denote the operation
and object associated with p, respectively.

3. Roles is a finite set of role names.
4. The set of permissions directly assigned to a role r ∈ Roles is given by RPA(r)

where, RPA : Roles → 2P . The set of users directly assigned to a role r ∈
Roles is given by RUA(r) where, RUA : Roles → 2U .

5. The role hierarchy relation is RH ⊆ Roles×Roles where RH must be acyclic.
Here, (r, r′) ∈ RH denotes r is a senior role than r’.

6. Let reflexive transitive closure of RH be denoted by RH ′. A role r ∈ Roles
acquires the set of permissions associated with all junior roles according to
given hierarchy, and denoted by authPerm(r) = {p ∈ RPA(r′)|(r, r′) ∈ RH ′}.
A role r ∈ Roles inherits all the users associated with seniors roles in hier-
archy, and denoted by authUser(r) = {u ∈ RUA(r′)|(r′, r) ∈ RH ′}.

7. checkAccessRBAC(u : U, o : O, op : OP) ≡ ∃r ∈ Roles.(u ∈ authUser(r) ∧
p ∈ authPerm(r) ∧ (o, op) = (obj(p), ops(p)). In simple words, given a
role r ∈ Roles, a user u ∈ authUser(r) may practice all permissions
p ∈ authPerm(r).

Example 1. The sets of users (U), objects (O), operations (OP) and roles (Roles)
are {u1, u2, u3, u4, u5}, {o1, o2, o3}, {op1, op2}, and {r1, r2, r3, r4}, respectively.
Given, RH = {(r1, r3)}, the user and permission assignment for each role ∈
Roles is shown in Table 1. Here, user u1 can perform operation op1 on object
o3 since checkAccessRBAC(u1, o3, op1) evaluates to True.

The key component of ABAC policy is attribute, which represents characteristics
of entities in the system. In ABAC, attribute values of the requesting user as
well as the requested object are used to determine whether a particular access
request can be granted or denied. To define an ABAC system, ABAC policy is
defined first as follows:

150 S. Chakraborty et al.

Definition 2. ABAC policy (Def. 3, [1])
An ABAC policy, POLABAC is a tuple 〈OP, UA, OA, RangeSet, RuleSet〉,
– OP is a finite set of operations.
– UA and OA are finite sets of user and object attribute function names, where

for convenience, we assume UA ∩ OA = ∅.
– RangeSet = {(att, value)|att ∈ (UA ∪ OA) ∧ value ∈ Range(att)} where,

Range(att) specifies a finite set of atomic values.
– RuleSet is a set of rules where, for each operation op, RuleSet contains a

single rule, Ruleop. Formally, RuleSet = {Ruleop|op ∈ OP}.
– Each Ruleop is specified using the grammar defined below.

Ruleop :: = Ruleop ∨ Ruleop | (Atomicexp)
Atomicexp :: = Atomicuexp ∧ Atomicoexp |Atomicuexp |Atomicoexp
Atomicuexp :: = Atomicuexp ∧ Atomicuexp |uexp
Atomicoexp :: = Atomicoexp ∧ Atomicoexp | oexp
uexp ∈ {ua(u) = value |ua ∈ UA ∧ value ∈ Range(ua)}
oexp ∈ {oa(o) = value | oa ∈ OA ∧ value ∈ Range(oa)}
For a specific operation op ∈ OP , Ruleop is specified with user u and object
o as formal parameters. The formal semantics of Ruleop, evaluated for an
actual user a and object b is given in Definition 3.

For the ease of further reference, partially defined ABAC policy [1] is a
tuple, denoted by POLABAC−RuleSet ≡ 〈OP,UA,OA,RangeSet〉.
Definition 3. ABAC system (Def. 4, [1])
An ABAC system is a tuple, given by, 〈U, O, UAValue, OAValue, POLABAC ,
checkAccessABAC〉 where,

– U and O are finite sets of users and objects, respectively. Here, OP, UA, OA,
RangeSet and POLABAC are defined as in Definition 2.

– UAValue = {UAValueua |ua ∈ UA} where, UAValueua : U → Range(ua)
such that UAValueua(u) returns the value of attribute ua for user u. For
convenience, we understand ua(u) to mean UAValueua(u).

– OAValue = {OAValueoa | oa ∈ OA} where, OAValueoa : O → Range(oa)
such that OAValueoa(o) returns the value of attribute oa for object o. For
convenience, we understand oa(o) to mean OAValueoa(o).

– checkAccessABAC(a:U, b:O, op:OP) ≡ Ruleop(a:U, b:O) where Ruleop is as
stated in Definition 2. Given any user a ∈ U along with attribute value assign-
ments ua(a), where ua ∈ UA and an object b ∈ O along with attribute value
assignment oa(b), where oa ∈ OA, the expression Ruleop(a, b) is evaluated
by substituting the values ua(a) for ua(u) and oa(b) for oa(o) in the Ruleop
expression. User a is permitted to do operation op on object b if and only if
Ruleop(a, b) evaluates to True.

