
Proc. of the 14th NIST-NCSC National Computer Security Conference, Washington D.C.,

October 1991, pages 2-11

A DISTRIBUTED IMPLEMENTATION

OF THE TRANSFORM MODEL

Ravi S. Sandhu and Gurpreet S. Suri

Center for Secure Information Systems
and

Department of Information and Software Systems Engineering
George Mason University, Fairfax, VA 22030-4444

ABSTRACT The Transform access-control model is based on the concept of transformation of
access rights. It has previously been shown that Transform uni�es a number of diverse access control
mechanisms such as ampli�cation, copy ags, separation of duties and synergistic authorization. It
has also been shown that Transform has an e�cient algorithm for safety analysis of the propagation
of access rights (i.e., the determination of whether or not a given subject can ever acquire access to
a given object). In this paper we propose a distributed implementation of Transform. Our design
is based on capabilities with identities of subjects buried in them. This ensures unforgeability of
capabilities as well as enables enforcement of \mandatory" controls on propagation of capabilities
from one subject to another. The design provides for immediate, selective, partial and complete
revocation on a temporary as well as permanent basis.

Keywords: Distributed Systems, Secure Architectures, Capabilities

1 INTRODUCTION

The need for access controls arises in any computer system that provides for controlled sharing
of information and other resources among multiple users. Access control models (or protection
models) provide a framework for specifying, analyzing and implementing security policies in multi-
user systems. These models are typically de�ned in terms of the well-known abstractions of subjects,
objects and access rights with which we assume the reader is familiar. A wide variety of access-
control models have been described in the literature [3, 4, 10, 12, 16, for instance]. Unfortunately
very few have been implemented or have even inuenced implementations of actual systems.�

In this paper we take a step towards closing this gap between theory and practise. Our principal
contribution is the outline of a distributed implementation of the recently proposed Transform
model [17]. Transform derives its name from its central concept of transformation of access rights.
The idea is that access rights get transformed as they are propagated from one subject to another,
e.g., a security-o�cer who has the review right for a document may propagate the release right for
the document to the document's author. It has previously been shown [17] that Transform elegantly
uni�es a number of seemingly di�erent access control mechanisms such as ampli�cation [5], copy
ags [12], separation of duties [4] and synergistic authorization [14]. It has also been shown [17] that
there are e�cient algorithms for the safety problem in Transform (i.e., the determination of whether
or not a given subject can ever acquire access to a given object).

�The notable exception is the Bell-LaPadulamodel [3] whose strong inuence on military systems has been formally
incorporated in evaluation criteria [8].

c Ravi S. Sandhu and Gurpreet S. Suri, 1991



Thus Transform incorporates practically useful expressive power while allowing for safety analy-
sis. Transform is actually a special case of the Schematic Protection Model (SPM) [16]. Like Trans-
form, SPM also exhibits strong safety properties. This is in contrast to the weak safety properties
of the access-matrix model commonly known as HRU [10]. Both HRU and SPM have undecidable
safety in general [10, 18]. In HRU safety becomes undecidable under very weak assumptions, notably
the bi-conditional monotonic case of [11]. On the other hand safety in SPM remains decidable under
very strong assumptions, notably the acyclic attenuating case of [16]. In particular Transform falls
outside the known decidable cases for HRU but well within the known decidable cases for SPM [17].

Our implementationproposal for Transform is strongly inuenced by the identity-based capability
architecture proposed by Gong [9]. The concept of embedding the identity of a subject in a capability
in distributed systems has been known for some time [6]. It ensures that capabilities cannot be
forged or propagated from one subject to another without intervention of trusted software. Gong's
architecture is based on the familiar client-server model of services in a distributed system and
includes mechanisms for revocation which were missing in earlier proposals such as [6]. We have
extended Gong's proposal to accommodate Transform. In particular the concept of strongly typed
subjects and objects, which is essential to Transform, has been incorporated.

The paper is organized as follows. Section 2 reviews the Transform model to the extent required
for our objectives in this paper. Section 3 discusses distributed capability-based architectures in
general and motivates our choice of building on Gong's approach. Section 4 describes our proposed
implementation for Transform. The protocols involved in creation, propagation and revocation are
presented. An example of the implementation is presented in section 5. The paper is concluded in
section 6 with a discussion and proposals for future research.

