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Abstract

In a two-party RSA signature scheme, a client and server, each holding a share of an RSA
decryption exponent d, collaborate to compute an RSA signature under the corresponding public
key N, e known to both. This primitive is of growing interest in the domain of server-aided
password-based security, where the client’s share of d is based on its password. To minimize
cost, designers are looking at very simple, practical protocols based on the early ideas of Boyd,
but their security is unclear. We analyze a class of these protocols. We suggest two notions of
security for two-party signature schemes and provide proofs of security for the schemes in our
class based on assumptions about RSA and the hash function underlying the scheme.
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1 Introduction

We consider a standard RSA-based signature scheme of the “hash-then-decrypt” variety, meaning
the public key is N, e, the secret key is d, and the signature of message M is H(M)d mod N , where
H is a public hash function, N is an RSA modulus, e is an encryption exponent, and d is the
corresponding decryption exponent. However, instead of there being a single signer, the public key
is associated to a pair of entities that we call the client and the server. The decryption exponent
d is not held by any individual party, but rather is split into shares dc and ds, and these are held
by the client and server, respectively. A collaborative computation, or signing protocol, is used to
produce a signature for the client.

Basic idea. RSA, due to its algebraic properties, lends itself naturally to collaborative signature
computation. The earliest suggestion of which we are aware is due to Boyd [5]. The decryption
exponent is split multiplicatively, meaning

dcds ≡ d (mod ϕ(N)) . (1)

Collaborative signature computation is then based on the equation

H(M)d ≡ H(M)dcds mod N . (2)

While this basic idea is old and well-known, it does not seem to have been appreciated that variations
in the way it is used give rise to different protocols that have perhaps unexpectedly different security
properties.

The protocols. This paper considers a family of natural and simple two-party signature schemes
based on direct exploitation of Equation (2). We divide them into two classes. In the common-
message class of schemes, the message M to be signed is a common input to client and server.
Within this class we consider two protocols, differing according to who goes first:

MCS : Client sends xc = H(M)dc mod N to the server; server computes signature x =
xds

c mod N , verifies it, and returns it to client.

MSC : Server sends xs = H(M)ds mod N to client; client computes signature x = xdc
s mod N .

In the client-message class of schemes, the message M to be signed is input to the client but not
to the server. Within this class we again consider two protocols, differing according to who goes
first with regard to computing a “partial” signature:

HCS : Client sends y, xc to the server where y = H(M) and xc = ydc mod N ; server computes
signature x = xds

c mod N , verifies that xe ≡ y (mod N), and returns x to client.

HSC : Client sends y to the server where y = H(M); server sends xs = yds mod N to client;
client computes signature x = xdc

s mod N .

The leading “M” in the names of the common-message protocols stands for the “Message” that
both parties know, while the leading “H” in the names of the client-message protocols stands for
the “Hash” that the client flows to the server. The other letters reflect the order in which the Client
and Server use their shares of the decryption exponent in the protocol.

In this paper we analyze the security of the above four protocols with regard to meeting well-
defined modern cryptographic goals in provable ways. We find that the security goals, and the
assumptions on the underlying primitives required to prove security, vary from protocol to protocol
in a perhaps surprising way.

Motivation. This work is motivated by recent practical interest in two-party RSA signature
schemes. Several companies are working on products that enable server-aided password-based
cryptography. Ganesan [13] had suggested that dc be based on a client password. The server could

3



be implemented via a smartcard, or be a device on the network as in [26]. This is an attractive
model in the face of the difficulties of PKI, especially because of the so-called “instant revocation”
capability it offers. Upon password compromise, the client can revoke the public key by informing
the server that it is no longer valid. Since every signature produced under the public key involves
the server, revocation takes immediate effect, unlike in PKI where there may be a time-lag between
actual revocation and a signature-verifier’s receipt of the revocation list.

Why all these protocols? In developing protocols based on Equation (2), practitioners are likely
to explore variations based on benefits they bring in terms of functionality, performance, and ease
of implementation. The four protocols above represent some lines along which choices can be made,
as we now discuss.

In providing the message M to be signed to both parties, the common-message protocols repre-
sent the abstraction, standard in secure two-party computation (cf. [27]), that relevant inputs are
agreed upon in advance. These are the first protocols to consider, and they deserve analysis. In
practice however, the message typically originates with the client, who must flow it to the server if
the latter is to be made aware of it. Practioners may want to avoid flowing the message, instead
flowing the short message hash. (Motivations vary. If the server is a smartcard, it will not have
storage for the long message. Even if the server is on the network, one prefers to reduce bandwidth
by sending the short message-hash rather than the possibly long message. In either setting, a
client may prefer to avoid the blatant violation of privacy represented by sending the message to be
signed to the server.) This leads us to consider the client-message class of protocols in this paper.
The other dimension, namely whether the client or the server is the first to compute a partial
signature, is a natural one, and implementers may have a preference based on some performance
or convenience criterion. This leads us to consider two protocols in each class.

Implementers or would be implementers who are choosing between these protocols, based on
performance or functionality, would benefit from being aware of how they compare with regard to
security. The analyses and results in this paper are directed at providing such information.

Security goals. The first question to ask towards providing meaningful security analyses is: what
are the adversarial models and target security goals for these protocols?

In line with the types of applications being envisaged, we view the server as trusted. The first
security goal that comes to mind is to prevent forgery by a third party. We suggest however that
this goal is too weak, and instead ask that forgery be hard even for an adversarial client who is in
possession of the correct share dc and is allowed to engage in interactions with the ds-holding server.
(Security against third parties is implied by security against client adversaries, so consideration of
the latter only strengthens the security results.) This is appropriate because we view the server is
a “co-signer” of the client. A verifier who accepts a client signature does so under the belief that
the server “endorses” it, so a client who succeeds in creating a signature that the server has not
endorsed should be viewed as having been successful in forgery.

When we seek to formulate the goals more precisely, a dichotomy emerges depending on the
class of protocol. In the case of common-message schemes, we formulate a notion of security
against forgery under chosen-message attack analogous to that for standard schemes [19]. (It asks
that the client-adversary should find it hard to output a valid signature of a message that it did not
previously provide as input to a session with the server.) Client-message schemes, however, are more
like blind signature schemes than standard ones, in that there need be no clearly identifiable message
associated to an interaction between a client-adversary and the server. Accordingly we formulate a
notion of security against one-more-forgery, analogous to that for blind signature schemes [22]. (It
asks that the client-adversary should find it hard to output a number of valid message-signature
pairs that exceeds the number of sessions of interaction in which it engaged the server.) Ours is the
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first work to consider client-message schemes, and we consider this, together with the introduction
of a notion of security for them, to be one of the contributions of this paper.

Implementers should realize that two-party signature schemes from the two different classes are
inherently different with regard to the type of security they can achieve, so that they can think
about which goal they want to target. However, one should not view the difference as a negative
connotation with regard to client-message schemes. The goal of security against one-more forgery
that they target is useful and in line with the idea that the role of the server is to “endorse” client
messages: the verifier’s belief on accepting a signature is not that the server stands behind the
message, but that it authorized a signature, on a message of the client’s choice, at this point in
time.

Results. Our results are represented in Figure 1. The middle column of Figure 1 lists assumptions
about RSA and the hash function H, and the strength of the assumptions in this column decreases
as one moves down. (The RSA-related computational problems RSA-STI, RSA-CTI and Split-
Key-RSA-CTI are discussed in Section 4.) The security statements regarding our four schemes are
in the four corner boxes. The arrows show under what assumptions we can establish the security
claims in question. The results and their implications are discussed at length in Section 5. Proofs
of the theorems stated there are in Section 6.