A partially defined ABAC system [1] is a tuple, 〈U, O, UAValue,
OAValue, POLABAC−RuleSet〉 where U, O, UAValue, OAValue are defined above.
It represents an incomplete ABAC system where everything except the ABAC
rules is given.

On the Feasibility of RBAC to ABAC Policy Mining: A Formal Analysis 151

Table 2. ABAC data for Example 2

(a) UAValue

User uat1

u1 F

u2 F

u3 F

u4 G

u5 G

(b) OAValue

Object oat1

o1 F

o2 F

o3 G

(c) Range

uat1 {F,G}
oat1 {F,G}

Example 2. The set of users (U), objects (O), operations (OP), user attribute
names UA and Object attribute names (OA) are {u1, u2, u3, u4, u5}, {o1, o2, o3},
{op1, op2}, {uat1}, and {oat1}, respectively. Table 2 shows the user attribute
value assignment (UAValue), object attribute value assignment (OAValue), and
ranges of the attributes. It can be easily noticed that both Examples 1 and 2
have the same sets of U, O and OP. RuleSet consists of two rules: Ruleop1 and
Ruleop2, respectively. For instance, if Ruleop1 ≡ 〈uat1(u) = G ∧ oat1(o) = G〉,
then both u4 and u5 are allowed to perform operation op1 on object o3.

In previous discussions, only atomic-valued attributes [7] are considered while
generating ABAC rules. A set-valued attribute [1] is a function which takes an
entity (user and object, here) and returns a subset of its range. For instance, given
Range(att) = {a, b}, function att may return only one of {{a, b}, {a}, {b}, {}}.
Since a set-valued attribute can be converted to atomic attributes [1], the ABAC
rule and evaluation approach discussed earlier in this study are sufficient to
manage set-valued attributes by reduction to atomic-valued.

3 Problem Definitions

In this section, ABAC RuleSet Existence and ABAC RuleSet Infeasibility Cor-
rection problems are defined in RBAC context. In order to do that, the meaning
of equivalency between two access control systems is required. Given two access
control systems, stm1 and stm2, with an identical set of users (U), objects (O),
and operations (OP), stm1 and stm2 are equivalent iff ∀(u, o, op) ∈ U ×O×OP .
checkAccessstm1(u, o, op) ⇐⇒ checkAccessstm2(u, o, op). Based on the forego-
ing, ABAC RuleSet Existence problem [1] is defined in RBAC context as follows:

Definition 4. ABAC RuleSet Existence problem (adapted from Def. 6
of [1])
Given, an RBAC system and a partially defined ABAC system where U, O and
OP are identical to the given RBAC system, does there exist a RuleSet so that
the resulting ABAC system is equivalent to the given RBAC system? Such a
RuleSet, if it exists, is said to be a suitable RuleSet.

152 S. Chakraborty et al.

To demonstrate the significance of the problem, let’s consider the RBAC
Example 1 and ABAC Example 2: does there exist a RuleSet so that the resulting
ABAC system is equivalent to the given RBAC system? Note that it is always
possible to generate equivalent ABAC system when explicit IDs are introduced
for both user and object [13]. We strongly believe that the inclusion of such IDs
is antithetical to the spirit of ABAC. Hence, we rule out the use of such IDs. For
example, in RBAC Example 1, user u1 can perform operation op1 on object o1
whereas user u3, a user with the same attribute value assignment as u1, is not
allowed to do so. It is clearly evident that no suitable ABAC RuleSet can exist.

In [1], ABAC RuleSet Existence problem is analyzed when an authorization
relation AUTH ⊆ U × O × OP and accompanying attribute data are given as
input. Given an RBAC system, it is trivial to find an equivalent AUTH rela-
tion, such that (u, o, op) ∈ AUTH ⇔ checkAccessRBAC(u, o, op). For exam-
ple, AUTH for the RBAC Example 1 is given as {(u1, o1, op1),(u1, o3, op1),
(u2, o1, op1), (u2, o3, op1), (u3, o2, op2), (u4, o3, op1), (u5, o3, op1)}. Since RBAC
system to AUTH conversion takes O(|U | × |O|) complexity, the partition-based
solution from [1] can be reused in RBAC context by simply deriving the equiv-
alent AUTH relation for the given RBAC system. The following relation R gen-
erates a partition on the set of all possible user-object pairs:

Definition 5. Binary relation R (Def. 7, [1])
Given a partially defined ABAC system tuple as 〈U, O, UAValue, OAValue,
POLABAC−RuleSet〉, the binary relation R on set UO = U × O is defined as
R ≡ {((u1, o1), (u2, o2)) | (∀ua ∈ UA.ua(u1) = ua(u2)) ∧ (∀oa ∈ OA.oa(o1) =
oa(o2))}

It is apparent that the binary relation R is an equivalence relation and thereby
induces a partition on UO. Let P be the partition on UO induced by R and
denoted by, P = {P1, P2, ..., Pn}, where 1 ≤ n ≤ |UO|. For convenience, each
Pi ∈ P is called as partition element (or shortly partition) and P is called par-
tition set (Def. 8, [1]) for the rest of the paper. By definition of R, each Pi ∈ P
is identified by a unique collection of (attribute name, value) pairs, given by
PV (Pi) where,

