
Dependency Path Patterns as the Foundation of Access Control in
Provenance-aware Systems

Dang Nguyen, Jaehong Park, and Ravi Sandhu
Institute for Cyber Security

University of Texas at San Antonio
dnguyen@cs.utsa.edu, jae.park@utsa.edu, ravi.sandhu@utsa.edu

Abstract

A unique characteristics of provenance data is that it
forms a directed acyclic graph (DAG) in accordance with
the underlying causality dependencies between entities
(acting users, action processes and data objects) involved
in transactions. Data provenance raises at least two dis-
tinct security-related issues. One is how to control ac-
cess to provenance data which we call Provenance Ac-
cess control (PAC). The other is Provenance-based Ac-
cess Control (PBAC) which focuses on how to utilize
provenance data to control access to data objects. Both
PAC and PBAC are built on a common foundation that
requires security architects to define application-specific
dependency path patterns of provenance data. Assigning
application-specific semantics to these path patterns pro-
vides the foundation for effective security policy spec-
ification and administration. This paper elaborates on
this common foundation of PAC and PBAC and identifies
some of the differences in how this common foundation
is applied in these two contexts.

1 Introduction

In a provenance-aware system, transaction information
is captured as provenance data. As commonly recog-
nized in the literature, provenance data forms a DAG
[9, 10]. Thereby provenance data captures dependency
relationships between the graph nodes which represent
the provenance entities of acting user, action process and
objects. In Open Provenance Model (OPM) [10], prove-
nance data captures causality dependencies (denoted as
edges) between these three types of entities (denoted as
nodes) involved in transactions. Provenance data can
form a chain of dependencies from which useful in-
formation such as pedigree, usage and versioning in-
formation can be extracted by tracing through depen-
dency chains. These dependencies are often express-
ible through regular path patterns constructed from graph
edges which can then serve as the foundation upon which

access control policies and mechanisms are built.
There are at least two access control-related concerns

in provenance-aware system. One is Provenance Access
Control (PAC) which focuses on how to control access
to provenance data. This issue has been studied exten-
sively in recent years [3, 8]. The other is Provenance-
based Access Control (PBAC) which focuses on how to
utilize provenance data to control access to underlying
data that are referred by the provenance data. The latter
has not received much attention in the literature but is an
important benefit of provenance data.

In this paper, we first discuss foundational concepts
for both PAC and PBAC by utilizing regular expression-
based path patterns of dependency edges found in prove-
nance data. To achieve simple and effective security pol-
icy specification and access control administration, we
propose named abstractions of meaningful path patterns
found in provenance data.

As shown in Figure 1, while both PAC and PBAC
share the same foundation, as they are different in their
goals they do present different issues to be addressed.
Based on our recent study where we developed our ini-
tial models for PBAC, we identify essential issues of
PBAC and PAC that need to be addressed for effective
access controls [13]. We identify the issues related to
PBAC and PAC and explore some potential solutions to
address these. We believe our approach will provide a
strong foundation for simple but effective access controls
in provenance-aware system.

2 Common Provenance Foundation

In a provenance-awaresystem, we capture a system event
of the form< acting user,action,ob jectList> as a trans-
action where an objectList contains one or more objects.
Storing all such transaction records provides the system
with base provenance data.1 From the raw provenance

1There is typically additional contextual information associated
with an event such as timestamp, location, etc. For simplicity, we omit



Figure 1: PBAC and PAC Comparison

data we can extract causality dependencies between the
entities that form the transaction records. Such causality
dependencies are captured and used as the basis of the
popular Open Provenance Model [10].

The OPM model identifies direct dependencies as well
as indirect dependencies between these entities. These
indirect dependencies often carry semantics that reflect
the application context of the system. Such semantics
can also be extracted from paths of arbitrary lengths
of dependencies. We believe capturing these seman-
tics through named abstractions of the associated de-
pendency path patterns provides a strong foundation for
access control mechanisms that utilize provenance data.
Identification and specification of these abstractions falls
within the responsibility and capability of system and
security architects. These will necessarily be applica-
tion specific. Using these named abstractions of depen-
dency paths provides simple and effective methods for
retrieving provenance information. In our initial study on
provenance-awaregroup collaboration environment [12],
we showed a potential in how provenance data could be
utilized for secure group collaboration.

