Dependency Path Patterns asthe Foundation of Access Control in
Provenance-awar e Systems

Dang Nguyen, Jaehong Park, and Ravi Sandhu
Institute for Cyber Security
University of Texas at San Antonio
dnguyen@cs.utsa.edu, jae.park@utsa.edu, ravi.sandba@uau

Abstract access control policies and mechanisms are built.
There are at least two access control-related concerns
n provenance-aware system. One is Provenance Access

th derlvi lity d dencies bet ew Control (PAC) which focuses on how to control access
€ underlying causality dependencies between entitie provenance data. This issue has been studied exten-

(acting users, action processes and data objects) involv ely in recent years [3, 8]. The other is Provenance-

in transactions. Data provenance raises at least two di%'ased Access Control (PBAC) which focuses on how to
tinct stecunty-relateddls?uesh_ (?]ne IS hI(I)VI\; to control "f'utilize provenance data to control access to underlying
cess 1o ptrO\l/engéceTr? a ‘g} It V\llf ca rovegancs Acdata that are referred by the provenance data. The latter
cess control (). The other is Provenance-base %has not received much attention in the literature but is an

cess Control (PBAC) which focuses on how to utilize ilflnportant benefit of provenance data.

provenance data to °°F‘”°' access fo data objegts. Bot In this paper, we first discuss foundational concepts
PAC.and PBA? are b.u"t on a common fqunQatlon th.a.tfor both PAC and PBAC by utilizing regular expression-
requires security architects to define apphcatlon—sm_amﬂ based path patterns of dependency edges found in prove-
depgnd(_ency path _patterns c_>f provenance data. Assigni nce data. To achieve simple and effective security pol-
application-specific semantics to these path patterns prqéy specification and access control administration, we

y!des_ the foundat!o_n for_effecnve_z security policy spec- ropose named abstractions of meaningful path patterns
ification and administration. This paper elaborates orf

this common foundation of PAC and PBAC and identifies ound in provenance data,

;) ; . As shown in Figure 1, while both PAC and PBAC
some of the differences in how this common foundation : . . .
. . share the same foundation, as they are different in their
is applied in these two contexts.

goals they do present different issues to be addressed.

Based on our recent study where we developed our ini-

1 Introduction tial models for PBAC, we identify essential issues of
PBAC and PAC that need to be addressed for effective

In a provenance-aware system, transaction informatiomccess controls [13]. We identify the issues related to

is captured as provenance data. As commonly recogPBAC and PAC and explore some potential solutions to

nized in the literature, provenance data forms a DAGaddress these. We believe our approach will provide a

[9, 10]. Thereby provenance data captures dependendtrong foundation for simple but effective access controls

relationships between the graph nodes which represeiit provenance-aware system.

the provenance entities of acting user, action process and

objects. In Open Provenance Model (OPM) [10], prove- .

nance data captures causality dependencies (denoted %s Common Provenance Foundation

edges) between these three types of entities (denoted as

nodes) involved in transactions. Provenance data ca . .) .
of the form< acting useraction ob jectList> as a trans-

form a chain of dependencies from which useful in-~" ;

formation such as pedigree, usage and versioning inaction where an Ob]eCtL'.St contains one or more objects.
formation can be extracted by tracing through depen-SFO”ng all such transact;])tn records provides the system
dency chains. These dependencies are often expres‘é’lth base provenance dataFrom the raw provenance

ible through regular path patterns ConStrUCt_ed from graph 1There is typically additional contextual information asisted
edges which can then serve as the foundation upon whichith an event such as timestamp, location, etc. For sintpligie omit

A unique characteristics of provenance data is that iﬁ
forms a directed acyclic graph (DAG) in accordance with

a provenance-aware system, we capture a system event

submit1 4—@— revise1
PBAC PAC J(submit) u

c A AC
iati « Dependency path
. Authi .
. X;ei;n l\,l/ta“c:jr;zﬁa;:?n pattern as an initial c J(revise)
Named control unit