Background and related work. Boyd’s suggestion [5] was to split the decryption exponent
as per Equation (1) and then sign message m ∈ Z∗

N by exploiting the equation md ≡ mdcds mod N .
Security analysis of the above was initiated in [5] and continued in [14, 15], but pertains to relatively
weak security goals such as secret-key-recovery since the “plain” RSA signatures that these schemes
create are well-known to be subject to forgery attack. To obtain usable protocols and analyses
targetting strong notions of security, we have explicitly considered and modeled the hash function.

One can consider splitting the decryption exponent additively rather than multiplicatively,
namely the shares dc, ds satisfy dc + ds ≡ d (mod ϕ(N)). Collaborative signature computation is
then based on the equation H(M)d ≡ H(M)dc ·H(M)ds (mod N). The issues and analyses for this
case are similar to, and somewhat simpler than, those for the case of multiplicative splitting that
we consider, and in order to avoid repetitiveness, we do not detail the results related to additive
splitting.

MacKenzie and Reiter [20] consider a setting where the client is implemented as a password-
controlled device. The core of their S-RSA protocol is the additive-splitting version of MSC. This is
enhanced to achieve numerous security properties that we do not consider here. (Their device does
not hold dc but rather holds an encryption of it under the server public key, so that compromise of
the device does not provide dc to the adversary.) Their proof of security for S-RSA includes at its
core a proof of security against forgery under chosen-message attack for the additive-splitting version
of MSC. Since adapting this to the multiplcative-splitting based MSC we consider here is entirely
direct, the result about the security of MSC that we state as Theorem 5.5 should be considered as
due to [20]. (We provide a proof for completeness and because it is a useful introduction to the
other proofs in this paper, but the ideas in the proof are entirely those of [20].) We remark that
our consideration of the HCS and HSC protocols reflects some questions raised in [20] regarding
the loss in privacy incurred by MSC in providing the server with the message to be signed.

Two-party signature schemes are part of the general approach of secure two-party computation
[27] and threshold cryptography [11]. Threshold cryptography has however concentrated more on
the case of n ≥ 3 parties. Distribution of the RSA function (which yields distributed signatures) is
considered in this setting in [11, 10, 17]. Split-key schemes for DSA signatures are proposed in [21].
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Figure 1: Results: Here A → B means that if A is true then so is B. That is, if we assume A
then we can prove B. The boxes in the middle column represent assumptions about RSA and the
hash function H, and the strength of the assumptions decreases as we move down. The four corners
of the picture indicate our four two-party signature schemes with their associated security goals.
Arrows are annotated with pointers to justifications, in some cases a Theorem or Proposition in
this paper, in other cases a known result for which a citation is provided.
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2 The setup and the schemes

RSA key generators. An RSA modulus is an integer which is a product of two distinct,
odd primes. An RSA key generator is a (randomized) algorithm which on input of a security
parameter k returns N, e, d, p, q where p, q are primes, N = pq is an RSA modulus satisfying
2k−1 ≤ N < 2k, and e, d ∈ Z∗

ϕ(N) are, respectively, encryption and decryption exponents, satisfying
ed ≡ 1 (mod ϕ(N)). (Here ϕ(·) is the Euler totient function.)

There are many different possible RSA key generators, varying for example in the choice of e or
the types of primes chosen. In order to highlight the fact that the definitions and results here apply
to any RSA key generator, we do not pin down any particular generator, but instead parameterize
definitions and results by a choice of generator.

Base signature scheme. We associate to any RSA key generator kg a base digital signature
scheme ds = (kg,Sign,Verify) of the standard “hash-then-decrypt” variety. The client has
public key (N, e) and secret key (N, d), where N, e, d are obtained by running kg(k). The client’s
signature of a message M is the value Sign

H
N,d(M) = H(M)d mod N , where H: {0, 1}∗ → Z∗

N

is a public hash function, and verification is defined via Verify
H
N,e(M,x) = 1 iff xe ≡ H(M)

(mod N). The bulk of standardized schemes have this form, although they might differ in how
they implement the hash function H (cf. [24]).

The two-party setting. In the stand-alone client setting which one usually envisages, the client
is in possession of the decryption exponent d that enables signature computation. In the two-party
setting, the client does not hold d. Instead, d is “split” into two parts, dc and ds, called the shares
of d. The client holds dc while the server holds ds. (Additionally, both parties know N, e). When
the client wishes to obtain the signature x = H(M)d mod N of a message M , it interacts with the
server to this end, via a two-party signature protocol.

There are several ways in which d might be split. In an additive split, dc +ds ≡ d (mod ϕ(N)),
while in a multiplicative split, dcds ≡ d (mod ϕ(N)). Either type of split lends itself equally well
to two-party based signing (cf. [5]). In this paper we will focus on the multiplicative split.

We require compatibility with the underlying base signature scheme, in the sense that the
signature computed as a result of the signature protocol is required to be the same as would
have been computed in the stand-alone setting. In other words, although the signature generation
process has changed, the signature verification algorithm has not.

Two-party signature schemes. Let kg be an RSA key generation algorithm and let ds be
an associated base signature scheme. The specification of a particular ds-compatible two-party
signature scheme takes the form sds = (kg,Client,Server,Verify), where the last component
Verify is the verification algorithm of the base signature scheme, and the other components are
as follows.

The split-key generation algorithm kg, on input k, first runs kg to obtain N, e, d, p, q, and then
splits d into the shares dc, ds, returning an output N, e, dc for the client, and N, e, ds for the server.
In this paper, the splitting process is fixed to the following: the algorithm chooses dc at random
from Z∗

ϕ(N) and then sets ds = d · d−1
c mod ϕ(N). (Notice that in order to do this, the algorithm

must know ϕ(N), which it does since the latter equals (p− 1)(q− 1), and it has p, q via the output
of kg.) Thus kg is fully specified once kg is specified.

We imagine that the split-key generation algorithm is run by a trusted dealer who securely
delivers each party its share, and then dies. (In practice, there are many ways that one might chose
to perform the splitting of d and distribution of shares. One possibility is a key generation protocol,
either between the two parties [23, 18] or involving another party [4, 12]. Another possibility is that
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it is done by a trusted party who in some cases might be the server itself. We are not concerned
here with this issue, but rather with the security of the signature protocols, and accordingly assume
a magically and correctly performed distribution of the shares.)

The Client and Server components of the scheme represent the code that the client and server,
respectively, are supposed to execute in the protocol to obtain a joint signature of a message. The
client code is initialized with N, e, dc, while the server code is initialized with N, e, ds. The client
code additionally takes input a message M , and then initiates an interaction with the server. At the
end of the interaction the client outputs a value x ∈ Z∗

N . It is required that an interaction between
properly initialized Client and Server on server input M result in output of the signature of M ,
meaning Verify

H
N,e(M,x) = 1.

Types of two-party schemes. We distinguish two types of two-party signature schemes. In a
common-message scheme, the message M to be signed is input not only to the client but also to
the server. (There are various ways in which this might happen in practice, the most common of
which is that the client flows M to the server. However, as our goal again is to be general, we do
not wish to make an assumption regarding how the server knows the message, and in the model
simply provide it as an input to the server. We stress that it is a model assumption that the two
parties have the same message as input, and also that the Server code expects M as input and
will not function if this is not provided.) In a client-message scheme, the message M to be signed is
provided as input to the client but not to the server. (This does not mean that the server does not
know M , since it might as a result of the protocol flows. But we do not assume the server knows
M .) This type of scheme reflects the possibility that the client will prefer not to flow the message,
either because it wants to keep the message private, or because it wants to save on bandwidth on
server-storage by transmitting the short message-hash instead of the (possibly long) message.