2 THE TRANSFORM MODEL

The Transform model [17] was obtained by identifying the common foundation underlying a variety
of di�erent access-control mechanisms proposed in the literature. These include ampli�cation [5],
copy ags [12], separation of duties [4] and synergistic authorization [14]. Considered in isolation
these mechanisms are diverse and were largely proposed independently of each other. They all
appear to be desirable and should be supported by any system which claims generality. However
simply lumping them together results in a complex system with many unrelated mechanisms.

Transform introduces the unifying concept of transformation of rights which can occur in two
di�erent ways.

1. Self transformation or internal transformation allows a subject who possesses certain rights
for an object to obtain additional rights for that object.

2. Grant transformation or external transformation occurs in the granting of access rights by one
subject to another. The general idea is that possession of a right for an object by a subject
allows that subject to give some other right for that object to another subject.

In addition Transform is based on the strong typing of subjects and objects, i.e., subjects and objects
are classi�ed into types when they are created and their type cannot change thereafter. Much of the
power of transformation derives from predicating the ability to transform on the types of subjects
and objects involved.

A security policy is stated in Transform by specifying the following (�nite) components.

1. Disjoint sets of subject types TS object types TO and rights R.

2. A can-create function cc : TS!2TO.



3. Create-rules cr : TS�TO!2R.

4. An internal transformation function itrans :TS�TO� 2R! 2R.

5. A grant transformation function grant :TS�TS�TO� 2R!2R.

The notation 2X denotes the power set of X, i.e., the set of all subsets of X. These components of a
Transform speci�cation are explained in turn below.

The sets TS and TO de�ne the subject types and object types respectively. For example subject
types might be faculty, student, guest, etc., and object types might be �le, mail-message, bulletin-
board, etc. R de�nes the set of rights or privileges in the system, e.g., read, write, execute, etc.

There are two issues involved in object creation.y Firstly subjects need authorization to create
objects. Secondly the rights obtained as a result of creation must also be speci�ed. Transform
authorizes creation by means of the can-create function cc. The interpretation of

cc(u) = fo1,o2,: : : ,okg

is that a subject of type u is authorized to create objects of type o1 and objects of type o2, etc. The
e�ect of creation is de�ned by create-rules. The interpretation of

cr(u, o) = fr1,r2,: : : ,rpg

is that when a subject U of type u creates an object O of type o the creator U obtains the rights r1,
r2, : : : , rp for O. For example if cc(user) = f�leg and cr(user,�le) = fowng the creator of a �le gets
the own right for it. For readability we will usually drop the set parenthesis around singleton sets,
for instance by writing cc(user) = �le and cr(user,�le) = own.

Authorization for internal transformation is speci�ed by the internal transformation function
itrans. The interpretation of

itrans(u, o, fx1,: : : ,xng) = fy1,: : : ,ymg

is that a subject of type u who has all the xi rights speci�ed on the left hand side for an object of
type o can obtain the rights y1, : : : , ym for that object by internal transformation. For example, the
policy that possession of the w (write) privilege for a �le implies possession of the r (read) privilege
is easily stated as follows.z

itrans(user, �le, w) = r

Another example of internal transformation occurs in situations described as synergistic authoriza-
tion in [14]. For instance consider a situation where a scientist (abbreviated as sci) needs approvals
from a security o�cer and a patent o�cer before he can release a document (abbreviated as doc) for
publication. Say these two approvals are respectively signi�ed by possession of the as and ap rights.
We can express this policy as follows.

itrans(sci, doc, fown, as, apg) = release

That is, a scientist who owns a document and possesses the two approvals can acquire the release
right for that document.