« Policy Retrieval

« System-computable
dependency

« User-declared
dependency

Abstraction of
Dependency
Path Patterns

« Sanitization/filtering
on initial trace results

* Needs additional

access control system

J(grade)
@; grade1 L»@

u: used, g: wasGeneratedBy, c: wasControlledBy

Provenance-aware System Figure 2: A Grading Example in OPM Graph
. . . a homework documenbwvi, later a team member
Figure 1: PBAC and PAC Comparison s2 revises the submitted homework intew?2, which

data we can extract causality dependencies between tfgCOMeshw\3 after being graded by the professor
entities that form the transaction records. Such causalitp: Here we can identify a causality dependency path
dependencies are captured and used as the basis of tigween the graded homewohiw3 and the student
popular Open Provenance Model [10]. who subm|}s the original version. Such a dependency
The OPM model identifies direct dependencies as welPath can simply be captured in a regular path that can
as indirect dependencies between these entities. The§& 2ssigned an abstraction name suclsasthoredBy
indirect dependencies often carry semantics that refled® POliCY can then be constructed to reflect a rule that

ot .only allows a users access to the homework object
the application context of the system. Such semantic nly a . . :
can also be extracted from paths of arbitrary length w8 if s € findverticeshw\g,isAuthoredBy where

of dependencies. We believe capturing these Semaj_indVerticesis a function that returns resulting vertices

tics through named abstractions of the associated d fom tracing provenance d_ata using a path pattern
pendency path patterns provides a strong foundation fofi€fined forisAuthoredBystarting from the nodéw\a.

access control mechanisms that utilize provenance datd. other words, only the _student submitter can access
Identification and specification of these abstractions fall the graded homework object. If the homework docu-

within the responsibility and capability of system and MeNt can be revised multiple times by different team
P y P y 4 member studentssAuthoredBycan be defined using

security architects. These will necessarily be applica-h d d h dByole :
tion specific. Using these named abstractions of depent- e dependency path patte(wasGeneratedfole

dency paths provides simple and effective methods fofr2d®)-used? (wasGeneratedByole : revisg.used *

retrieving provenance information. In our initial study on -WasGeneratedByle : submif.wasControlledBy

X . woyn Gk
provenance-aware group collaboration envwonment[12]}’Vhere ?”means 0 or 1 and _ means 0 or more.
A query that seeks to retrieve original submitter can

we showed a potential in how provenance data could be :
utilized for secure group collaboration. utilize the named dependenésAuthoredBy At the

Queries which utilize regular path expressions onSame time, a policy can make use of this information as

DAGs have been addressed by languages such Zcontrol unit for access control.

SPARQL [7] or PQL [1]. These queries can and often

do return results that comprise vertices of the underlying3 provenance-based Access Control
graph. Further computations or filterings on and evalua- (PBAC)

tions of these results can be used in the access decision

processes. Note that as provenance information chang%‘?
incrementally over time, the same query can produce dif
ferentresult vertices each time it is invoked. This can sig

aditional access control mechanisms often provide ac-
cess protection on data objects through predefined con-
- X . - ‘structs, e.g., roles in Role-based Access Control (RBAC)
nificantly mfluence how the computing or filtering pro- and clearances/classifications in Mandatory Access Con-
cesses are carried out. trol (MAC). PBAC aims to provide access control pro-

These dependency abstractions can also be used 3%ettion on data objects by utilizing the foundational con-

f:(;ntrol qnlt n p.O“C)l/ speﬁlflganonds. Tlhe mtera-\;?tlor? of struct of dependency path patterns found in provenance
Information retrieval methods and policy Specifications .5 a5 described in the previous section. Recently,

can enhance access evaluation both in effectiveness a have developed our initial access control models for

EXPressiveness. .) PBAC and identified a set of properties that are crucial
As shown in Figure 2, consider an online courseg,, yhe fndamental access control functionalities [13].
manage.ment system where a sample set Of. three While PBAC can support various access control capa-
transaction records consists of: a studehtsubmits bilities that are beyond those available in traditional ac-
such contextual information in this paper. cess controls, we recognize that in a realistic system de-

ployment, PBAC alone may not be sufficient. Combina-node is anchored. It is also worth mentioning that if a

tion with other access control mechanism such as RBAQjuery path pattern starts from an acting user and traverses
would bring out more capable access control capabilitiesthrough the associated object from the request, then the
Our grading example demonstrates this through the useule can be expressed in an equivalent way such that the

of user roles (e.g., student, professor). path pattern starts from that object itself. In this case,
In PBAC, provenance data can be used for at leasthere is nothing fundamentally beneficial in recogniz-
three purposesprovenance-based user authorization, ing such type of acting user dependencies. On the other

provenance-based action validation, andprovenance- hand, if we simply look up all acting user’s previous ac-
based policy retrieval. In our recent study, the devel- tions and requests history from the provenance data then
oped models incorporate provenance-based user auththis essentially similar to the existing concepts of higtor
rization and action validation as part of access evaluabased access control [6]. Nonetheless we feel that the
tion processes while provenance-based policy retrievapotential benefit of acting user dependencies should be
remains to be addressed. further explored.