PV (Pi) ≡ (UV (u1) ∪ OV (o1)) for any (u1, o1) ∈ Pi, where
UV(u:U) ≡ {(ua, value)|ua ∈ UA ∧ value = ua(u)}
OV(o:O) ≡ {(oa, value)|oa ∈ OA ∧ value = oa(o)}
The idea of conflict-free partition is defined in RBAC context as follows:
Definition 6. Conflict-free partition (adapted from Def. 9 of [1])
Given 〈U,O,OP,Roles,RPA,RUA, RH, checkAccessRBAC〉 as an RBAC sys-
tem and partition set P where U, O and OP are identical, a Pi ∈ P is conflict-
free with respect to a specific op ∈ OP iff the following statement is true:
∀(u, o) ∈ Pi.checkAccessRBAC(u, o, op) = True ∨ ∀(u, o) ∈ Pi.check
AccessRBAC(u, o, op) = False
Pi has conflict with respect to op ∈ OP otherwise. Partition set P is conflict-
free with respect to given RBAC system iff for each op ∈ OP , every Pi ∈ P is
conflict-free. P is called a conflict partition set, otherwise.

On the Feasibility of RBAC to ABAC Policy Mining: A Formal Analysis 153

It is shown in [1] that given an AUTH relation and partially defined ABAC
system, a suitable RuleSet exists iff partition set P is conflict-free. The overall
asymptotic complexity of ABAC RuleSet Existence problem [1] is O(|OP | ×
(|U | × |O|)). The construction of AUTH relation by enumerating every possible
user-object-operation tuple from an RBAC system takes O(|U |× |O|) time, thus
overall asymptotic complexity of determining ABAC RuleSet Existence in RBAC
context remains the same as [1], O(|OP | × (|U | × |O|)). By definition, suitable
RuleSet (Theorem 1, [1]) consists of |OP | rules, one for each op ∈ OP . Each
conflict-free partition Pi ∈ P is included in Ruleop as a conjunctive clause where,
Pi×{op} ⊆ AUTH. For a specific op ∈ OP , Ruleop (Theorem 1, [1]) construction
steps are shown below:

Ruleop =
∨

Pi×{op}⊆AUTH

(uexp(PV (Pi)) ∧ oexp(PV (Pi)))

uexp(PV (Pi)) =
∧

(ua,value)∈PV (Pi)

(ua(u) = value)

oexp(PV (Pi)) =
∧

(oa,value)∈PV (Pi)

(oa(o) = value)

Example 3. Using the RBAC tuple in Example 1 and accompanying attribute
data in Example 2, partition set P is { {(u1, o1), (u1, o2), (u2, o1), (u2, o2), (u3,
o1), (u3, o2)}, {(u4, o1), (u4, o2), (u5, o1), (u5, o2)}, {(u1, o3), (u2, o3), (u3,
o3)},{(u4, o3), (u5, o3)} } and PV values are { {(uat1,F), (oat1,F)}, {(uat1,G),
(oat1,F)}, {(uat1,F), (oat1,G)}, {(uat1,G), (oat1,G)} }, respectively. An equiv-
alent AUTH is given by {(u1, o1, op1), (u1, o3, op1), (u2, o1, op1), (u2, o3, op1),
(u3, o2, op2), (u4, o3, op1), (u5, o3, op1)}. It is apparent that partition set P is
conflicted in this example as shown in Fig. 1. Here, bold user-object pair w.r.t.
an operation in a partition represents those user-object-operation tuple belong
to AUTH while others do not.

Example 4. In order to show a conflict-free partition set, let’s consider the data
in Table 3 along with same U, O, OP, Roles and RH in RBAC system of Example
1. Here, the same attribute data as in Example 2 are used. Hence, generated par-
tition set P and PV values are same as Example 3. In this example, an equivalent
AUTH = {(u1, o1, op1), (u1, o2, op1), (u1, o3, op1), (u2, o1, op1), (u2, o2, op1),
(u2, o3, op1), (u3, o1, op1), (u3, o2, op1), (u3, o3, op1), (u4, o3, op2), (u5, o3, op2)}.
By definition of conflict-free partition set, P is conflict-free in this case and gen-
erated RuleSet is {Ruleop1, Ruleop2}. Here, Ruleop1 = 〈(uat1(u) = F∧oat1(o) =
F)∨(uat1(u) = F∧oat1(o) = G)〉 and Ruleop2 = 〈(uat1(u) = G∧oat1(o) = G)〉.
If partition set P is not conflict-free, no suitable RuleSet exists [1]. Hence, in order
to make the equivalent ABAC system generation always possible, one possible
approach is to ensure that P is always conflict-free. There can be many possible
ways to achieve this, either exact or approximate. In this study, ABAC RuleSet
Infeasibility Correction problem in RBAC context is defined as follows.