Grant transformations are authorized by the grant transformation function grant . The interpre-
tation of

yThere must be provision for creation of subjects in any realistic system. In practise creation of subjects is often
strictly controlled by some distinguished system administrator or security o�cer. Such creation can be considered as
occurring outside the normal scope of the system.

zIn multilevel systems this policy would amount to prohibiting write-up.



grant(u, v, o, fx1,: : : ,xng) = fy1,: : : ,ymg

is that a subject of type u who has all the xi rights speci�ed on the left hand side for an object of
type o can grant one or more of the rights y1, : : : , ym for that object to a subject of type v. A
common example of grant transformation occurs with the copy ag c which controls whether the
granted privilege can itself be further granted or not. For instance the following

grant(user, user, �le, xc) = fxc, xg
grant(user, user, �le, x) = �

de�nes the (unlimited) copy ag. Here a user who has the xc privilege for a �le can grant the xc
privilege or the x privilege to another user, whereas a user with the x privilege for the �le cannot
grant x any further. Other variations of the copy ag, such as 1-step or n-step copy ags can be
similarly de�ned [17].

The expressive power of Transform is illustrated by the following policy speci�cation.

cc(sci) = doc
cr(sci, doc) = fown, readg

grant(sci, security-o�cer, doc, own) = review
grant(sci, patent-o�cer, doc, own) = review

grant(security-o�cer, sci, doc, review) = as
grant(patent-o�cer, sci, doc, review) = ap

itrans(sci, doc, fown, as, apg) = release

The �rst two equations specify that (i) a scientist can create documents, and (ii) the scientist who
creates a document obtains the own and read privileges for it.x The next two equations specify
that a scientist who owns a document can ask for it to be reviewed by a security-o�cer and by a
patent-o�cer. These o�cers can respectively return the as and ap rights to the scientist signifying
the respective approvals. The scientist can then release the document. This example is further
elaborated in section 5.

This completes our description of the Transform model. Further motivation for Transform and
additional examples of policies are given in [17].

3 DISTRIBUTED CAPABILITY SYSTEMS

Capability-based architectures have had a strong appeal ever since the concept was �rst proposed [7].
They are viewed as providing a sound and common basis for providing both reliability and security.
In the context of conventional centralized systems a number of such machines have been built [13].
Some have even achieved moderate commercial success. Nevertheless today's popular CPUs are not
capability based. In retrospect one can argue that using capabilities to solve the memory protection
problem is an overkill. The marginal advantages of capabilities over memory segmentation and
protection rings (which are available in the latest generation of microprocessors such as the Intel
80386) do not justify the extra costs and performance penalties. In other words the initial application
of capabilities was at too low a level.

It is expected by many researchers [15, for instance] that in the 1990s distributed operating
systems will dominate the computing environment. These systems will appear to users as a single

xOnce a document has been created it can no longer be written. This is necessary in order to freeze the contents
of the document. If revisions are required a new version of the document needs to be created.



centralized system with complete location transparency. To achieve this, reliability and security
must be addressed as part of the basic design of these systems. Attempts to graft security features
later in the design cycle will surely fail, much as they are failing in conventional centralized systems.
The capability-based framework continues to o�er an attractive approach to these problems. In
a distributed operating system capabilities are introduced at a much higher level than memory
addressing. Capabilities need to be incorporated into the remote procedure call mechanism rather
than the memory addressing mechanism. This o�ers the hope that the additional overhead will not
severely degrade performance. Capabilities can moreover be integrated into the basic client-server
structure of distributed systems to provide transparency.

There are three basic issues which must be confronted by the designer of a distributed capability-
based system. These issues are complicated relative to conventional centralized capability-based
systems because capabilities are dispersed in individual workstations and can no longer be assumed
to be under tight control of a security kernel.

1. Unforgeability. It must be guaranteed that capabilities cannot be modi�ed or manufactured
by subjects. This requires some form of cryptographic sealing.

2. Propagation. It must be guaranteed that capabilities cannot be copied from one user to another.
This requires some means of embedding the identity of a subject in a capability.

3. Revocation. It must be guaranteed that capabilities which have been granted can be withdrawn
or revoked in a timely manner. This requires some means of invalidating existing capabilities
and accounting for cascaded revocation.