Queries which utilize regular path expressions on
DAGs have been addressed by languages such as
SPARQL [7] or PQL [1]. These queries can and often
do return results that comprise vertices of the underlying
graph. Further computations or filterings on and evalua-
tions of these results can be used in the access decision
processes. Note that as provenance information changes
incrementally over time, the same query can produce dif-
ferent result vertices each time it is invoked. This can sig-
nificantly influence how the computing or filtering pro-
cesses are carried out.

These dependency abstractions can also be used as a
control unit in policy specifications. The interaction of
information retrieval methods and policy specifications
can enhance access evaluation both in effectiveness and
expressiveness.

As shown in Figure 2, consider an online course
management system where a sample set of three
transaction records consists of: a students1 submits

such contextual information in this paper.

Figure 2: A Grading Example in OPM Graph

a homework documenthwv1, later a team member
s2 revises the submitted homework intohwv2, which
becomeshwv3 after being graded by the professor
p1. Here we can identify a causality dependency path
between the graded homeworkhwv3 and the student
who submits the original version. Such a dependency
path can simply be captured in a regular path that can
be assigned an abstraction name such asisAuthoredBy.
A policy can then be constructed to reflect a rule that
only allows a users access to the homework object
hwv3 if s ∈ f indVertices(hwv3, isAuthoredBy) where
f indVerticesis a function that returns resulting vertices
from tracing provenance data using a path pattern
defined forisAuthoredBystarting from the nodehwv3.
In other words, only the student submitter can access
the graded homework object. If the homework docu-
ment can be revised multiple times by different team
member students,isAuthoredBycan be defined using
the dependency path pattern(wasGeneratedBy(role :
grade).used)?.(wasGeneratedBy(role : revise).used) ∗
.wasGeneratedBy(role : submit).wasControlledBy,
where “?” means 0 or 1 and “*” means 0 or more.

A query that seeks to retrieve original submitter can
utilize the named dependencyisAuthoredBy. At the
same time, a policy can make use of this information as
a control unit for access control.

3 Provenance-based Access Control
(PBAC)

Traditional access control mechanisms often provide ac-
cess protection on data objects through predefined con-
structs, e.g., roles in Role-based Access Control (RBAC)
and clearances/classifications in Mandatory Access Con-
trol (MAC). PBAC aims to provide access control pro-
tection on data objects by utilizing the foundational con-
struct of dependency path patterns found in provenance
data as described in the previous section. Recently,
we have developed our initial access control models for
PBAC and identified a set of properties that are crucial
for the fundamental access control functionalities [13].

While PBAC can support various access control capa-
bilities that are beyond those available in traditional ac-
cess controls, we recognize that in a realistic system de-

2



ployment, PBAC alone may not be sufficient. Combina-
tion with other access control mechanism such as RBAC
would bring out more capable access control capabilities.
Our grading example demonstrates this through the use
of user roles (e.g., student, professor).

In PBAC, provenance data can be used for at least
three purposes:provenance-based user authorization,
provenance-based action validation, andprovenance-
based policy retrieval. In our recent study, the devel-
oped models incorporate provenance-based user autho-
rization and action validation as part of access evalua-
tion processes while provenance-based policy retrieval
remains to be addressed.

By tracing provenance data, a system can evaluate
whether a requesting user has or has not done certain
activities on object(s) that are related to an access tar-
get object. Also, the system can evaluate whether the
requested action can be performed on the target object or
not. These evaluations are calleduser authorizationand
action validationrespectively, and are crucial processes
that should be evaluated for all access decisions. In the
example from section 2, if only a user who submitted the
homework can read graded homework, the system needs
to check whether a requesting user has submitted the
original homework of a graded version or not (user au-
thorization). In the same example, if only a revised ver-
sion can be graded, the system must check whether a tar-
get object has been revised before regardless of the fact
who is requesting the action (action validation). These
access evaluation processes provide enhanced capabili-
ties of the system to support dynamic separation of duties
or work-flow controls. While several policy languages
have been proposed in the provenance-related literature
[4, 11], they are not readily suitable for these two evalu-
ation processes. We need a flexible policy language that
can effectively specify and express these access control
enhancements.