154 S. Chakraborty et al.

Fig. 1. Conflict partition set for Example 3

Table 3. RBAC system of Example 4

Roles RPA RUA authPerm authUser

r1 {(o1, op1)} {u1, u2, u3} {(o1, op1), (o2, op1)} {u1, u2, u3}
r2 {(o3, op2)} {u4, u5} {(o3, op2)} {u4, u5}
r3 {(o2, op1)} {} {(o2, op1)} {u1, u2, u3}
r4 {(o3, op1)} {u1, u2, u3} {(o3, op1)} {u1, u2, u3}

Definition 7. ABAC RuleSet Infeasibility Correction problem
(adapted from Def. 10 of [1])
Given, RBAC system and partially defined ABAC system with unspecified Rule-
Set where U, O, and OP are identical to the given RBAC system, and a con-
flicted partition set P, ABAC Ruleset Infeasibility Correction problem is adding
new attributes to (1) only UA or only OA or, both UA, OA, and (2) assign
appropriate values to the new attributes, so that suitable RuleSet generation is
always possible.

In the next section, an exact solution algorithm is presented for ABAC RuleSet
Infeasibility Correction problem with the help of role-based attributes.

4 ABAC RuleSet Infeasibility Correction Solution

It is already established that if partition set P is conflict-free an equivalent ABAC
system generation is always possible, since each Pi ∈ P is uniquely identified by
attribute values. Given a conflict partition set P, new role-based attributes are
added and values are assigned accordingly so that each conflict partition in P is
split into conflict-free fragments uniquely identified by attribute values. Thereby,
equivalent RuleSet can be generated. Here, each conflict partition is processed
separately to prevent unnecessary split of conflict-free partitions.

According to the construction in [7], an RBAC system can be configured
to equivalent ABAC system even if no user, subject and object attributes are
provided. The role membership information of an RBAC system can be utilized

On the Feasibility of RBAC to ABAC Policy Mining: A Formal Analysis 155

Table 4. Role-based attribute values for RBAC system in Example 1

Objects oroleAttop1 oroleAttop2

o1 {r1, r4} {}
o2 {} {r2}
o3 {r1, r3, r4} {}

Users uroleAtt

u1 {r1, r3}
u2 {r4}
u3 {r2}
u4 {r3}
u5 {r3}

to generate appropriate attribute sets and value assignments. We adapt the
construction in [7] to our user-object context as set-valued role membership
attributes and omit the subject notion of [7].

Definition 8. Role-based user attribute
Given 〈U, O, OP, Roles, RPA, RUA, RH, checkAccessRBAC〉 as RBAC system
tuple, role-based user attribute is a set-valued attribute, uroleAtt : U → 2Roles.
For a user u ∈ U , uroleAtt(u) = {r ∈ Roles|u ∈ authUser(r)}.
Definition 9. Role-based object attribute
Given 〈U, O, OP, Roles, RPA, RUA, RH, checkAccessRBAC〉 as RBAC system
tuple, role-based object attribute for a op ∈ OP is a set-valued attribute, denoted
by oroleAttop : O → 2Roles. For an object o ∈ O, oroleAttop(o) = {r ∈ Roles|p ∈
authPerm(r) ∧ (o, op) = (obj(p), ops(p))}.
Although uroleAtt is set-valued by definition, it is treated specially in this study:
same as an atomic attribute. In order to generate uexp, “value” is as given in
the Definition 8 and to evaluate “uroleAtt(u) = value” in rule expression, “=”
is considered as set equality operator. Similarly, each role-based object attribute
w.r.t. a op ∈ OP is treated specially as an atomic attribute. In order to generate
oexp, “value” is as given in the Definition 9 and to evaluate “oroleAttop(o) =
value” in rule expression, “=” is considered as set equality operator.

Lemma 1. Given an RBAC system, one user attribute as in Definition 8 and
|OP | object attributes as in Definition 9 (for each op ∈ OP) are sufficient to
generate equivalent ABAC system.

Proof:
Follows from the RBAC to ABAC configuration in [7]. Let the set of user
attributes, UA = uroleAtt and set of object attributes, OA = {oroleAttop|op ∈
OP}. The attribute value assignments of user and object attributes are as in
Definitions 8 and 9, respectively. To generate an equivalent ABAC system, each
Pi ∈ P must be identified by unique PV values as well as partition set P should
be conflict-free [1]. It is trivial to show that both conditions are true, thereby,
equivalent ABAC system generation is always possible.

156 S. Chakraborty et al.

Table 5. Partition set in Example 5

Partition set

{(u1,o1)}
{(u1,o2)}
{(u1,o3)}
{(u2,o1)}
{(u2,o2)}
{(u2,o3)}
{(u3,o1)}
{(u3,o2)}
{(u3,o3)}
{(u4,o1), (u5,o1)}
{(u4,o2), (u5,o2)}
{(u4,o3), (u5,o3)}

Example 5. According to Lemma 1, the set of attributes and corresponding value
assignment of RBAC system in Example 1 are shown in Table 4. Here, partition
set P is shown in Table 5. For instance, PV({u1, o1}) is given by {(uat1, F),
(oat1, F), (uroleAtt, {r1, r3}), (oroleAttop1, {r1, r4}), (oroleAttop2, {})}. In this
example, partition set P is conflict-free and for each Pi ∈ P , PV(Pi) is unique.