Various solutions to one or more of these problems have been proposed in the literature. For
instance Amoeba [15] uses \sparse capabilities" with cryptographic protection to ensure unforge-
ability. Unfortunately Amoeba does not address capability propagation or revocation. Davies [6]
discusses mechanisms to embed the identity of a subject in a capability. This ensures that capa-
bilities cannot be forged or propagated from one subject to another without intervention of trusted
software. Davies, however, does not address the revocation issue. Gong's proposed architecture [9]
is the �rst attempt to address all three issues in a distributed context. It is based on the familiar
client-server model of services in distributed systems and therefore is a suitable foundation for us to
build upon. However, Gong does not incorporate the notion of types which is basic to Transform.
His architecture therefore needs to be extended for this purpose.

4 IMPLEMENTATION OF TRANSFORM

We now describe a distributed capability-based implementation of the Transform model. We assume
that objects are encapsulated within object servers. The basic computation model is that of remote
procedure calls involving the following sequence of events: (i) a client sends a request to a server to
manipulate one or more objects, (ii) the server accepts and services the request, and (iii) the server
sends back a reply. The object server runs on a trusted host which guarantees that the server cannot
be bypassed. For ease of exposition we visualize each object server as running on a separate host.
However, we allow multiple object servers on the same trusted host provided the security kernel on
the host can enforce separation among these servers. If we have su�cient con�dence in the security
kernel we can also allow untrusted clients to coexist with object servers on a single trusted host.

Each object server acts as the reference monitor (or access mediator) for the set of objects it
manages. In other words the object server is part of the trusted computing base (TCB). The object
server is responsible not only for access mediation but also for ensuring semantic correctness of the
objects with respect to the abstract operations exported from the server. The object server itself



has the ability to access all objects within its control. We emphasize that the object server is not a
subject in the system but is rather a part of the TCB.

For simplicity, we require that each object server manage exactly one type of object. In practise
this rule would probably be relaxed to allow a single server to manage multiple object types, par-
ticularly if they are closely related. On the other hand the same type of object may be managed by
multiple object servers. For instance a given system may have numerous �le servers. An individual
�le server manages some subset of the total collection of �les in the system. We assume there is no
replication of �les, i.e., each �le resides at exactly one �le server.

Finally we assume there is an access decision facility (ADF) which can be consulted by object
servers to determine the security policy. In the context of Transform the ADF will be consulted by
object servers for �nding out appropriate values of cc, cr , grant and itrans. Pieces of the ADF may
actually reside at each object server while other pieces are remotely accessed. The reason for this is
to allow quick local access to well-established and relatively static aspects of the policy while at the
same time allowing for new types etc. to be introduced.

4.1 Identity and Type

Each subject or object in the system has a globally unique identi�er. Each subject or object also
has a unique type which is determined when that subject or object is created. Thereafter the type
cannot change. We assume the type of a subject or object is embedded in its identi�er. Henceforth
we refer to a subject identi�er by sid and a object identi�er by oid. These identi�ers have the
following structure.

type identi�er

The type �eld denotes the type of the object while the identi�er �eld uniquely identi�es each subject
or object among instances of the same type. Note that sid's and oid's can be generated at will by
users.

4.2 Capability Seeds

A capability seed is a secret random number associated with each oid. The seed is known only to
the object server which manages the object identi�ed by oid. We can visualize this association by
the following pair.{

oid seed

The purpose of the seed is to facilitate revocation and prevent against replay of revoked capabilities,
as will be discussed later.

4.3 Capabilities

A capability has the following structure.

oid rights seal

where the seal is computed using a publicly known one-way function f as follows.

{Gong [9] calls this pair an \internal capability." We feel the name \internal capability" is a misnomer and prefer
to call the secret random number a capability seed because its principal use is in cryptographically sealing capabilities
exported from the object server.



seal = f(sid, oid, rights, seed)

The oid and rights components of a capability are exactly as one would expect even in a conventional
centralized system. The seal cryptographically embeds the subject identi�er (sid) in the capability
using the capability seed for that purpose.