By tracing provenance data, a system can evaluate OPM identified three direct dependency types and two
whether a requesting user has or has not done certaifidirect dependency types and recognized that some in-
activities on object(s) that are related to an access taidirect dependencies cannot be computed and have to
get object. Also, the system can evaluate whether th®€ identified manually. However, it captures direct
requested action can be performed on the target object gfependencies and bosystem-computable and user-
not. These evaluations are calleser authorizatiorand ~ declared indirect dependenciesin a single provenance
action validationrespectively, and are crucial processesgraph. System computable dependencies are derived
that should be evaluated for all access decisions. In thom the raw provenance data. In addition users can de-
example from section 2, if only a user who submitted theclare a specific dependency between entities using a de-
homework can read graded homework, the system needdndency name that is predefined by the system. In the
to check whether a requesting user has submitted thBerspective of access control, we believe these depen-
original homework of a graded version or not (user au-dencies should be treated separately as they are different
thorization). In the same example, if only a revised ver-in their semantics and characteristics. The system com-
sion can be graded, the system must check whether a taputability of dependency is a critical notion upon which
get object has been revised before regardless of the fagccess control models can be built. The potential inclu-
who is requesting the action (action validation). Thesesion of user-declared dependencies poses a different set
access evaluation processes provide enhanced capabfif concerns. The user-declared dependency may cause
ties of the system to support dynamic separation of dutie§onflict with the dependencies with the same name that
or work-flow controls. While several policy languages are computed using base provenance data. One approach
have been proposed in the provenance-related literatu® address this issue is by explicitly identifying the in-
[4, 11], they are not readily suitable for these two evalu-tentions of the declaration. For this, we believe there
ation processes. We need a flexible policy language thai"e at least three types of intentions: inclusive, exckisiv
can effectively specify and express these access contrgnd denying-intent dependencies. The inclusive-intent
enhancements. approves a user-declared named abstraction dependency

In addition, in case access control policy is not readinSUCh that the vertices reachable by this path is included in

available to a system, the system may trace provenané@e result vertices set opta_\ined by queries l_Jsin_g the same
data to retrieve necessary policies. For example, origina?@me dependency. Similarly, the exclusive-intent ap-
tor control requires to check policies of data originator. Proves the user-declared dependency and voids all other

By tracing provenance data, the system can discover ndlePendencies of the same type while the denying-intent
only the very initial originator but also all the contrib- VOidS the target path. Furthermore, PBAC also needs to
utors who contributed to any previous or later versions©S0Ive an authorization issue of who can declare what
of a target object from whom necessary access contrdfind Of dependencies and their intentions under which
policies can be retrieved. This provenance-based poncglrcqmstance. We believe th_e issues identified |n.th|s
retrieval should be accommodated in provenance-base?FCt'on should be further studied as they are essential for
access control for richer access controls. secure provenance-aware systems.

Provenance data naturally includes who performed ac-
tions on objects. Because of this, dependencies found i4d Provenance Access Control (PAC)
provenance data can be either dependency of a particular
object or a user. We call thesbject dependency and Similar to PBAC, PAC needs some other access con-
acting user dependency, respectively. Depends on the trols in play. Note that while this is true, and perhaps
dependency type, the query on provenance data choosesen PBAC can be used for PAC, this could be only a
which path patterns to be used and where the startingecondary concern of PAC. The main concern of PAC

includes unique issues that access to provenance datdll provide a solid foundation for simple but highly ef-

presents.

fective access controls in provenance-aware system and

In PAC, one of the most significant differences is thatthe discussion made in this paper is critical for com-
provenance data that users want to access are likely torehensive and comparative understanding of PAC and
be captured by tracing the provenance graph using someBAC.

meaningful dependency paths. Furthermore, users may

want to access the information that can be derived fronRefer ences

the vertices found as a result of the provenance graph
tracing. In this respect, we believe there need multi-layer [1]
access control evaluations with different granularities.

At its core, PAC utilizes the dependency path patterns[z]
found in provenance data as a unit for access request as
well as a control unit used in policy specification. We
believe the initial and most essential control should be [3]
made through requiring access control to the dependency
path patterns themselves. More precisely, access control
is done on the semantical named-abstractions of these
patterns that can be defined and assigned by system at?!
chitects. Such assignments can be stored and utilized as
a control unit for an access control solution enforced by
the system. For example, a student is either allowed or(s)
disallowed from asking for the identity of other students
who revised his paper. Here, a named abstraction such as
wasRevisedbgan be defined and used as a control unit.