This unique property of role membership in RBAC system makes it inde-
pendent of supporting attribute data. It is a significant difference as compared
to given authorization relation in [1] where, a user and an object attributes are
added to the attribute sets and unique random values are assigned to resolve
infeasibility issue. The unique random value generation can be considered as an
additional task whereas role membership attributes eliminate the need for such
values and promotes self-sufficiency. Although Lemma 1 specifies the sufficiency
of the role-based attributes to make an equivalent ABAC system generation, a
more practical scenario is where supporting attribute data are provided. There-
fore, the following definitions and proofs are presented to resolve ABAC Infeasi-
bility Correction problem when supporting attribute data are provided; so that
the resulting partition set becomes conflict-free where each partition element is
uniquely identified by attribute values.

Definition 10. Binary relation RPi on Pi ∈ P ([1])
RPi ≡ {((u1, o1), (u2, o2))|∀o ∈ O.∀op ∈ OP.((u1, o, op) ∈ AUTH ⇔
(u2, o, op) ∈ AUTH) ∧ ∀u ∈ U.∀op ∈ OP.((u, o1, op) ∈ AUTH ⇔ (u, o2, op) ∈
AUTH)}
By inspection, RPi is an equivalence relation (Lemma 2, [1]). Let, RPi induces a
partition on Pi, say Si = {Si1, Si2, ..., Sim}, where 1 ≤ m ≤ |Pi|. Each Sik ∈ Si

is called a partition element (or shortly partition) and Si is called partition

On the Feasibility of RBAC to ABAC Policy Mining: A Formal Analysis 157

set. By definition, Si further refines the partition Pi. Given a partition Pi ∈
P , let uListi and oListi denote the sets of users and objects present in Pi.
By inspection of definition of R, Pi = uListi × oListi. Let uListi be further
partitioned as follows: any two users u1, u2 ∈ ulisti belong to same partition
iff ∀op ∈ OP.∀o ∈ O.(u1, o, op) ∈ AUTH ⇐⇒ (u2, o, op) ∈ AUTH. Let this
assumption split uListi into q partitions, denoted by {uli1, ..., uliq}. Similarly let
oListi be partitioned as follows: any two objects o1, o2 ∈ olisti belong to same
partition iff ∀op ∈ OP.∀u ∈ U.(u, o1, op) ∈ AUTH ⇐⇒ (u, o2, op) ∈ AUTH.
Let this assumption split oListi into r partitions, denoted by {oli1, ..., olir}.

Lemma 2. Si = {uli1, ..., uliq} × {oli1, ..., olir} and it is conflict-free.

Proof: Trivial [1].

Given a conflict partition Pi ∈ P , Si has to be conflict-free and each Sik ∈ Si

should be identified uniquely by attribute values. The given set of attributes are
not sufficient to serve this purpose unless there is some change in given attribute
value assignments. The following definition adds the already defined role-based
attributes to the given attribute set:

Definition 11. Add new role-based user and object attributes
Given ABAC RuleSet Infeasibility Correction instance, the following steps are
proposed.

1. UAnew = UA∪uroleAtt and OAnew = OA ∪{oroleAttop|op ∈ OP}. Hence,
total 1 + |OP | attributes are added.
Note: Initially, all new attributes are assigned UND which specifies
“Unknown” attribute value assignment.

2. To ensure clarity, PVnew(Sik ∈ Si) is introduced.
PVnew(Sik) ≡ (UVnew(u1) ∪ OVnew(o1)) for any (u1, o1) ∈ Sik where
UVnew(u:U) ≡ {(ua, value)|ua ∈ UAnew ∧ value = ua(u)}
OVnew(o:O) ≡ {(oa, value)|oa ∈ OAnew ∧ value = oa(o)}

Lemma 3. Given a conflict partition Pi ∈ P w.r.t. a op ∈ OP , PVnew(Sik) is
unique.

Proof:
By inspection of definition of R, for each Pi ∈ P , PV (Pi) is unique. By definition,
Si further refines the partition Pi. Hence, if it is proved that, given a conflict
partition Pi w.r.t. a op ∈ OP , new user attribute can uniquely identify each
element of {uli1, ..., uliq} and similarly, |OP | object attributes can do the same
for {oli1, ..., olir}, then PVnew(Sik) is unique.