4.4 Access Mediation

Access mediation must be incorporated into the RPC (Remote Procedure Call) mechanism of the
client-server architecture. The object server must authenticate the source of every RPC request.
For this purpose, we assume that each subject has the means to place its digital signature on every
RPC communication to a object server. The RPC also carries within it the relevant capabilities
for the operation being requested. The object server �rst veri�es that the sid on each capability is
authenticated by the digital signature, otherwise the RPC is immediately rejected. Then the object
server looks up the capability seed for oid, computes the seal using the above formula and compares
the computed seal with the seal submitted by the subject. If these match the capability is known
to be authentic and the operation is performed provided the rights are su�cient to authorize it.

Digital signatures for the reverse communication from object servers to subjects can also be
incorporated. The details of these protocols are beyond the scope of this paper and can readily
be found in the standard literature [1, for instance]. We envisage a implementation similar to the
interface function box of Amoeba [15] which are placed between each processor module and the
network.

4.5 Creation

For object creation the object server consults the access decision facility (ADF) to determine whether
or not such creation is authorized by cc(sid.type). If the creation is authorized a new object is created
with a new oid and a new capability seed. The rights to be entered on the capability are determined
from cr(sid.type,oid.type). Finally the capability is sealed and returned to the subject.

4.6 Internal Transformation

Let subject sid request the following internal transformation for object oid.

itrans(u, o, fx1,: : : ,xng) = fy1,: : : ,ymg

The object server must, of course, be a manager for objects of type o. The server checks that
sid.type=u and oid.type=o. It also checks that the RPC request includes a capability (or capability
list) for object oid with the rights x1, : : : , xn. This check is performed by comparing the computed
seal with the seal on the capability as discussed in section 4.4. Finally the object server creates a
new capability sealed for sid with rights x1, : : : , xn y1, : : : , ym. This capability is returned to the
subject sid. Note that the original capability, with rights x1, : : : , xn continues to be valid. It is
however redundant and can be discarded by the subject.

4.7 Grant Transformation

Let subject sid1 request the following grant transformation for object oid to subject sid2.

grant(u, v, o, fx1,: : : ,xng) = fy1,: : : ,ymg



The object server should again be a manager for objects of type o. The server checks that sid1.type=u,
sid2.type=v and oid.type=o. It also checks that the RPC request includes a capability (or capability
list) for object oid with the rights x1, : : : , xn. If the check is successful the object server creates a
new capability sealed for sid2 with rights y1, : : : , ym. This capability is returned to the subject sid1
who can then pass it on to subject sid2.

4.8 Revocation

Revocation has always been a problem in capability-based systems. In distributed systems the
problem is further compounded, since the subjects are completely autonomous with no central-
ized authorities enforcing security. There are various issues against which the implementation of
revocation can be compared [19].

1. Partial or Complete: Whether it is possible to revoke a speci�c right or whether all rights in
a capability have to be revoked to get any sort of denial of access in the system?

2. Immediate or Delayed: If the implementation executes revocation immediately or it comes into
force only the next time the subject tries to access the object?

3. Selective or General: Does the revocation process a�ect all users or a select group of users
having access over the object?

4. Temporary or Permanent: Is access is to be denied permanently or if once it is revoked, is it
retrievable?

We provide revocation by a revocation list and a count �eld appended to the seed as shown
below.

oid seed count revocation list

The revocation list contains entries of sids for whom the rights for that particular oid have been
revoked. The list speci�es for each sid which of its rights have been revoked. When the validity
of the capability is checked during access mediation, the revocation lists are checked in parallel as
well. Since access mediation is performed on every operation revocation is immediate. The owner
of an oid always has the option to revoke partially or completely the capability of a sid for that oid.
Partial or complete revocation of a sid in no way interferes with the access rights of other sids.

The count is a measure that determines the number of valid capabilities for that seed. The count
is incremented during creation and propagation, but decremented during complete revocation (i.e.
when all the rights of a subject for that object are revoked). Temporary or permanent revocation
is carried out, depending on the value of the count. If the size of the revocation list becomes a
signi�cant fraction of the count the object server goes ahead with permanent revocation. The server
deletes the seed associated with that oid, computes a new one and sends new recomputed capabilities
to other associated sids. This of course requires that the object server keep a log of propagation of
capabilities. However if the size of the revocation list is small in comparison to the count, the object
server goes ahead with temporary revocation. In this case the object server appends the revocation
information onto the revocation list associated with that oid.