As we will see later, the motivation for separating these two types of schemes is that security-
wise, they cannot be treated equally: the notions of security they can target are necessarily different.

Four two-party signature schemes. In this paper we consider the four specific two-party
signature schemes whose signing protocols are illustrated in Figure 2. (The schemes all have the
same split-key generation algorithm kg and verification algorithm Verify, as dictated by the
underlying base signature scheme with which they are compatible, so we tend to identify each
scheme with the description of its Client and Server components as given in the figures). The
schemes in the first row of Figure 2 are of the common-message type, while those in the second
row are of the client-message type. In this paper we are interested in the security of these four
two-party signature schemes, with particular regard to answering the following question about each
scheme: What can be proven about the security of the scheme, and under what assumptions on
the underlying primitives?

3 Security notions for two-party signature schemes

Security of the base signature scheme. The security requirement of a standard signature
scheme (in our case, the base signature scheme ds) is that it be secure against forgery under
chosen-message attack [19]. This is formalized by associating to any Fg algorithm and value k of
the security parameter an experiment, as follows. The forger is given input the public key N, e and
has oracle access to Sign

H
N,d(·), the keys being selected via kg(k). (If we are in a random oracle

model, it also has oracle access to H, the latter chosen at random [2].) The forger is said to be
successful if it outputs a pair M,x such that Verify

H
N,e(M,x) = 1 but M was not “legitimately

signed,” meaning a query to the sign oracle. The advantage of Fg, denoted Advuf-cma
ds,Fg

(k), is its
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probability of success, taken over the coins of kg(k), the coins of Fg if any, and the random choice
of H if we are in a random oracle model. The scheme ds is said to be secure against forgery under
cma if the function Advuf-cma

ds,Fg
(·) is negligible for every poly(k)-time algorithm Fg.

Issues in security of two-party signature schemes. The security model we adopt is that
the server is trusted, but the client is not. We imagine that the correct client code Client is
replaced by an adversary Bc. The latter is initialized with N, e and the client’s share dc of the
decryption exponent, and will engage the (trusted) server Server

H
N,e,ds

(the subscripts denoting
the keys with which the server is initialized) in a sequence of interactions, with the purpose of
eventually producing a forgery. (Note that this adversarial model is stronger than one in which we
consider a “mere” forger who has N, e and oracle access to Client

H
N,e,dc

and Server
H
N,e,ds

. We are
allowing the forger to additionally “corrupt” the client and obtain dc, so that our Bc can certainly
do anything that a “mere” forger can do, but possibly can do more.)

With this setup, we would like to mimic the notion of security for the base scheme. We would say
that the adversary is successful if it outputs a pair M,x such that Verify

H
N,e(M,x) = 1 but M was

“not legitimately signed.” The difficulty is in how to interpret the phrase in quotes, and it here that
we see the motivation for having made a distinction between common-message and client-message
schemes. In a common-message scheme, each interaction with the server has a clearly identified
message input for the server, to which the adversary must commit to start the interaction. In this
case, “not legitimately signed” can be interpreted just as in the case of the base scheme, meaning
Server

H
N,e,ds

has not engaged in an interaction with the message in question as input. In a client-
message scheme, however, interactions between an adversary client and Server

H
N,e,ds

may not have
any identifiable underlying message, so the phrase “not legitimately signed” has no reasonable
interpretation. This situation is analogous to that in a blind signature scheme, and accordingly we
will turn to the definitional approach of “one-more-forgery” used in that context [22]: success for
the adversary means that it outputs a number of valid message-signature pairs that exceeds the
number of interactions in which it engaged with the server. Let us now detail the two definitions.

Security of common-message schemes. Let sds = (kg,Client,Server,Verify) be a two-
party, common-message signature scheme. We associate to any adversary client Bc and value k of
the security parameter an experiment, as follows. Run kg(k) to get (N, e, dc) and (N, e, ds). (If we
are in a random oracle model, also pick H at random.) Provide Bc with input N, e, dc and allow it
to engage in interactions with Server

H
N,e,ds

. (If we are in a random oracle model, also give it oracle
access to H.) Since the scheme is a common-message one, Bc must begin each interaction with
Server

H
N,e,ds

by specifying a message to server as input to the server. However Bc can choose client
messages as it pleases in these interactions, and in particular differently from what ClientN,e,dc .
The adversary Bc is said to be successful if it outputs a pair M,x such that Verify

H
N,e(M,x) = 1

but M was never provided by Bc as message-input to ServerN,e,ds . The advantage of Bc, denoted
Advuf-cma

sds,Bc
(k), is its probability of success, taken over the coins of kg(k), the coins ServerN,e,ds ,

the coins of Bc if any, and the random choice of H if we are in a random oracle model. The scheme
sds is said to be secure against forgery under cma if the function Advuf-cma

sds,Bc
(·) is negligible for

every poly(k)-time client adversary Bc.

Security of client-message schemes. Let sds = (kg,Client,Server,Verify) be a two-
party, client-message signature scheme. We associate to any adversary client Bc and value k of
the security parameter an experiment, as follows. Run kg(k) to get (N, e, dc) and (N, e, ds). (If
we are in a random oracle model, also pick H at random.) Provide Bc with input N, e, dc and
allow it to engage in interactions with Server

H
N,e,ds

. (If we are in a random oracle model, also
give it oracle access to H.) In these interactions, Bc can choose client messages as it pleases, and
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in particular make choices different from those of ClientN,e,dc . The adversary Bc is said to be
successful if it outputs a sequence of pairs (M1, x1), . . . , (Mm+1, xm+1) such that the following are
true: (1) Verify

H
N,e(Mi, xi) = 1 for all i = 1, . . . ,m + 1, and (2) the number of interactions that

Bc initiated with ServerN,e,ds is at most m. The advantage of Bc, denoted Advomf
sds,Fg

(k), is its
probability of success, taken over the coins of kg(k), the coins ServerN,e,ds , the coins of Bc if
any, and the random choice of H if we are in a random oracle model. The scheme sds is said to
be secure against one-more-forgery if the function Advomf

sds,Bc
(·) is negligible for every poly(k)-time

client adversary Bc.

4 The RSA-related computational problems

In this section, we provide definitions of the three RSA related computational problems RSA-STI,
RSA-CTI, and Split-Key-RSA-CTI on whose assumed security are results are based. We present
and prove some relations between these problems in Appendix A. The definitions are parameterized
by an arbitrary RSA key generator kg.

RSA-STI. Let kg be an RSA key generator and let In be an algorithm, referred to in this context
as an rsa-sti-adversary. Consider the following experiment:

Experiment Exprsa-sti
kg, In (k)

(N, e, d, p, q) R← kg(k) ; y
R← Z∗

N ; x← In(N, e, k, y)
If xe ≡ y (mod N) then return 1 else return 0

The rsa-sti-advantage of In, denoted Advrsa-sti
kg, In (k), is the probability that experiment Exprsa-sti

kg, In (k)
returns 1. The RSA-STI problem is said to be hard with respect to kg —in more standard
terminology, RSA is said to be one-way with respect to kg— if the function Advrsa-sti

kg, In (·) is negligible
for any poly(k)-time In. The assumption that RSA-STI is hard is simply the assumption that RSA
is a one-way function, and is standard, but for consistency with problems considered later in this
paper we use the phrase “RSA-STI is hard” in place of “RSA is a one-way function.”