If u1 ∈ ulim and u2 ∈ ulin where m �= n, let uroleAtt(u1) = uroleAtt(u2).
If uroleAtt(u1) = uroleAtt(u2) then u1 and u2 cannot belong to two different
partitions of uListi since it ensures uroleAtt(u1) and uroleAtt(u2) derives the
exactly same set of permissions. Hence, uroleAtt(u1) �= uroleAtt(u2) proves.
Thereby, each element of {uli1, ..., uliq} is uniquely identified by uroleAtt value.
However, given u3, u4∈ ulim, it is possible that uroleAtt(u3) �= uroleAtt(u4),

158 S. Chakraborty et al.

Algorithm 1. confRefine
Require: Conflict partition Pi and corresponding ABAC Ruleset Infeasibility Correc-

tion instance
Ensure: Refined partition set Si where each PVnew(Sik ∈ Si) is unique
1: uL := {uli1, ..., uliq}
2: oL := {oli1, ..., olir}
3: //If checked for Lemma 4
4: if ∃u ∈ uListi.uroleAtt(u) = UND then
5: while ∃partu ∈ uL do
6: For all u1 ∈ partu, uroleAtt(u1) := uroleAtt(u2) //where u2 ∈ partu and

∀u3 ∈ partu. |uroleAtt(u2)| ≤ |uroleAtt(u3)|
7: uL := uL \ partu
8: //If checked for Lemma 4
9: if ∃(o, op) ∈ oListi × OP.oroleAttop(o) = UND then

10: while ∃parto ∈ oL do
11: for each op ∈ OP do
12: For all o1 ∈ parto, oroleAttop(o1) := oroleAttop(o2) //where o2 ∈ parto

and ∀o3 ∈ parto.|oroleAttop(o2)| ≤ |oroleAttop(o3)|
13: oL := oL \ parto
14: return Si //{uli1, ..., uliq} × {oli1, ..., olir}

although the resulting permissions are the same. By inspection, Algorithm 1
picks the minimum cardinality role set as role-based attribute value for every
user in ulim. Similarly, it can be proved that, If o1 ∈ olim and o2 ∈ olin where
m �= n, ∃op ∈ Op.oroleAttop(o1) �= oroleAttop(o2). Thereby, PVnew(Sik) is
unique.

Lemma 4. Given Pi = uListi×oListi and Pj = uListj ×oListj, if u1 ∈ uListi
and u1 ∈ uListj, then uListi = uListj.

Proof:
Follows from definition of R, it is trivial. Similarly, it can be proved that, if
o1 ∈ oListi and o1 ∈ oListj , then oListi = oListj .
Note: In Algorithm 1, Lemma 4 is used to prevent repeated role-based attribute
value assignment of users and objects. Based on the foregoing, the following
theorem states and proves the solution of ABAC RuleSet Infeasibility Correction
problem.

Theorem 1. Given an ABAC RuleSet Infeasibility Correction problem instance
as in Def. 7, it is always possible to find a suitable RuleSet such that the resulting
ABAC system is equivalent to given RBAC system (adapted from Theorem 2 of
[1]).

Proof:
Given an RBAC system, equivalent AUTH relation is generated first. Given a
op ∈ OP , the Ruleop construction procedure is described below. Here, partition
set P construction entirely depend on the given attribute set only (no role-based
attributes).

On the Feasibility of RBAC to ABAC Policy Mining: A Formal Analysis 159

1. Each conflict-free partition Pi ∈ P is included in Ruleop as conjunctive clause
where, Pi × {op} ⊆ AUTH. For a op ∈ OP , such Ruleop is defined in Sect. 3.

2. After applying Definition 11, each conflict partition Pi ∈ P is further refined
by Algorithm 1. By using Lemma 3, ∀Sik ∈ Si, PVnew(Sik) is unique where
each Sik ∈ Si is conflict-free. A conjunctive clause is included in Ruleop only if
Sik×{op} ⊆ AUTH where Sik ∈ Si. The following shows Ruleop construction
procedure for conflict partitions in P only:

Ruleop =
∨

Pi∈CFP (P)

(uexp(PVnew(Sik)) ∧ oexp(PVnew(Sik)))

where CFP(P) consists of all conflict partitions in P with respect to op ∈ OP ,
Sik ∈ confRefine(Pi), and Sik × {op} ⊆ AUTH.

uexp(PVnew(Sik)) =
∧

(ua,value)∈PVnew(Sik)

(ua(u) = value)

oexp(PVnew(Sik)) =
∧

(oa,value)∈PVnew(Sik)

(oa(o) = value)

Here, Ruleop is the disjunction of all the conjunctive clauses generated in step 1
and 2. By definition, RuleSet consists of total |OP | rules, one for each op ∈ OP .
Hence, a RuleSet can be constructed. To prove equivalency between the result-
ing ABAC system with constructed RuleSet and RBAC system, it is necessary
and sufficient to show that, for a op in OP, checkAccessRBACtext(c, d, op) =
True ⇐⇒ Ruleop(c, d) where c ∈ U , d ∈ O which implies (c, d, op) ∈
AUTH ⇐⇒ Ruleop(c, d).

The proof is divided into two parts: (i) only if and (ii) if. To prove (i): by
inspection of partition and related definitions, (c, d) ∈ U ×O belongs to only one
partition in P. Let, (c, d) ∈ Pi where Pi ∈ P . If Pi is conflict-free with respect to
op then ∀(u, o) ∈ Pi.(u, o, op) ∈ AUTH holds (step 1 in Ruleop generation). If
Pi is a conflict partition then step 2 is followed. Let, (c,d)∈ Sik where Sik ∈ Si.
Hence ∀(u, o) ∈ Sik.(u, o, op) ∈ AUTH holds. As a result, Sik is included in
Ruleop as conjunctive clause (as per step 2 in Ruleop construction procedure).
Since Ruleop consists of disjunction of all the conjunctive clauses generated in
step 1 and 2, Ruleop(c, d) evaluates to true and (i) is proved.

