
Smart Certi�cates: Extending X.509
for Secure Attribute Services on the Web

Joon S. Park and Ravi Sandhu

The Laboratory for Information Security Technology

Information and Software Engineering Department

George Mason University

fjpark, sandhug@list.gmu.edu

ABSTRACT: An attribute is a particular property of an entity, such as a
role, access identity, group, or clearance. If attributes are provided integrity,
authentication, and con�dentiality, Web servers can then trust these secure at-
tributes and use them for many purposes, such as access control, authorization,
authentication, and electronic transactions. In this paper, we present a com-
prehensive approach to secure attribute services on the Web. We identify the
user-pull and server-pull models and analyze their advantages and disadvan-
tages. To support these models on the Web, we extend X.509 certi�cates, which
are already in widespread current use. We name these extended X.509 certi�-
cates smart certi�cates. Smart certi�cates have several sophisticated features:
they support short-lived lifetime and multiple CAs, contain attributes, provide
postdated and renewable certi�cates, and provide con�dentiality. This paper
also discusses possible applications of smart certi�cates on the Web.

KEYWORDS: X.509, Certi�cates, Attributes, WWW Security

1 Introduction

The World-Wide-Web (WWW) is a critical enabling technology for electronic commerce
and business on the Internet. Its underlying protocol, HTTP (HyperText Transfer Proto-
col), has been widely used to support synthesis of technologies and composition of di�erent
constituents for great e�ect in Web environments. WWW is commonplace. Increased inte-
gration of Web, operating system, and database system technologies will lead to continued
reliance on Web technology for enterprise computing. However, there have been, at best,
rather feeble attempts to provide e�ective access control on Web-based environments. Cur-
rent approaches to access control on Web servers are mostly based on individual users;
therefore, they do not scale to enterprise-wide systems.

An attribute is a particular property of an entity, such as a role [San98], access identity,
group, or clearance. If the attributes of individual users are provided securely on the
Web by security services - such as authentication, integrity, and con�dentiality - we can use
those attributes for many purposes, including attribute-based access control [PSG99, PS99],
authorization, authentication, and electronic transactions. A successful marriage of the Web
and secure attribute services has potential for considerable impact on and deployment of
e�ective enterprise-wide security in large-scale systems.



Our goal is to build upon the mature technology of X.509 certi�cates and extend them for
secure attribute services on the Web. The basic purpose of X.509 certi�cates is simply the
binding of users to keys. Even though X.509 has the ability to be extended, the application
of the extensions of X.509 for secure attributes has yet not been precisely de�ned.

In this paper, we identify the user-pull and server-pull models, in which each model
has user-based and host-based modes, for a comprehensive approach to secure attribute
services on the Web. We will descibe how to make the smart certi�cates by extending
X.509v3 [HFPS98] - which is an ISO (International Organization for Standardization) and
IETF (International Engineering Task Force) standard - since public-key infrastructure
(PKI) has been recognized as a crucial enabling technology for security in large-scale net-
works. Furthermore, we will discuss possible applications of smart certi�cates for electronic
commerce and business later in this paper.

2 Related Technologies

2.1 Secure Socket Layer (SSL)

SSL (Secure Socket Layer [WS96]) was introduced with the Netscape Navigator browser in
1994, and rapidly became the predominant security protocol on the Web. Since the protocol
operates at the transport layer, any program that uses TCP (Transmission Control Protocol)
is ready to use SSL connections. The SSL protocol provides a secure means for establishing
an encrypted communication between Web servers and browsers.1 SSL also supports the
authentication service between Web servers and browsers.

SSL uses X.509 certi�cates. Server certi�cates provide a way for users to authenticate
the identity of a Web server. The Web browser uses the server's public key to negotiate a
secure TCP connection with the Web server. Optionally, the Web server can authenticate
users by verifying the contents of their client certi�cates.

Even though SSL provides secure communications between Web servers and browsers
on the Web, it cannot protect against end-system threats. For instance, if a user receives
attributes from the server over a secure channel, it does not mean that we can trust the
user. In other words, once the user, let's say Alice, receives some attributes from the server
over the secure channel, she is able to change the attributes or give them to other people,
because SSL does not support the integrity service in the user's end system. Then, Alice
(or the person impersonating Alice) can access the servers - which accept the attributes -
using those forged attributes. However, as we will see later in this paper, SSL can be used
as part of our solution to protect information on the Web.