RSA-CTI. The RSA-CTI problem is one of a class of problems defined, and related to each other,
in [1]. They showed that the assumption that the RSA-CTI problem is hard suffices to prove the
security against one-more-forgery of Chaum’s RSA-based blind signature scheme [7] in the random
oracle model. The resemblance of the client-message two-party schemes to blind signature schemes
with regard to security goals (one-more-forgery) makes it natural that the RSA-CTI problem is
relevant here too. The problem itself is extension of the RSA-STI problem in which the adversary
gets an inversion oracle, namely an oracle for (·)d mod N , and must invert RSA at m + 1 target
points using at most m oracle calls. The adversary must choose the m + 1 target points from a
sequence of n(k) random input points. The function π reflects the choice it makes. We consider n
as a parameter of the problem.

Let kg be an RSA key generator and let n : N → N be a (polynomially bounded, polynomial
time computable) function of the security parameter such that n(k) ≥ 1 for all k ∈ N. Let In be
an algorithm with access to an oracle, referred to in this context as an rsa-cti-adversary. Consider
the following experiment:

Experiment Exprsa-cti
kg, In, n(k)

(N, e, d, p, q) R← kg(k) ; For i = 1 to n(k) do yi
R← Z∗

N

(m,π, x1, . . . , xm+1)← In
(·)d mod N (N, e, k, y1, . . . , yn(k))

If the following are all true then return 1 else return 0
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— 0 ≤ m < n(k)
— π: {1, . . . ,m + 1} → {1, . . . , n(k)} is an injective function
— ∀i ∈ {1, . . . ,m + 1} : xe

i ≡ yπ(i) (mod N)
— In made at most m oracle queries

The rsa-cti-advantage of In, denoted Advrsa-cti
kg, In, n(k), is the probability that experiment Exprsa-cti

kg, In, n(k)
returns 1. The RSA-CTIn problem is said to be hard with respect to kg if the function Advrsa-cti

kg, In, n(·)
is negligible for any poly(k)-time In. The RSA-CTI problem is said to be hard with respect to kg

if RSA-CTIn is hard for all polynomially-bounded, polynomial-time computable functions n(·) ≥ 1.
The RSA-CTI1 problem (ie. the case n(·) = 1) is identical to the RSA-STI problem, and it

is in this sense that the hardness of the RSA-CTI problem can be considered an extension of the
standard one-wayness assumption about RSA.

Split-Key-RSA-CTI. We introduce in this paper a Split-Key extension of the RSA-CTI problem.
Let d1, d2 be shares of d, meaning d1, d2 ∈ Z∗

ϕ(N) and d1d2 ≡ d (mod ϕ(N)). The adversary has
e, d1 as input, and an oracle for (·)d2 mod N . The rest is as in RSA-CTI. Namely let kg be an
RSA key generator and let n : N → N be a (polynomially bounded, polynomial time computable)
function of the security parameter such that n(k) ≥ 1 for all k ∈ N. Let In be an algorithm with
access to an oracle, referred to in this context as an sk-rsa-cti adversary. Consider the following
experiment:

Experiment Expsk-rsa-cti
kg, In, n (k)

(N, e, d, p, q) R← kg(k) ; M ← (p− 1)(q − 1) ; d1
R← Z∗

M ; d2 ← d · d−1
1 mod M

For i = 1 to n(k) do N yi
R← Z∗

N EndFor

(m,π, x1, . . . , xm+1)← In
(·)d2 mod N (N, e, d1, k, y1, . . . , yn(k))

If the following are all true then return 1 else return 0
— 0 ≤ m < n(k) and π: {1, . . . ,m + 1} → {1, . . . , n(k)} is injective
— ∀i ∈ {1, . . . ,m + 1} : xe

i ≡ yπ(i) (mod N)
— In made at most m oracle queries

The sk-rsa-cti-advantage of In, denoted Advsk-rsa-cti
kg, In, n (k), is the probability that Expsk-rsa-cti

kg, In, n (k)
returns 1. The Split-Key-RSA-CTIn problem is said to be hard with respect to kg if the function
Advsk-rsa-cti

kg, In, n (·) is negligible for any poly(k)-time In. The Split-Key-RSA-CTI problem is said to be
hard with respect to kg if Split-Key-RSA-CTIn is hard for all polynomially-bounded, polynomial-
time computable functions n(·) ≥ 1. We stress that the adversary gets d1 as input, and also gets a
(·)d2 mod N oracle.

5 Results, discussion and proof ideas

As indicated above, the question we want to answer, for each of our four two-party signature
scheme, is: what assumptions on the underlying primitives suffice to guarantee security of the
scheme? In this section we provide the theorem statements, some intuition with regard to why the
four different two-party signature schemes are relying for their security on different assumptions
about the underlying primitives, and also the main ideas behind our proofs of security. The proofs
of the theorems are in Section 6. Definitions of the RSA related computational problems used as
assumptions are in Section 4. The results are summarized in Figure 1.

Overview. The middle column of Figure 1 lists assumptions about RSA and the hash function
H, and the strength of the assumptions in this column decreases as one moves down. The security
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statements regarding our four schemes are in the four corner boxes. The six theorems indicated in
Figure 1 can be divided into two sets. Theorems labeling arrows originating in the middle column
and ending in one of the four corner boxes represent direct proofs of security for the corresponding
two-party signature scheme, and are discussed in Section 5.2. The theorems labeling the leftmost
and rightmost arrows of the picture are of a different nature, relating different kinds of two-party
schemes to each other, and are discussed in Section 5.1. We begin however with a useful lemma.

Technical lemma. The following lemma implies that a randomly chosen point has a non-
negligible probability of being a proper client-share of the decryption exponent, and will be used
to justify the correctness of all our simulations. A proof can be found in Section 6.1.

Lemma 5.1 Suppose k ≥ 1 is an integer, and N is an RSA modulus satisfying N < 2k. If an integer
w is drawn at random from {1, . . . , N} then Pr[w ∈ Z∗

ϕ(N) ] is strictly greater than 8/[435 ln(k)].

5.1 Relations between two-party schemes

As Figure 1 indicates, we show the following: If one of the two-party signature scheme from the
client-message family of Figure 2 is secure, then so is the corresponding two-party signature scheme
from the common-message family of Figure 2. (That is, if HCS is secure so is MCS, and if HSC is
secure so is MSC.) The formal theorem statements are as follows, with proofs in Section 6.2 and
Section 6.3, respectively.

Theorem 5.2 Let ds be a base signature scheme, let SKDS-H be the corresponding HCS two-
party signature scheme, and let SKDS-M be the corresponding MCS two-party signature scheme.
If SKDS-H is secure against one-more forgery, then SKDS-M is secure against forgery under
chosen-message attack.

Theorem 5.3 Let ds be a base signature scheme, let SKDS-H be the corresponding HSC two-
party signature scheme, and let SKDS-M be the corresponding MSC two-party signature scheme.
If SKDS-H is secure against one-more forgery, then SKDS-M is secure against forgery under
chosen-message attack.

We note that these results make no assumptions about the underlying schemes other than that the
meet the stated security notions. In particular the results are true both in a random oracle model
and in a standard model. The feature of these results that we feel is interesting is that they relate
schemes of different types (common-message versus client-message) and satisfying different types
of security notions (security against forgery under cma versus security against one-more forgery).