Once the dependency path pattern is allowed, a finerl®!
grained control is necessary to determine how much of
the resulting information (vertices) should be allowed.
This requires vertex-level or type of vertex-level access [7]
control policies. For example, a student is allowed to
know some revisers but not all or she is allowed to know
departments information where the revisers belong but(8]
not individual revisers’ names. Graph redaction or sani-
tization processes can be performed on provenance data
to achieve this end [2, 5]. [9

In addition, if the requester want to access informa-
tion that are not available in provenance data but can be
derived from the resulting provenance information, how
to control access to dependency path patterns and ho{io]
much of the resulting provenance data should be allowed
for an access also have to be considered in PAC. We be-
lieve these issues are essential for PAC and necessary to
be investigated in depth.

[11]

5 Conclusion

In this paper, we identified essential concepts and issues
for access control models that utilize the intrinsic char-[12]
acteristic of provenance data that exhibit causality de-
pendencies. To help achieve simple and effective secu-
rity policy specification and access control administra- 13]
tion, we proposed named abstractions of meaningful patI[1
patterns found in provenance data. We identified two ac-
cess control-related concerns in provenance-aware sys-
tem, PAC and PBAC, and explored some issues that are
common to and unique to each. We believe our approach

Pqgl-path query languagehttp://www.eecs.harvard.edu/
syrah/pql/. Accessed: 03/31/2012.

BLAUSTEIN, B., CHAPMAN, A., SELIGMAN, L., ALLEN,
M. D., AND ROSENTHAL, A. Surrogate parenthood: protected
and informative graphsProc. VLDB Endow. 48 (May 2011),
518-525.

BRAUN, U., SHINNAR, A., AND SELTZER, M. Securing prove-
nance. InThe 3rd USENIX Workshop on Hot Topics in Security
(Berkeley, CA, USA, July 2008), USENIX HotSec, USENIX As-
sociation, pp. 1-5.

CADENHEAD, T., KHADILKAR , V., KANTARCIOGLU, M., AND
THURAISINGHAM, B. A language for provenance access con-
trol. In Proceedings of the first ACM conference on Data and
application security and privac2011), ACM, pp. 133-144.

CADENHEAD, T., KHADILKAR , V., KANTARCIOGLU, M., AND
THURAISINGHAM, B. Transforming provenance using redac-
tion. In Proceedings of the 16th ACM symposium on Access con-
trol models and technologig2011), ACM, pp. 93-102.

EDJLALI, G., ACHARYA, A., AND CHAUDHARY, V. History-
based access control for mobile code. Il ACM CONFER-
ENCE ON COMPUTER AND COMMUNICATIONS SECURITY
(1998), ACM Press, pp. 38—48.

HARRIS, S., AND SEABORNE, A. Spargl 1.1 query lan-
guage w3c working draft, jan 201Attp://www.w3.org/TR/
sparqlil-query/. Accessed: 03/31/2012.

HASAN, R., SON, R.,AND WINSLETT, M. Introducing secure
provenance: problems and challengesPloceedings of the 2007
ACM workshop on Storage security and survivabilltew York,
NY, USA, 2007), StorageSS '07, ACM, pp. 13-18.

] HEINIS, T., AND ALONSO, G. Efficient lineage tracking for

scientific workflows. InProceedings of the 2008 ACM SIGMOD
international conference on Management of d@taw York, NY,
USA, 2008), SIGMOD '08, ACM, pp. 1007-1018.

MOREAU, L., CLIFFORD, B., FREIRE, J., FUTRELLE, J., GL,

Y., GROTH, P., KWASNIKOWSKA, N., MILES, S., MISSIER,

P., MYERS, J., RALE, B., SMMHAN, Y., STEPHAN, E.,AND
DEN BusscHE J. V. The open provenance model core specifi-
cation (v1.1)Future Generation Computer Systems@72011),
743 — 756.

NI, Q., Xu, S., BERTINO, E., SANDHU, R., AND HAN, W.

An access control language for a general provenance model. |
Proceedings of the 6th VLDB Workshop on Secure Data Man-
agement(Berlin, Heidelberg, 2009), SDM '09, Springer-Verlag,
pp. 68-88.

PARK, J., NGUYEN, D., AND SANDHU, R. On data provenance
in group-centric secure collaboration. @ollaborative Comput-
ing: Networking, Applications and Worksharing (Collabtza
Com), 7th International Conference ¢oct. 2011), pp. 221 —230.

PARK, J., NGUYEN, D., AND SANDHU, R. A provenance-based
access control model. 1h0th Annual Conference on Privacy,
Security and TrusgJul. 2012), PST 2012, IEEE.