The part (ii) of the proof: by inspection of Ruleop construction stated
above, if Ruleop(c, d) evaluates to true then there exists a conjunctive clause
of Ruleop which turned into true. By Ruleop construction procedure, each such
conjunctive clause in Ruleop is presenting a particular partition where for all
(u, o) ∈ partition.(u, o, op) ∈ AUTH. Thereby, the statement (c, d, op) ∈ AUTH
is true and (ii) is proved. Hence, the constructed RuleSet completes the ABAC
system, and equivalent to given RBAC system (proved by construction).

160 S. Chakraborty et al.

Example 6. Given RBAC Example 1 and ABAC Example 2, partition set P is
conflicted. The corresponding role attribute values are shown in Table 4. Accord-
ing to Theorem 1, {u1, u2, u3, u4, u5} is split into {{u1, u2}, {u3}, {u4, u5}}.
Similarly, {o1,o2, o3} is split into {{o1},{o2},{o3}}. Table 6 shows the role-
based attribute values after applying algorithm 1. Figure 2 shows the refined
partition set where dotted rectangle represents the initial partition before cor-
rection. The resulting Ruleop1 = 〈(uat1(u)=F ∧ oat1(o)= F ∧uroleAtt(u) =
{r4}∧ oroleAttop1(o) = {r1, r4}∧ oroleAttop2(o) = {})∨(uat1(u)=F ∧ oat1(o)=
G ∧uroleAtt(u) = {r4} ∧ oroleAttop1(o) = {r1, r3, r4} ∧ oroleAttop2(o) =
{})∨(uat1(u)=G ∧ oat1(o)= G)〉. Similarly, Ruleop2 = 〈(uat1(u) = F ∧ oat1(o)=
F ∧uroleAtt(u) = {r2} ∧ oroleAttop1(o) = {} ∧ oroleAttop2(o) = {r2})〉. In
Fig. 2, the refined partition set is shown where each bold user-object pair belongs
to the AUTH w.r.t. some op ∈ OP while others are not.

Figure 3 shows the steps of ABAC Infeasibility Correction solution for Exam-
ple 6. If partition set P is conflicted, one viable approach is to stop right there
considering suspicious assignment, denoted by a “cross”. Otherwise, the sub-
sequent steps are followed to get an exact solution. One notable optimiza-
tion at this point is: role-based attributes should be used only when they
are needed. For example, if each user in the given user set is represented by
a unique user attribute value assignment then there is no need to introduce
a role-based user attribute, even if the partition set is conflicted. The same
strategy can be applied for role-based object attribute: if each object is rep-
resented by unique attribute value assignment, role-based object attributes
are unnecessary even if partition set is conflicted. If both of the cases do
not hold, still role-based attributes can be removed while generating a con-
junctive clause for a particular conflicted partition. For a conflict partition
Pi ∈ P where Pi = uListi × oListi, if |uListi| = 1 then role-based user
attribute can be avoided while generating conjunctive clauses for Pi. Similarly,
role-based object attribute can be ignored when |oListi| = 1. For instance,
Example 6 uses conjunctive clause (uat1(u) = F ∧ oat1(o)= G ∧uroleAtt(u) =
{r4}∧ oroleAttop1(o) = {r1, r3, r4}∧ oroleAttop2(o) = {}) while generating rule
for partition {{u1, o3}, {u2, o3}}. In this case, role-based object attributes can
be omitted as unnecessary! Thus, the resulting conjunctive clause should be
(uat1(u)=F ∧ oat1(o)= G ∧uroleAtt(u) = {r4}).

According to the approach presented, the solution is found with 9 partitions
only where 15 partitions were possible in the worst case (if user and object IDs
are introduced).

One significant point is: the partition-based ABAC rule generation proposed
in this study is free of unrepresented partition gproblem in [1]. The asymptotic
complexity of ABAC RuleSet Infeasibility Correction in RBAC context is given
by O(|OP | × (|U | × |O|)3), same as [1].

On the Feasibility of RBAC to ABAC Policy Mining: A Formal Analysis 161

Fig. 2. Refined partition Set in Example 6 Fig. 3. Steps in Theorem 1

Table 6. Role-based attributes in Table 4 after applying Algorithm 1

Objects oroleAttop1 oroleAttop2

o1 {r1, r4} {}
o2 {} {r2}
o3 {r1, r3, r4} {}

Users uroleAtt

u1 {r4}
u2 {r4}
u3 {r2}
u4 {r3}
u5 {r3}

5 Future Enhancements

According to the solutions provided in Sect. 4, it is obvious that each conflict
partition with respect to an op ∈ OP must be split (by inspection, at least two
parts) unless there is any change in given attribute value assignment.

Now, question is, can we do better? We leave such questions to be addressed
in future work. Some specific questions are listed below:

1. Can we find an approach so that it is always possible to split a conflict
partition into two, even if more attributes are needed?