These two general results help clarify the high-level picture before we move to analyses of
individual schemes. One implication, for example, is that the assumption under which we might
hope to prove the security of a client-message scheme from Figure 2 will be at least as strong as
the assumptions used to prove the security of the corresponding common-message scheme from
Figure 2.

5.2 Security results for the two-party schemes

The minimal assumption. Suppose that the base signature scheme ds, with which all our two-
party signature schemes are compatible, is insecure. We claim this implies that all four two-party
signing schemes are insecure. (Given Fg who breaks ds, it is a simple exercise to design, for each of
the four two-party signature schemes, a client adversary Bc that, using Fg as a subroutine, breaks
the two-party signature scheme in question, with the definition of “breaking” being consistent with
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the definitions of Section 3 in either case. We omit the details.) The implication is that the security
of the base scheme is the minimal assumption under which we can hope to prove security of the
two-party signature schemes, and thus, the first question to ask is whether this assumption is also
sufficient.

Security of MCS. The minimal assumption that the base signature scheme ds is secure (against
forgery under cma) suffices to prove that the common-message two-party signature scheme MCS is
also secure (against forgery under cma). This is as good as it gets, and says that the MCS scheme
has a strong security guarantee. The formal theorem statement is the following.

Theorem 5.4 Let ds be a base signature scheme, and sds the corresponding MCS two-party
signature scheme. If ds is secure against forgery under chosen-message attack, then so is sds.

The proof is provided in Section 6.4. To better understand what follows however, it is worth
explaining the main ideas of the proof here.

Given Bc who breaks the MCS scheme, we want to construct Fg who breaks ds. The Fg, as
usual, runs Bc as a subroutine to obtain a forgery M,x that it can output. The main issues are:
how can it provide Bc with the client share dc of d, and how can it “simulate” ServerN,e,ds?

Since the forger knows neither d nor ϕ(N), it is unlikely that it can come up with dc always
distributed exactly as in the output of kg. The strategy it uses is to pick dc at random from
{1, . . . , N}, and proceed. Lemma 5.1 shows that dc is correctly distributed with (low but) non-
negligible probability, which turns out to be enough.

The forger cannot be expected to come up with ds satisfying dcdc ≡ d (mod ϕ(N)), since
otherwise it could factor N , so it cannot simulate ServerN,e,ds directly. Its strategy is to use
its access to the sign-oracle SignN,d(·). When Bc initiates an interaction with ServerN,e,ds on
message M and first flow xc, the forger responds with x = SignN,d(M). (We are omitting some
details, like the fact that the forger needs to check whether or not xc is correct, since if not it must
return ⊥. See Section 6.4.)

Security of MSC. The assumption that the base signature scheme ds is secure does not seem
enough, however, to guarantee the security of any of the other three schemes. In particular, merely
having the server go first, as in MSC, is enough to provide Bc with information that might go
beyond that provided by the signature itself. Specifically, in MSC, Bc as usual knows dc, but now
can also obtain H(M)ds for a value M of its choice, and mere knowledge of the final signature
H(M)dcds mod N does not seem to provide knowledge of H(M)ds mod N to a party knowing dc.
In the technicalities of the proofs, this translates to saying that the simulation of ServerN,e,ds

based on access of Fg to the sign-oracle, as above, no longer seems possible.
This does not mean that we know of a weakness in the MSC scheme. It does mean, however,

that its security relies on stronger assumptions about the underlying primitives than those that
sufficed to prove security of MCS. Our result is that the security of MSC can be proved assuming
that the RSA-STI is hard and H is a random oracle. The formal statement is the following. The
proof is provided in Section 6.5.

Theorem 5.5 Let kg be an RSA key generation algorithm, let ds be the corresponding base
signature scheme in the random oracle model, and let sds be the corresponding MSC two-party
signature scheme in the random oracle model. If the RSA family is one-way with respect to kg,
then sds is secure against forgery under chosen-message attack.

The invocation of the random oracle model of course puts the assumptions here into a different class
(cf. [6]). However, one should note that all known proofs of security for the “hash-then-decrypt”
style base signature scheme that we are considering, under the assumption that RSA-STI is hard,
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assume that H is a RO [3, 8]. (There are alternative base schemes close in style [16, 9], but their
adaptation to a two-party setting has not been investigated.) Thus in terms of pragmatic provable-
security, the assumption that RSA-STI is hard and H is a RO may be considered a relatively
natural strengthening of the assumption that the base signature scheme is secure.

Why does this change in assumptions suffice to guarantee security? As we saw above, the
concern with MSC is that the value H(M)ds mod N that Bc can obtain from the server provides
information over and above H(M)d mod N . If H is a random oracle, however, it can be shown
that H(M)ds mod N is not in fact extra information, by exploiting the idea of the proof of security
of the FDH (Full Domain Hash) signature scheme from [3], as follows.

Given Bc who breaks the MSC scheme, we want to construct an inverter In who, given N, e, y,
outputs yd mod N . It will pick dc at random, in the same manner as the forger in the proof of
security of MCS discussed above, and run Bc on inputs N, e, dc, itself providing answers to the
hash oracle queries, and simulating the responses of ServerN,e,ds . The inverter can respond to
hash-oracle query M with a point of the form redc mod N , having itself picked r at random. This
means that H(M)ds ≡ r (mod N), and so the inverter can provide H(M)ds to Bc if needed. The
inverter seeks to obtain yd mod N by ensuring that H(M) = y for the message M that Bc outputs
in the forgery. (The difficulty of this last goal not being compatible with the simulation strategy is
resolved via a guess as to the hash-oracle corresponding to the forgery [3]. The strategy of [8] can
be used to improve the concrete security of the reduction, but for simplicity in this paper we are
not discussing concrete security issues.) For details see Section 6.5.

Security of the client-message schemes. Denying the server knowledge of the message being
signed results in Bc being able to obtain yds for a value y which it can choose at will (in HSC) or
almost at will (in HCS), meaning it effectively has (for HSC) or almost has (for HCS) an oracle for
the function (·)ds mod N . (In HCS, there is some restriction on the use of the oracle, because Bc

must be able to provide ydc mod N when invoking the oracle at y.) In contrast, in the common-
message schemes, Bc could only obtain values of this oracle on points y of the form H(M), having
first had to commit to M ; this tied the use of the oracle more closely to the signing function of the
base signature scheme and lead to our being able to show (under somewhat different conditions for
MCS and MSC) that, effectively, the oracle did not add much power over and above signing power.

We observe that the HCS and HSC schemes are analogous to Chaum’s RSA-based blind-
signature scheme [7], both with regard to the security goal (security against one-more-forgery)
and the protocol issues discussed above. (In Chaum’s scheme the forger effectively has access to an
oracle for the function (·)d mod N , and wins if it succeeds in one-more forgery.) It is natural to look
in that direction for analysis ideas. No proof of security for Chaum’s scheme under the standard
assumption that RSA-STI is hard has appeared, even in a random oracle model, and furthermore
there seems little reason to expect one, since the security relies on properties of RSA that seem to
go beyond those reflected in the RSA-STI problem. The situation for HCS and HSC is unlikely
to be better. An analysis approach that seems productive in such settings, and was pursued for
Chaum’s scheme in [1], is to formulate, or distill out, the RSA-related computational problems that
seem to underly the scheme, and prove security assuming these problems are hard. In this manner,
at least one better understands what one is assuming. We use the problems formulated in [1] in
our current setting.