In addition, in case access control policy is not readily
available to a system, the system may trace provenance
data to retrieve necessary policies. For example, origina-
tor control requires to check policies of data originator.
By tracing provenance data, the system can discover not
only the very initial originator but also all the contrib-
utors who contributed to any previous or later versions
of a target object from whom necessary access control
policies can be retrieved. This provenance-based policy
retrieval should be accommodated in provenance-based
access control for richer access controls.

Provenance data naturally includes who performed ac-
tions on objects. Because of this, dependencies found in
provenance data can be either dependency of a particular
object or a user. We call theseobject dependency and
acting user dependency, respectively. Depends on the
dependency type, the query on provenance data chooses
which path patterns to be used and where the starting

node is anchored. It is also worth mentioning that if a
query path pattern starts from an acting user and traverses
through the associated object from the request, then the
rule can be expressed in an equivalent way such that the
path pattern starts from that object itself. In this case,
there is nothing fundamentally beneficial in recogniz-
ing such type of acting user dependencies. On the other
hand, if we simply look up all acting user’s previous ac-
tions and requests history from the provenance data then
it is essentially similar to the existing concepts of history-
based access control [6]. Nonetheless we feel that the
potential benefit of acting user dependencies should be
further explored.

OPM identified three direct dependency types and two
indirect dependency types and recognized that some in-
direct dependencies cannot be computed and have to
be identified manually. However, it captures direct
dependencies and bothsystem-computable and user-
declared indirect dependencies in a single provenance
graph. System computable dependencies are derived
from the raw provenance data. In addition users can de-
clare a specific dependency between entities using a de-
pendency name that is predefined by the system. In the
perspective of access control, we believe these depen-
dencies should be treated separately as they are different
in their semantics and characteristics. The system com-
putability of dependency is a critical notion upon which
access control models can be built. The potential inclu-
sion of user-declared dependencies poses a different set
of concerns. The user-declared dependency may cause
conflict with the dependencies with the same name that
are computed using base provenance data. One approach
to address this issue is by explicitly identifying the in-
tentions of the declaration. For this, we believe there
are at least three types of intentions: inclusive, exclusive
and denying-intent dependencies. The inclusive-intent
approves a user-declared named abstraction dependency
such that the vertices reachable by this path is included in
the result vertices set obtained by queries using the same
name dependency. Similarly, the exclusive-intent ap-
proves the user-declared dependency and voids all other
dependencies of the same type while the denying-intent
voids the target path. Furthermore, PBAC also needs to
resolve an authorization issue of who can declare what
kind of dependencies and their intentions under which
circumstance. We believe the issues identified in this
section should be further studied as they are essential for
secure provenance-aware systems.

4 Provenance Access Control (PAC)

Similar to PBAC, PAC needs some other access con-
trols in play. Note that while this is true, and perhaps
even PBAC can be used for PAC, this could be only a
secondary concern of PAC. The main concern of PAC

3



includes unique issues that access to provenance data
presents.

In PAC, one of the most significant differences is that
provenance data that users want to access are likely to
be captured by tracing the provenance graph using some
meaningful dependency paths. Furthermore, users may
want to access the information that can be derived from
the vertices found as a result of the provenance graph
tracing. In this respect, we believe there need multi-layer
access control evaluations with different granularities.

At its core, PAC utilizes the dependency path patterns
found in provenance data as a unit for access request as
well as a control unit used in policy specification. We
believe the initial and most essential control should be
made through requiring access control to the dependency
path patterns themselves. More precisely, access control
is done on the semantical named-abstractions of these
patterns that can be defined and assigned by system ar-
chitects. Such assignments can be stored and utilized as
a control unit for an access control solution enforced by
the system. For example, a student is either allowed or
disallowed from asking for the identity of other students
who revised his paper. Here, a named abstraction such as
wasRevisedbycan be defined and used as a control unit.

Once the dependency path pattern is allowed, a finer
grained control is necessary to determine how much of
the resulting information (vertices) should be allowed.
This requires vertex-level or type of vertex-level access
control policies. For example, a student is allowed to
know some revisers but not all or she is allowed to know
departments information where the revisers belong but
not individual revisers’ names. Graph redaction or sani-
tization processes can be performed on provenance data
to achieve this end [2, 5].

In addition, if the requester want to access informa-
tion that are not available in provenance data but can be
derived from the resulting provenance information, how
to control access to dependency path patterns and how
much of the resulting provenance data should be allowed
for an access also have to be considered in PAC. We be-
lieve these issues are essential for PAC and necessary to
be investigated in depth.