2.2 Public-Key Certi�cate (X.509)

A public-key certi�cate is digitally signed by a certi�cate authority (a person or entity)
to con�rm that the identity or other information in the certi�cate belongs to the holder

1In many cases, due to export restrictions from the United States only weak keys (40 bits) are supported,
but SSL technology is intrinsically capable of very strong protection against network threats.



(subject) of the corresponding private key. If a message-sender wishes to use public-key
technology for encrypting a message for a recipient, the sender needs a copy of the public
key of the recipient. On the other hand, when a party wishes to verify a digital signature
generated by another party, the verifying party needs a copy of the public key of the signing
party. Both the encrypting message-sender and the digital signature-veri�er use the public
keys of other parties. Con�dentiality, which keeps the value of a public key secret, is not
important to the service. However, integrity is critical to the service, as it assures public-key
users that the public key used is the correct public key for the other party. For instance, if
an attacker is able to substitute his or her public key for the valid one, encrypted messages
can be disclosed to the attacker and a digital signature can be forged by the attacker.

ITU (International Telecommunication Union) and ISO (International Organization for
Standardization) published the X.509 standard in 1988 [ITU93], which has been adopted by
IETF (International Engineering Task Force). X.509 is the most widely used data format for
public-key certi�cates today and it is based on the use of designated certi�cate authorities
(CAs) that verify that the entity is the holder of a certain public-key by signing public-
key certi�cates. An X.509 certi�cate has been used to bind a public-key to a particular
individual or entity, and it is digitally signed by the issuer of the certi�cate (certi�cate
authority) that has con�rmed the binding between the public-key and the holder (subject)
of the certi�cate. An X.509 certi�cate consists of the following:

� version of certi�cate format

� certi�cate serial number

� subject's X.500 name (assigned by a naming authority)

� subject's public key and algorithm information

� validity period (beginning and end date)

� issuer's X.500 name (certi�cate authority)

� optional �elds to provide unique identi�ers for subject and issuer (Version 2)

� extensions (Version 3)

� digital signature of the certi�cate authority

The optional �elds are available from Version 2 to make the subject name or the issuing
certi�cate authority name unambiguous in the event the same name has been reassigned to
di�erent entities through time. Version 3 provides the extensions �eld for the incorporation
of any number of additional �elds into the certi�cate. These extensions make X.509v3 a
truly open-ended standard with room to support diverse needs. It is possible for certi�cate
issuers of interest to de�ne their own extension types and use them to satisfy their own
particular needs.



2.3 Attribute Certi�cate

The U.S. �nancial industry through the ANSI X9 committee developed attribute certi�-
cates [Far98b, Far98a], which have now been incorporated into both the ANSI X9.57 stan-
dard and X.509. An attribute certi�cate binds attribute information to the certi�cate's
subject. Anyone can de�ne and register attribute types and use them for his or her pur-
poses. The certi�cate is digitally signed and issued by an attribute authority: furthermore,
an attribute certi�cate is managed in the same way as an X.509 certi�cate. However, an
attribute certi�cate does not contain a public key. Therefore, an attribute certi�cate needs
to be used in conjunction with authentication services, such as another certi�cate (X.509)
and SSL to verify the subject of the attributes.

3 Operational Architecture

We have di�erent approaches for obtaining a user's attributes on the Web, especially with
respect to user-pull and server-pull models, in which each model has user-based and host-
based modes. Each approach can be made to work, and we will provide an analysis of
their relative advantages and disadvantages. Basically, there are three components in both
models: client, Web server, and attribute server. These components are already being used
on the Web. Clients connect to Web servers via HTTP using browsers. The attribute server
is maintained by an attribute authority and issues attributes for the users in the domain.

In this section, we will focus on identifying the operational models for secure attribute
services on the Web with tradeo�s between them. To support these models on the Web, we
will extend X.509 certi�cates - already in widespread current use - as described in Section 4.

3.1 User-Pull Architecture

In user-pull architecture, the user pulls appropriate attributes from the attribute server and
then presents them to the Web servers, as depicted in a collaborational diagram in Figure 1.
We call this a user-pull architecture, since the user pulls appropriate attributes from the
attribute server, in which attributes are issued for the users in the domain. HTTP (Hyper-
Text Transfer Protocol) is used for user-server interaction with standard Web browsers and
Web servers.