Security of HCS. We prove the security of HCS under the same assumption that was used in [1]
to prove the security of Chaum’s blind signature scheme, namely that the RSA-CTI (RSA Chosen
Target Inversion) problem is hard and H is a random oracle. The formal theorem statement is the
following. The proof is provided in Section 6.5.
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Theorem 5.6 Let kg be an RSA key generation algorithm, let ds be the corresponding base
signature scheme in the random oracle model, and let sds be the corresponding HCS two-party
signature scheme in the random oracle model. If the RSA-CTI problem is hard with respect to kg,
then sds is secure against one-more-forgery.

Chaum’s blind signature scheme is not a two-party scheme. By saying that the assumptions un-
derlying it suffice also to prove security of HCS, we are saying that the splitting of the key has
not created security weaknesses beyond those already present in a scheme in which the adversary
effectively gets an RSA-inversion oracle. The proof of Theorem 5.6 indicates how this is possible,
and we now discuss some of its ideas.

Given Bc attacking HCS, we are trying to build an adversary A for the RSA-CTI problem.
As in all our proofs, A picks dc at random, and Lemma 5.1 is used to argue that this choice is a
properly distributed client-share with non-negligible probability. It then runs Bc on inputs N, e, dc.
The main issue is how to handle the simulation of ServerN,e,ds , which, as we observed before, is
effectively providing a (·)ds oracle to Bc. The important point is that the flow from the client
includes not just y but also xc, where xc should equal ydc mod N . Assuming it does, the server’s
response is xs ≡ xds

c ≡ yd (mod N), meaning that (·)ds oracle can be simulated given access to a
(·)d mod N oracle, and thus can be simulated by A since it has access to a (·)d mod N oracle. The
correctness of this simulation relies on the fact that ServerN,e,ds checks that the client computes
xc correctly (by checking that xe

s ≡ y (mod N)) and that A can perform this check too since it
knows dc. The assumption that H is a random oracle is used in transforming the outputs of Bc

into ones properly related to the inputs of A. See Theorem 5.6 and its proof for details.

Security of HSC. Having the server go first introduces an extra security risk by giving the
client-adversary more power. In HCS there is some restriction on the use of the (·)ds mod N oracle
effectively provided to the client via its access to ServerN,e,ds, namely that when calling this
oracle on input y, the client must supply xc = ydc mod N . As we saw above, this means that the
(·)ds mod N oracle can be simulated via a (·)d mod N oracle. In HSC, there is no such brake put
on the client’s access to the (·)ds mod N oracle, and it does not seem possible to simulate it given
access to a (·)d mod N oracle. Thus, it appears that the HSC scheme relies for its security on
assumptions even stronger than the hardness of the RSA-CTI problem. Indeed, this is the first of
the four schemes for which we have not found a way to avoid explicitly considering the key-splitting
in the assumptions. (For all the other schemes, the assumptions related to the (·)d mod N function,
meaning to the original RSA problem.)

We prove the security of HSC based on the assumption that the Split-Key-RSA-CTI problem
is hard and H is a random oracle.

Theorem 5.7 Let kg be an RSA key generation algorithm, let ds be the corresponding base
signature scheme in the random oracle model, and let sds be the corresponding HSC two-party
signature scheme in the random oracle model. If the RSA-S-CTI problem is hard with respect to
kg, then sds is secure against one-more-forgery.

The proof, which can be found in Section 6.7, is relatively straightforward.

6 Proofs of results in Section 5

6.1 Proof of Lemma 5.1

We will make use of the following lower bound on ϕ(m)/m, which can be derived from Rosser and
Schoenfeld [25, Theorem 15]:
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Lemma 6.1 If M ≥ 3 is an integer then

ϕ(M)
M

≥ 1
29 ln ln(M)

.

Proof of Lemma 5.1: The probability in question is

Pr[w ∈ Z∗
ϕ(N) ] =

ϕ(ϕ(N))
N

=
ϕ(ϕ(N))

ϕ(N)
· ϕ(N)

N
.

Since N is an RSA modulus, it must be that N ≥ 15, implying that ϕ(N) ≥ 3, and thus we can
apply Lemma 6.1, with M = ϕ(N), to lower bound the first term above. For the second term, we
use the fact that ϕ(N) = (p− 1)(q − 1) where p, q are the distinct, odd primes such that N = pq.
From the above we get

Pr[w ∈ Z∗
ϕ(N) ] ≥ 1

29 ln ln(ϕ(N))
·
(

1− 1
p

)
·
(

1− 1
q

)

≥ 1
29 ln ln(ϕ(N))

·
(

1− 1
3

)
·
(

1− 1
5

)

=
8

435 ln ln(ϕ(N))

≥ 8
435 ln ln(N)

>
8

435 ln(k)
.

In the last step we used the bound ln ln(N) ≤ ln(k ln(2)) < ln(k), which is true because we have
assumed N < 2k.

6.2 Proof of Theorem 5.2

We associate to any polynomial-time client-adversary BcM another polynomial-time client adver-
sary BcH such that for all k we have

Advuf-cma
SKDS-M,BcM

(k) ≤ Advomf
SKDS-H,BcH

(k) . (3)

The theorem follows.

Client-adversary BcH is initialized with N, e, dc and has access to ServerN,e,ds . It begins with the
following initializations:

Set counter i← 0
Initialize BcM with inputs N, e, dc

It now runs BcM, who will initiate some number of interactions with its server. Since MCS is a
common-message scheme, BcM must begin an interaction with the server by specifying a message
to serve as common input. Client-adversary BcH will play the server role. It will get from BcM

a message M and first flow xc, run the following code, and return to Bc the output:

If there is a j ≤ i such that Mj = M then return xj

Else
y ← H(M)
If xc 6≡ ydc (mod N) then return ⊥
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Else
i← i + 1 ; Mi ←M ; yi ← y ; xi,c ← xc

Send yi, xi,c to ServerN,e,ds and get back xi

Return xi

Above, BcH is careful to not invoke ServerN,e,ds in cases where the latter would return ⊥, because
fruitless calls to its server count against it in a one-more forgery attack. This is important to the
analysis that follows.

Finally,BcM will output a pair (M,x). BcH executes the following:

m← i
i← i + 1 ; Mi ←M ; xi ← x.

It then outputs the list (M1, x1), . . . , (Mm+1, xm+1) and halts.

For the analysis, we observe that m is the number of sessions that BcH initiated with ServerN,e,ds ,
because each initiation increments i by one above. Thus, BcH is successful as long as

Verify
H
N,e(Mj , xj) = 1 (4)

for all j = 1, . . . ,m + 1. Equation (4) is true for j = 1, . . . ,m by virtue of the invocation of
ServerN,e,ds , and is true for j = m + 1 if BcM is successful. This completes the proof of
Equation (3).

6.3 Proof of Theorem 5.3

This proof is very similar to that of Theorem 5.2. (In fact it is simpler.) We associate to any
polynomial-time client-adversary BcM another polynomial-time client adversary BcH such that
for all k we have

Advuf-cma
SKDS-M,BcM

(k) ≤ Advomf
SKDS-H,BcH

(k) . (5)

The theorem follows.