5 Conclusion

In this paper, we identified essential concepts and issues
for access control models that utilize the intrinsic char-
acteristic of provenance data that exhibit causality de-
pendencies. To help achieve simple and effective secu-
rity policy specification and access control administra-
tion, we proposed named abstractions of meaningful path
patterns found in provenance data. We identified two ac-
cess control-related concerns in provenance-aware sys-
tem, PAC and PBAC, and explored some issues that are
common to and unique to each. We believe our approach

will provide a solid foundation for simple but highly ef-
fective access controls in provenance-aware system and
the discussion made in this paper is critical for com-
prehensive and comparative understanding of PAC and
PBAC.

References

[1] Pql-path query language.http://www.eecs.harvard.edu/
syrah/pql/. Accessed: 03/31/2012.

[2] BLAUSTEIN, B., CHAPMAN , A., SELIGMAN , L., ALLEN ,
M. D., AND ROSENTHAL, A. Surrogate parenthood: protected
and informative graphs.Proc. VLDB Endow. 4, 8 (May 2011),
518–525.

[3] BRAUN, U., SHINNAR , A., AND SELTZER, M. Securing prove-
nance. InThe 3rd USENIX Workshop on Hot Topics in Security
(Berkeley, CA, USA, July 2008), USENIX HotSec, USENIX As-
sociation, pp. 1–5.

[4] CADENHEAD, T., KHADILKAR , V., KANTARCIOGLU, M., AND

THURAISINGHAM , B. A language for provenance access con-
trol. In Proceedings of the first ACM conference on Data and
application security and privacy(2011), ACM, pp. 133–144.

[5] CADENHEAD, T., KHADILKAR , V., KANTARCIOGLU, M., AND

THURAISINGHAM , B. Transforming provenance using redac-
tion. In Proceedings of the 16th ACM symposium on Access con-
trol models and technologies(2011), ACM, pp. 93–102.

[6] EDJLALI , G., ACHARYA , A., AND CHAUDHARY, V. History-
based access control for mobile code. InIN ACM CONFER-
ENCE ON COMPUTER AND COMMUNICATIONS SECURITY
(1998), ACM Press, pp. 38–48.

[7] HARRIS, S., AND SEABORNE, A. Sparql 1.1 query lan-
guage w3c working draft, jan 2012.http://www.w3.org/TR/
sparql11-query/. Accessed: 03/31/2012.

[8] HASAN, R., SION, R., AND WINSLETT, M. Introducing secure
provenance: problems and challenges. InProceedings of the 2007
ACM workshop on Storage security and survivability(New York,
NY, USA, 2007), StorageSS ’07, ACM, pp. 13–18.

[9] HEINIS, T., AND ALONSO, G. Efficient lineage tracking for
scientific workflows. InProceedings of the 2008 ACM SIGMOD
international conference on Management of data(New York, NY,
USA, 2008), SIGMOD ’08, ACM, pp. 1007–1018.

[10] MOREAU, L., CLIFFORD, B., FREIRE, J., FUTRELLE, J., GIL ,
Y., GROTH, P., KWASNIKOWSKA, N., MILES, S., MISSIER,
P., MYERS, J., PLALE , B., SIMMHAN , Y., STEPHAN, E., AND

DEN BUSSCHE, J. V. The open provenance model core specifi-
cation (v1.1).Future Generation Computer Systems 27, 6 (2011),
743 – 756.

[11] NI , Q., XU, S., BERTINO, E., SANDHU , R., AND HAN , W.
An access control language for a general provenance model. In
Proceedings of the 6th VLDB Workshop on Secure Data Man-
agement(Berlin, Heidelberg, 2009), SDM ’09, Springer-Verlag,
pp. 68–88.

[12] PARK , J., NGUYEN, D., AND SANDHU , R. On data provenance
in group-centric secure collaboration. InCollaborative Comput-
ing: Networking, Applications and Worksharing (Collaborate-
Com), 7th International Conference on(oct. 2011), pp. 221 –230.

[13] PARK , J., NGUYEN, D., AND SANDHU , R. A provenance-based
access control model. In10th Annual Conference on Privacy,
Security and Trust(Jul. 2012), PST 2012, IEEE.

4