5 EXAMPLE

The scientist and the security-o�cer example discussed earlier in section 2 is illustrated here using
the protocols described above. A scientist (say Joe) creates a document (say SDI) on his workstation,



but before he can release it he needs to have approval from a security-o�cer (say Sam) and a patent-
o�cer (say Pat). The following is the sequence of protocols needed to complete the task.

1. Joe asks the server to create a document called SDI. This RPC is made by the kernel of
Joe's workstation to the appropriate daemon responsible for the server's actions. The RPC
contains the action requested, the sid, oid, the types of sid and oid involved, and the actual
data to be stored in the created document; all signed under Joe's digital signature. In this
case the sid=sci.Joe and the oid=doc.SDI. Joe and SDI are respectively of type sci and doc.
On receiving the request, server checks the digital signature to authenticate Joe. The server
then checks the cc policy, taking into account the sid, oid and their types provided. If it is
in the a�rmative it checks the cr policy, by which it determines what rights Joe gets for the
document he is creating. The server then pulls out the seed say seed1 for that document and
stores it in its internal tables with the following association:

doc.SDI seed1

Then the object server manufactures the following capability and sends it to Joe (strictly
speaking to the kernel of Joe's workstation):

doc.SDI own, read seal1

where seal1 = f(sci.Joe, doc.SDI, fown, read, writeg, seed1)

2. Now Joe is ready to release the document. His workstation sends the propagation requests to
the server on his behalf. The RPC looks like this:

grant(Sam, review) doc.SDI own, read seal1

The host when framing the RPC, appends to it the capability it possesses for SDI and signs
the request under Joe's digital signature. The server on receiving the request veri�es the
digital signature and authenticates Joe. Then the server checks the validity of the capability
by retrieving the seed of SDI, i.e. seed1, from its internal tables, and computing the seal using
the one way function f. Then it computes seal1 from the capability provided by Joe and if
the two seals match the validity of the capability is con�rmed. The request is then checked
against the grant policy of Transform. When the server determines Joe has su�cient rights,
i.e. own, for SDI, it authorizes the grant. The server then computes the capability for the
security-o�cer Sam to have the review right for SDI. The capability

doc.SDI review seal2

where seal2 = f(security-o�cer.Sam, doc.SDI, review, seed1)

is sent to Joe. Joe then forwards this capability to Sam. Sam now has the capability for
oid=doc.SDI with the review right. With this capability he can only access the document to
review it. If he tries to get additional rights by internal transformation, the server will turn
down his request because when it will check the set of rights he possesses, namely review,
which is insu�cient set for it to grant him additional rights. Sam now reviews the document,
and if he approves of the action to release SDI he requests the server to grant Joe the approval
(as) right.

grant(sci.Joe, as) doc.SDI review seal2



The server computes the following capability and sends it back to Sam who in turn sends it
to Joe.

doc.SDI as seal3

where seal3 = f(sci.Joe, doc.SDI, as, seed1)

3. Exact similar protocol steps are executed to get the approval (ap) from the patent-o�cer Pat.
At the end of this session Joe possesses the following capability.

doc.SDI ap seal4

where seal4 = f(sci.Joe, doc.SDI, ap, seed1)

4. Now the scientist Joe possesses the capabilities giving him the approval to get the release right
by internal transformation. Joe presents these capabilities to the server with the following
request:

itrans(release)

doc.SDI own, read seal1

doc.SDI as seal3

doc.SDI ap seal4

Like before, the server carries out the authentication and the validity tests on the capabilities
presented to it by Joe. Then the server checks that Joe has the rights own, as and ap for SDI
which are required to get the additional release right. The server sends him a new capability:

doc.SDI own, read, as, ap, release seal5

where seal5 = f(sci.Joe, doc.SDI, fown, read, as, ap, releaseg, seed1)

This completes the example.