Client-adversary BcH is initialized with N, e, dc and has access to ServerN,e,ds . It begins with the
following initializations:

Set counter i← 0
Initialize BcM with inputs N, e, dc

It now runs BcM, who will initiate some number of interactions with its server. Since MSC is a
common-message scheme, BcM must begin an interaction with the server by specifying a message
to serve as common input. Client-adversary BcH will play the server role. It will get from BcM

a message M , run the following code, and return to Bc the output:

If there is a j ≤ i such that Mj = M then return xj

Else
i← i + 1 ; Mi ←M ; yi ← H(M)
Send yi to ServerN,e,ds and get back xi,s

Return xi,s

Finally,BcM will output a pair (M,x). BcH executes the following:
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m← i
i← i + 1 ; Mi ←M ; xi ← x.

It then outputs the list (M1, x1), . . . , (Mm+1, xm+1) and halts.

For the analysis, we observe that m is the number of sessions that BcH initiated with ServerN,e,ds ,
because each initiation increments i by one above. Thus, BcH is successful as long as

Verify
H
N,e(Mj , xj) = 1 (6)

for all j = 1, . . . ,m + 1. Equation (6) is true for j = 1, . . . ,m by virtue of the invocation of
ServerN,e,ds , and is true for j = m + 1 if BcM is successful. This completes the proof of
Equation (5).

6.4 Proof of Theorem 5.4

We associate to any polynomial-time client-adversary Bc a polynomial-time forger Fg such that
for all k we have

Advuf-cma
sds,Bc

(k) ≤ 435 ln(k)
8

·Advuf-cma
ds,F (k) . (7)

The theorem follows.

Adversary Fg takes as input an RSA public key N, e, and has access to sign-oracle Sign
H
N,d(·). It

begins with the following initializations:

Set counter i← 0
Pick dc at random from {1, . . . , N}
Initialize Bc with inputs N, e, dc

Not knowing ϕ(N) it cannot pick dc at random from Z∗
ϕ(N), so instead it picks dc at random from

{1, . . . , N} as above. It now runs Bc, who will initiate some number of interactions with the
server. Since MCS is a common-message scheme, Bc must begin an interaction with the server by
specifying a message to serve as common input. Adversary Fg will play the server role. It will get
from Bc a message M and a flow xc for the server, un the following code, and return to Bc the
output:

i← i + 1
Mi ←M ; xi,c ← xc

Let wi,c ← H(Mi)dc mod N

If xi,c 6= wi,c then xi ← ⊥ else xi ← Sign
H
N,d(Mi)

Return xi

Finally, Bc will output a pair M,x, which Fg also outputs and halts.

For the analysis, we consider the following events:

GS : dc ∈ Z∗
ϕ(N)

Win : Verify
H
N,e(M,x) = 1 and M was not a message with which

Bc initialized the server.

We claim that

Pr [ Win | GS ] = Advuf-cma
sds,Bc

(k) . (8)
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The justification for this is as follows. Suppose event GS is true. Then dc is uniformly distributed
in Z∗

ϕ(N), and is thus distributed identically to the share of d that is issued to Bc by the split-key
generation algorithm kg, so the inputs to Bc are distributed as in the experiment measuring its
advantage. Furthermore, the response xi returned by the forger to flow xi,c is distributed identically
to that which would have been returned by the real server. Now we can lower bound the advantage
of Fg as follows:

Advuf-cma
ds,Fg

(k) ≥ Pr[Win ]
≥ Pr[Win ∧ GS ]
= Pr [ Win | GS ] · Pr[GS ]
= Advuf-cma

sds,Bc
(k) · Pr[GS ]

≥ Advuf-cma
sds,Bc

(k) · 8
435 ln(k)

.

The first inequality is true because if event Win happens, then Fg is certainly successful. The
second inequality is obvious, and the following equality is by Equation (8). The last inequality
used Lemma 5.1. This completes the proof of Equation (7).

6.5 Proof of Theorem 5.5

We adapt the proof of security of the FDH signature scheme from [3], following the proof of
security of the S-RSA protocol from [20]. We associate to any polynomial-time client-adversary Bc

a polynomial-time inverter In such that for all k we have

Advuf-cma
sds,Bc

(k) ≤ 435 ln(k)
8

· q(k) ·Advrsa-sti
kg, In (k) , (9)

where q(·) denotes a polynomially-bounded function such that the number of server-interactions
initiated by Bc, plus the number of hash-oracle queries it makes, is strictly upper bounded by q(k).
The theorem follows.

Adversary In takes as input an RSA public key N, e, security parameter k, and a point y ∈ Z∗
N . It

is seeking to output yd mod N . It begins with the following initializations:

Set counter i← 0
Pick dc at random from {1, . . . , N}
Pick l at random from {1, . . . , q(k)}
Initialize Bc with inputs N, e, dc

It now runs Bc, who will initiate some number of interactions with the server, and also make
queries to its hash-oracle. A hash-oracle query M is answered by running the following code and
returning to Bc the output:

HSim(M)
If there is a j ≤ i such that Mj = M then return Hj

Else
i← i + 1 ; Mi ←M

xi,s
R← Z∗

N ; ri ← [xe
i,s]

dc mod N

If i = l then Hi ← y else Hi ← ri

Return Hi
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Since MSC is a common-message scheme, Bc must begin an interaction with the server by specifying
a message to serve as common input. Adversary In will play the server role. It will get from Bc a
message M , run the following code, and return to Bc the output:

SSim(M)
H ← HSim(M)
Let j be the index such that M = Mj

If j = l then abort else return xj,s

The “abort” instruction above means that In halts its entire computation with no output. If this
does not happen then eventually Bc outputs a pair M,x. In returns x and halts.

For the analysis, we consider the following events:

GS : dc ∈ Z∗
ϕ(N)

Win : Verify
H
N,e(M,x) = 1 and M was not a message with which

Bc initialized the server

NA : The abort instruction was never executed by SSim

CG : Ml = M

We claim that

Pr [ Win | GS ∧ NA ∧ CG ] = Advuf-cma
sds,Bc

(k) . (10)

This and Lemma 5.1 are used in the following estimates:

Advrsa-sti
kg, In (k) ≥ Pr[Win ]

≥ Pr[Win ∧ GS ∧NA ∧ CG ]
= Pr [ Win | GS ∧ NA ∧ CG ] · Pr[GS ∧NA ∧ CG ]
= Advuf-cma

sds,Bc
(k) · Pr[GS ] · Pr[NA ∧ CG ]

≥ Advuf-cma
sds,Bc

(k) · 8
435 ln(k)

· 1
q(k)

.

This completes the proof of Equation (9).

6.6 Proof of Theorem 5.6

We adapt the proof of security of Chaum’s RSA-based blind signature scheme from [1]. We associate
to any polynomial-time client-adversary Bc a polynomial-time inverter In such that for all k we
have

Advomf
sds,Bc

(k) ≤ 435 ln(k)
8

·Advrsa-cti
kg, In, n(k) , (11)

where n(·) ≥ 1 is a polynomially-bounded, polynomial time computable function such that the
number of server-interactions initiated by Bc, plus the number of hash-oracle queries it makes, is
strictly upper bounded by n(k). The theorem follows.

Adversary In takes as input an RSA public key N, e, security parameter k, and a sequence
y1, . . . , yn(k) of points in Z∗

N . It has access to a (·)d mod N oracle. It begins with the following
initializations:
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Set counter i← 0
Pick dc at random from {1, . . . , N}
Initialize Bc with inputs N, e, dc

It now runs Bc, who will initiate some number of interactions with the server, and also make
queries to its hash-oracle. A hash-oracle query M is answered by running the following code and
returning to Bc the output.