In user-pull-host-based mode, a user, Alice, needs to download her attributes from the
attribute server and store them in her machine (which has her host-based authentication
information, such as a client certi�cate2.) Later, when Alice wants to access the Web server,
which requires proper authentication information and attributes, her machine presents that
information to the Web server. After client authentication and attribute veri�cation, the
Web server uses the attributes for its purposes, such as access control, authorization, and
electronic transactions. However, since this mode is host-based, it cannot support high
user mobility, although it may support more convenient service than the user-based mode
- which requires user's cooperation (e.g., typing in passwords).

2Optionally, we can use other host-based authentication information, such as IP numbers and Kerberos
tickets.



Server
Web

2.3:
Attribute-
Request
Result

2.7:
Validation
Result

2.11:
Transaction
Results

2.6:
Validation
Result

2.9:
Request
Transactions

2.10:
Transaction
Results

2.2:
Attribute
Information

Client
(Browser)

Request

*Authentication Information can be either user-based or host-based.

Attribute
Request

2:

Access
Web Server (with
User-based
Auth-Info.)

2.4:

Transactions

2.8:

Server
Attribute

1: Attribute Issue/Revoke

1.1: Process ResultAttribute
Authority

User

2.1:

Attribute
Request

2.5: Credentials
(Attributes + Auth-Info.*)

Figure 1: Collaborational Diagram for User-Pull Model

On the other hand, the user-pull-user-based mode supports high user mobility. A user,
Alice, can download her attributes to her current machine from the attribute server. Then,
Alice presents those attributes to the Web server along with her user-based authentication
information, such as her passwords. After user authentication and attribute veri�cation,
the Web server uses the attributes for its purposes.

In this user-pull architecture, we must support the binding of attributes and identi�ca-
tion for each user. For instance, if Alice presents Bob's attributes with her authentication
information to the Web server, she must be rejected. There may be di�erent mechanisms
for binding attributes and user identi�cations. We will describe in Section 4 how to solve
this problem e�ciently by means of smart certi�cates between existing Web servers and
Web browsers.

3.2 Server-Pull Architecture

In server-pull architecture, each Web server pulls appropriate attributes from the attribute
server as needed and uses them for its purposes as depicted in a collaborational diagram
in Figure 2. We call this a server-pull architecture, since the server pulls appropriate
attributes from the attribute server. HTTP (HyperText Transfer Protocol) is used for user-
server interaction with standard Web browsers and Web servers. If the attribute server
provides attributes securely, the Web server can trust those attributes and uses them for
its purposes.

In this architecture, a user, Alice, does not need access to her attributes. Instead, she
needs only her authentication information. In server-pull-host-based mode, she presents
host-based authentication information (e.g., her client certi�cate) to the Web server. At-
tribute obtaining mechanism is transparent to the user, while limiting the user portability.



Server
Web

Access
Web Server (with
User-based
Auth-Info.)

2:

Client
(Browser)

User

*Authentication Information can be either user-based or host-based.

Request
Transactions

2.4:

2.3:
Authentication
Result

2.7:
Transaction
Results

Attribute
Server

Attribute
Authority

1: Attribute Issue/Revoke

1.1: Process Result

2.1: Credentials

2.5:
Request
Transactions

2.2:
Authentication
Result

2.6:
Transaction
Results

2.3a: Attribute Information

2.2a: Request User Attributes

(Auth-Info.*)

Figure 2: Collaborational Diagram for Server-Pull Model

However, in server-pull-user-based mode, Alice presents user-based authentication informa-
tion, such as her passwords to the Web server. This supports high user portability, while it
requires the user's cooperation (e.g., typing in passwords). After client(user) authentication,
the Web server downloads the corresponding attributes from the attribute server and uses
them for its purposes, such as access control, authorization, and electronic transactions.

4 Extending X.509 for Secure Attribute Services

Extension types of X.509 can be de�ned by anyone. Therefore, it is possible for certi�cate
authorities to de�ne and use their own extension types to satisfy their own particular needs.
Each extension type needs to be registered by having an object identi�er assigned to it.