6 CONCLUSION

In this paper we have proposed a distributed capability-based implementation for the Transform
model. The system is based on object servers who act as access-mediators on any attempt by a
subject to create, use, acquire, grant or revoke capabilities. We assume a digital signature facility
which authenticates the originating subject on each remote procedure call. The capabilities are cryp-
tographically sealed to tie together the identity of the subject, the identity of the object, the rights
and a secret cryptographic seed. Strong typing of subjects and objects has also been incorporated.

Our long term goal is to arrive at a practical distributed implementation for SPM (and its recent
extension called ESPM [2]). Our �rst step towards this goal is the implementation of Transform
described here. Transform is a su�ciently interesting and non-trivial special case of SPM. At the
same time Transform is a su�ciently simpli�ed version of SPM for which a realistic near-term
implementation can be contemplated.

Acknowledgment

We are indebted to Howard Stainer and Sylvan Pinsky for their support and encouragement, making
this work possible. The opinions expressed in this paper are of course our own and should not be
taken to represent the views of these individuals.



References

[1] Akl, S.G. \Digital Signatures: A Tutorial Survey." Computer 16(2):15-24 (1983).

[2] Ammann, P. and Sandhu, R.S. \Extending the Creation Operation in the Schematic Protection
Model." Proc. Sixth Annual Computer Security Applications Conference, 340-348 (1990).

[3] Bell, D.E. and LaPadula, L.J. \Secure Computer Systems: Uni�ed Exposition and Multics
Interpretation." MTR-2997, Mitre, Bedford, Massachusetts (1975).

[4] Clark, D.D. and Wilson, D.R. \A Comparison of Commercial and Military Computer Security
Policies." IEEE Symposium on Security and Privacy 184-194 (1987).

[5] Cohen, E. and Je�erson, D. \Protection in the Hydra Operating System." 5th ACM Symposium

on Operating Systems Principles, 141-160 (1975).

[6] Davies, D.W. \Protection." In Lampson, B.W., Paul, M. and Siegert, H.J. (Editors). Distributed
Systems: An Advanced Course. Springer-Verlag, 211-245 (1981).

[7] Dennis, J.B. and Van Horn, F.C. \Programming Semantics for Multiprogrammed Computa-
tions." Communications of ACM 9(3):143-155 (1966).

[8] Department of Defense Trusted Computer Systems Evaluation Criteria. DoD 5200.28-STD,
Department of Defense National Computer Security Center (1985).

[9] Gong, L. \A Secure Identity-Based Capability System." IEEE Symposium on Security and

Privacy, 56-63 (1989).

[10] Harrison, M.H., Russo, W.L. and Ullman, J.D. \Protection in Operating Systems." Communi-
cations of ACM 19(8):461-471 (1976).

[11] Harrison, M.H. and Russo, W.L. \Monotonic Protection Systems." In DeMillo, R.A., Dobkin,
D.P., Jones, A.K. and Lipton, R.J. (Editors). Foundations of Secure Computations. Academic
Press, 337-365 (1978).

[12] Lampson, B.W. \Protection." 5th Princeton Symposium on Information Science and Systems,
437-443 (1971). Reprinted in ACM Operating Systems Review 8(1):18-24 (1974).

[13] Levy, H.M. Capability-Based Computer Systems. Digital Press (1984).

[14] Minsky, N. \Synergistic Authorization in Database Systems." 7th International Conference on

Very Large Data Bases, 543-552 (1981).

[15] Mullender, S.J., van Rossum, G., Tanenbaum, A.S., van Renesse, R. and van Staveren, H.
\Amoeba: A Distributed Operating System for the 1990s." IEEE Computer, 23(5):44-53 (1990).

[16] Sandhu, R.S. \The Schematic Protection Model: Its De�nition and Analysis for Acyclic Atten-
uating Schemes." Journal of ACM 35(2):404-432 (1988).

[17] Sandhu, R.S \Transformation of Access Rights" IEEE Symposium on Security and Privacy,
259-268 (1989).

[18] Sandhu, R.S. \Undecidability of Safety for the Schematic Protection Model with Cyclic Cre-
ates." Journal of Computer and System Sciences, to appear.

[19] Siberschatz, A., Peterson, J., and Galvin, P.Operating System Concepts.Addison Wesley(1991).