HSim(M)
If there is a j ≤ i such that Mj = M then return yj

Else
i← i + 1 ; Mi ←M
Return yi

Bc will begin each interaction with the server by providing values to serve the role of the client’s
first protocol flow. (Since this is a client-message scheme, no message is provided by Bc.) Adversary
In will play the server role. It will get from Bc the first flow y, xc, run the following code, and
return to Bc the output:

SSim(y, xc)
If ydc 6≡ xc (mod N) then x← ⊥ else x← yd mod N
Return x

Finally, Bc will output a sequence (M1, x1), . . . , (Mm+1, xm+1) of pairs. In now executes the
following:

For j = 1, . . . ,m + 1 do
Run HSim(M j)
Let i be such that M j = Mi

π(j)← i
EndFor

It then outputs (m,π, x1, . . . , xm+1) and halts.

For the analysis, we consider the following events:

GS : dc ∈ Z∗
ϕ(N)

Win : Verify
H
N,e(M j , xj) = 1 for all j = 1, . . . ,m, and

Bc initiated at most m server-interactions

We claim that

Pr [ Win | GS ] = Advomf
sds,Bc

(k) . (12)

This and Lemma 5.1 are used in the following estimates:

Advrsa-cti
kg, In, n(k) ≥ Pr[Win ]

≥ Pr[Win ∧ GS ]
= Pr [ Win | GS ] · Pr[GS ]
= Advomf

sds,Bc
(k) · Pr[GS ]

≥ Advomf
sds,Bc

(k) · 8
435 ln(k)

.

This completes the proof of Equation (11).
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6.7 Proof of Theorem 5.7

This proof is very similar to that of Theorem 5.6. We associate to any polynomial-time client-
adversary Bc a polynomial-time inverter In such that for all k we have

Advomf
sds,Bc

(k) ≤ Advsk-rsa-cti
kg, In, n (k) , (13)

where n(·) ≥ 1 is a polynomially-bounded, polynomial time computable function such that the
number of server-interactions initiated by Bc, plus the number of hash-oracle queries it makes, is
strictly upper bounded by n(k). The theorem follows.

Adversary In takes as input an RSA public key N, e, a value d1 ∈ Z∗
ϕ(N), security parameter k, and

a sequence y1, . . . , yn(k) of points in Z∗
N . It has access to a (·)d2 mod N oracle. It begins with the

following initializations:

Set counter i← 0
dc ← d1

Initialize Bc with inputs N, e, dc

It now runs Bc, who will initiate some number of interactions with the server, and also make
queries to its hash-oracle. A hash-oracle query M is answered by running the following code and
returning to Bc the output.

HSim(M)
If there is a j ≤ i such that Mj = M then return yj

Else
i← i + 1 ; Mi ←M
Return yi

Bc will begin each interaction with the server by providing values to serve the role of the client’s
first protocol flow. (Since this is a client-message scheme, no message is provided by Bc.) Adversary
In will play the server role. It will get from Bc the first flow y, run the following code, and return
to Bc the output:

SSim(y)
xs ← yd2 mod N
Return xs

Finally, Bc will output a sequence (M1, x1), . . . , (Mm+1, xm+1) of pairs. In now executes the
following:

For j = 1, . . . ,m + 1 do
Run HSim(M j)
Let i be such that M j = Mi

π(j)← i
EndFor

It then outputs (m,π, x1, . . . , xm+1) and halts.

For the analysis, we consider the following event:

Win : Verify
H
N,e(M j , xj) = 1 for all j = 1, . . . ,m, and

Bc initiated at most m server-interactions
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It is easy to see that

Advrsa-cti
kg, In, n(k) ≥ Pr[Win ] = Advomf

sds,Bc
(k) ,

and this completes the proof of Equation (13).
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A Relations between RSA related problems

Note that the RSA-STI and RSA-CTI1 problems are identical, so that RSA-CTI can be considered
a natural extension of RSA-STI. For further information regarding the RSA-CTI problem and its
relation to other problems, refer to [1].

The natural question with regard to the new Split-Key-RSA-CTI problem we have introduced
is its relation to the RSA-CTI problem. A simple observation is that splitting the key cannot make
the adversary’s task harder, meaning that if the Split-Key-RSA-CTI problem is hard then so is the
RSA-CTI problem. The following Proposition provides the formal statement and is proved below.

Proposition A.1 Let kg be an RSA key generator and let n : N→ N be a (polynomially bounded,
polynomial time computable) function of the security parameter such that n(k) ≥ 1 for all k ∈ N.
If the Split-Key-RSA-CTIn problem is hard with respect to kg then the RSA-CTIn problem is
hard with respect to kg.

The more interesting question is whether the hardness of the RSA-CTI problem implies the hardness
of the Split-Key-RSA-CTI problem. We do not see how to prove this in general. However, we note
that one can prove that the hardness of RSA-CTIn implies the hardness of Split-Key-RSA-CTIn
in the special case that n(·) = 1. The reason this case is different is that the sk-rsa-cti adversary is
allowed no oracle queries. The reason it is still somewhat non-trivial is that the sk-rsa-cti adversary
does, however, receive d1 as input. The result is summarized in the following Proposition and proved
below. Note that RSA-CTI1 is the same as RSA-STI, so we are saying that the three problems
RSA-STI, RSA-CTI1 and Split-Key-RSA-CTI1 are all equivalent in hardness.
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Proposition A.2 Let kg be an RSA key generator. If the RSA-CTI1 problem is hard with respect
to kg, then the Split-Key-RSA-CTI1 problem is hard with respect to kg.

This tells us that the splitting of the key results in (possibly) more power to the adversary due to
a combination of reasons: the fact that it has d1 as input and the fact that it has a (·)d2 mod N
oracle.

Proof of Proposition A.1: We associate to any polynomial-time rsa-cti adversary A a polynomial-
time sk-rsa-cti adversary B such that for all k we have

Advrsa-cti
kg, A, n(k) ≤ Advsk-rsa-cti

kg, B, n (k) . (14)

The Proposition follows. Adversary B has input N, e, d1, k, y1, . . . , yn(k) and access to a (·)d2 mod N

oracle. It runs A on inputs N, e, k, y1, . . . , yn(k). When A makes a query v to its (·)d mod N oracle,
B queries vd1 mod N to its (·)d2 mod N oracle to get a response w, and returns w to A as the
answer to A’s oracle query. B outputs whatever A outputs. It is easy to see that the simulation of
A’s (·)d mod N oracle that B provides is always correct, and hence that Equation (14) is true. We
omit the details.

Proof of Proposition A.2: We associate to any polynomial-time sk-rsa-cti adversary B a
polynomial-time rsa-cti adversary A such that for all k we have

Advsk-rsa-cti
kg, B, 1 (k) ≤ 435 ln(k)

8
·Advrsa-cti

kg, A, 1(k) . (15)

The Proposition follows. Adversary A has input N, e, k, y1. (It also has access to (·)d mod N oracle
but is allowed zero queries to it, so we can imagine the oracle is absent.) Not knowing ϕ(N) it cannot
pick d1 at random from Z∗

ϕ(N), so instead it picks d1 at random from {1, . . . , N}, and runs B on
inputs N, e, d1, k, y1. It outputs whatever B outputs. (Since B too is allowed zero oracle queries, the
output is obtained directly.) The simulation of B is correct as long as d1 is uniformly distributed in
Z∗

ϕ(N), and this is true with probability at least 8/[435 ln(k)] by Lemma 5.1. Equation (15) follows.
We omit the details.
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