It is strongly recommended that public-key pairs used for any purpose be updated peri-
odically. This is an e�ective way to restrict cryptographic attacks, such as a key compromise.
Furthermore, the lifetime of a public-key in a certi�cate may be di�erent from that of other
information in it. Namely, it is not a good solution to issue a currently existing certi�-
cate, such as X.509, that contain attribute information as well as public-key information.
Even though the bundled certi�cate increases performance because of its simple mecha-
nism, it cannot support e�ective certi�cate management. Adding, deleting, or changing
attributes involves replacing and sometimes revoking X.509 certi�cates. This creates very
large CRLs (Certi�cate Revocation Lists); therefore, it overburdens certi�cate management
infrastructures. Furthermore, usually an organizational policy requires di�erent authori-
ties for maintaining attributes and public-keys. Since the current X.509 certi�cate cannot
satisfy all the above requirements, we were motivated to design the smart certi�cates, de-
scribed in the following subsections, to solve those problems. Note that a smart certi�cate



Basic CA’s
Digital Signature

Signed by
Basic CA

att_1_CA’s
Digital Signature

att_1_CA’s
Digital Signature

attribute_1_info.*

attribute_n_info.*

Basic Certificate

Smart Certificate

* attribute info.: attributes, attribute issuer, validity period of attributes, etc.

version
serial number
issuer
subject
validity period
public-key info.
optionall fields (v2)

Signed by
Att_n_CA

Signed by
Att_1_CA

Extensions

Figure 3: Attributes Signed by Multiple CAs in a Smart Certi�cate

is compatible with an X.509, since it keeps the same data format as an X.509.

4.1 Smart Certi�cates

Smart certi�cates extend X.509 certi�cates by adding the following features. Selection of
these new features depends on the applications or policies.

4.1.1 Support for Short-Lived Certi�cates

Typical validity periods for X.509 certi�cates are several months or even years. To support
user mobility, users should be able to download both the certi�cate and the private key
to the software in di�erent environments. This service may leave copies of private keys
behind; therefore, the longer-lived certi�cates have a higher probability of being attacked.
If, however, the validity periods for certi�cates are measured in hours, the user portability
can be provided securely, since the copies of the corresponding private key expire automat-
ically. Additionally, we do not need a revocation scheme (CRL) for the certi�cates, which
is responsible for the complexity and cost of the public key infrastructure. The detailed
description of short-lived certi�cates is available in [HS98].

4.1.2 Containing Attributes

If we use the extension �elds in an X.509 certi�cate e�ectively, as depicted in Figure 3, we
can separate the authority for attribute-issuing from the one for public-key-issuing. In other
words, after a public-key authority (basic CA) issues an X.509 basic certi�cate for a user,



Alice, as usual, an attribute authority (for instance, Att 1 CA) adds attributes for Alice to
an extension �eld of the basic certi�cate (which contains public-key information). Conse-
quently, the attribute authority (Att 1 CA) signs on the basic certi�cate and the attributes
he added, and puts the signature to another extension �eld in the basic certi�cate. This can
happen multiple times on a basic certi�cate by di�erent attribute authorities. Later, the
identity veri�cation should precede the attribute veri�cation. For instance, another party,
say Bob, veri�es Alice's identity �rst by the basic CA's signature in the smart certi�cate.
If the authentication is successful, Bob veri�es Alice's attributes by the corresponding at-
tribute authority's signature in the extension �eld. If the attributes are valid, then Bob
uses those attributes for his purposes. The contents of the attribute information in a smart
certi�cate depend on applications.

The public-key and the attributes can be maintained independently. For instance, even
though Alice's attributes issued by her school-attribute authority are expired (revoked) in
the certi�cate, the rest of the attributes, such as attributes issued by her company-attribute
authority, and public-key information in her basic certi�cate, are still valid. Each attribute
authority has independent control over the attributes he issued. For example, the school-
attribute authority for Alice can change, revoke, or re-issue the school attributes in Alice's
certi�cate. Intuitively, if her basic certi�cate is expired (revoked), then all the attributes
are meaningless. Even though a smart certi�cate can support independent management for
the public key information and attributes, if there is one authority who has controls both
sets of information, the system management becomes simpler.

Furthermore, if we use the short-lived certi�cate mechanism, we do not need to consider
about revoking the bundled certi�cates. As a result, a smart certi�cate supports high
performance by bundling public-key information and attributes in a certi�cate without
causing overhead to certi�cate management infrastructures.