2. Can we propose different combinations of refinement approaches apart from
current partition refinement so that asymptotic complexity can be improved?

3. Only positive rule generation has been considered here. The impact of using
positive and negative rules together may or may not improve the current
procedure.

4. By partition definition, each user object pair present in that partition is rep-
resented by the same attribute value combinations. What if there is an excep-
tion?

5. Although we had the independence of adding any number of extra attributes
to resolve the infeasibility, further analysis is required to get the optimal
outcome.

6. Algorithm 1 selects the minimal size of role set while choosing values for
role-based attributes. It might not provide the optimal outcome; the system
administrator and expert inputs could be considered for further optimization.

162 S. Chakraborty et al.

7. The generated RuleSet is free of unrepresented partition problem in [1]. How-
ever, there is scope to optimize the RuleSet.

6 Related Works

The ABAC RuleSet Existence and correction problem [1] are mentioned for the
first time by Chakraborty et al., where the primary aim was feasibility analy-
sis of ABAC rule generation. The proposed work [1] generates partition based
consistent ABAC rule with respect to given authorizations relation and accom-
panying attribute data. Apart from that, this work [1] focuses on unrepresented
partitions on ABAC policy mining context.

To mention about some other closely related works: ABAC policy mining
problem [11,15] forms the background of feasibility analysis proposed in this
paper. There have been a good number of works on ABAC policy mining, such
as from Authorization [11,15], RBAC [13], log data [9,14], sparse log [2], etc.
An evolutionary computation based solution towards ABAC policy mining is
described in [8].

All the works noted so far deals with positive ABAC rules only. However,
there is a ABAC policy mining approach [6] by Iyer and Masoumzadeh which
deals with both positive and negative ABAC rules. In the proposed work [6],
an existing rule mining algorithm called PRISM is used to generate consistent
ABAC rules with respect to input log: it is assumed that a complete log is given
as input or denied otherwise.

Acknowledgement. This work is partially supported by NSF CREST Grant HRD-
1736209, CNS-1423481, CNS-1538418 and DoD ARL Grant W911NF-15-1-0518.

References

1. Chakraborty, S., Sandhu, R., Krishnan, R.: On the feasibility of attribute-based
access control policy mining. In: IRI. IEEE (2019)

2. Cotrini, C., Weghorn, T., Basin, D.: Mining ABAC rules from sparse logs. In:
EuroSP, pp. 31–46. IEEE (2018)

3. Ferraiolo, D., et al.: Proposed NIST standard for role-based access control. ACM
TISSEC 4(3), 224–274 (2001)

4. Hu, V.C., Kuhn, D.R., Ferraiolo, D.F.: Attribute-based access control. IEEE Com-
put. 2, 85–88 (2015)

5. Hu, V., et al.: Guide to attribute based access control (ABAC) definition and
considerations. NIST Spec. Publ. 800, 162–800 (2014)

6. Iyer, P., Masoumzadeh, A.: Mining positive and negative attribute-based access
control policy rules. In: SACMAT, pp. 161–172 (2018)

7. Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control model
covering DAC, MAC and RBAC. DBSec 12, 41–55 (2012)

8. Medvet, E., et al.: Evolutionary inference of attribute-based access control policies.
In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C. (eds.) EMO 2015. LNCS,
vol. 9018, pp. 351–365. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-319-15934-8 24

https://doi.org/10.1007/978-3-319-15934-8_24
https://doi.org/10.1007/978-3-319-15934-8_24

On the Feasibility of RBAC to ABAC Policy Mining: A Formal Analysis 163

9. Mocanu, D., Turkmen, F., Liotta, A.: Towards ABAC policy mining from logs with
deep learning. In: IS 2015 (2015)

10. Sandhu, R.S., et al.: Role-based access control models. IEEE Comput. 2, 38–47
(1996)

11. Talukdar, T., et al.: Efficient bottom-up mining of attribute based access control
policies. In: IEEE CIC 2017, pp. 339–348 (2017)

12. Weil, T.R., Coyne, E.: ABAC and RBAC: scalable, flexible, and auditable access
management. IT Prof. 15(03), 14–16 (2013)

13. Xu, Z., Stoller, S.: Mining attribute-based access control policies from RBAC poli-
cies. In: CEWIT, pp. 1–6. IEEE (2013)

14. Xu, Z., Stoller, S.D.: Mining attribute-based access control policies from logs. In:
Atluri, V., Pernul, G. (eds.) DBSec 2014. LNCS, vol. 8566, pp. 276–291. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43936-4 18

15. Xu, Z., Stoller, S.: Mining attribute-based access control policies. IEEE TDSC
12(5), 533–545 (2015)

https://doi.org/10.1007/978-3-662-43936-4_18

	On the Feasibility of RBAC to ABAC Policy Mining: A Formal Analysis
	1 Introduction
	2 RBAC and ABAC Terminologies
	3 Problem Definitions
	4 ABAC RuleSet Infeasibility Correction Solution
	5 Future Enhancements
	6 Related Works
	References