4.1.3 Support for Postdated and Renewable Certi�cates

Postdated certi�cates are used to run a job at some time in the future. Suppose a security
o�cer wants to issue a certi�cate for a user starting a week from now and valid for 10 hours
of use. He may issue a certi�cate with an expiration time of one week plus 10 hours from
the present time. This is not a proper solution, since the certi�cate would be valid from
the time it was issued until it expires. However, if we allow a certi�cate to become valid at
some point in the future, we can satisfy the requirement.

Furthermore, if Alice needs a long-lived certi�cate, say, lasting for one year, it is more
secure and e�cient to issue a certi�cate that will be valid for that full 12 months, only if
Alice keeps renewing it for a much shorter period, say, every day. To support this, we need
to set the time (in the extension �eld), which speci�es the certi�cate cannot be renewed.
Since the certi�cate is renewed every day, we do not need CRLs. If there is some reason to
revoke Alice's certi�cate, the CA does not renew the certi�cates.

These concepts are adopted from postdated and renewable tickets of Kerberos [SNS88,
Neu94].



4.1.4 Encrypting Sensitive Information in Certi�cates

The smart certi�cates will support the encryption of some, or all, attributes, such as pass-
words, roles, or credit card numbers. Such an encrypted attribute in the certi�cate can be
decrypted by an appropriate server using the corresponding key (the server's shared secret
key or its private key).

4.2 Discussion

In this subsection, we want to compare smart certi�cates with existing certi�cates, such as
X.509 and attribute certi�cates, in terms of the certi�cate life-time and authentication of
the owner of the attributes.

Usually, an X.509 certi�cate has a long life-time, which requires an additional revocation
mechanism (e.g., CRLs). Therefore, it has a relatively higher probability of being attacked,
since the corresponding private key can be left in a system without the owner's knowledge,
especially if the private key is stored in multiple machines. On the contrary, when we use a
smart certi�cate, the short life-time eliminates the additional revocation mechanism (e.g.,
CRL for X.509), and makes the system more secure, since the remaining private keys expire
shortly and automatically.

Currently, existing attribute certi�cates refer to another type of basic certi�cates, such
as X.509, for authentication service. This mechanism brings complexities for the protocol
itself and for certi�cate administration. For instance, an attribute certi�cate and the corre-
sponding X.509 are issued in di�erent entities and managed separately. Even the revocation
mechanism is separate. The idea was brought to support separate authorities for attributes
and authentication services.

However, if we use a smart certi�cate, both the attributes and public-key information
can be bundled in a single certi�cate. This provides simplicity for both the protocol itself
and for certi�cate administration. When we need separate authorities for attributes and
authentication services, each authority signs separately on the same basic certi�cate and
corresponding extension �eld, which contains attribute information. This can happen mul-
tiple times on a basic certi�cate by di�erent attribute authorities. Each attribute authority
has independent control over the attributes he issued. Even though a smart certi�cate can
support independent management for the public key information and attributes, if there
is one authority who controls both sets of information, the system management becomes
simpler.

5 Applications of Smart Certi�cates

In this section, we introduce some applications of smart certi�cates. Many other applications
can be similarly con�gured. Selection of the new features of smart certi�cates depends
on applications and a given situation. Using the bundled (attributes and identi�cations)
certi�cates is a good solution for the user-pull model, since the model requires the binding
of this information. On the other hand, it is not a good idea to use the bundled certi�cates
for the server-pull model, since users do not need access to their attributes.



5.1 On-Duty Control

Suppose an employee, Alice, needs to receive a certi�cate at 9:00 A.M. every morning
and use it until 5:00 P.M. Monday through Friday. This certi�cate contains her sensitive
attributes, such as clearance or access control information, Current X.509 cannot satisfy the
requirements. It does not support con�dentiality service (by encryption) for some sensitive
information in the certi�cate. If the validity period for the certi�cate is longer than that
of Alice's on-duty hours, the privilege based on the certi�cate still remains even after her
on-duty hours.

If we use the smart certi�cate, the above requirements can be securely satis�ed. First
of all, the sensitive information in the certi�cate is encrypted which provides the con�-
dentiality service. By using the short-lived certi�cate feature, we can set the validity of
the certi�cate only from 9:00 A.M. to 5:00 P.M. every day. Furthermore, the postdated-
certi�cate feature allows the employee to receive a set of certi�cates on a certain day, for
instance, �ve certi�cates for individual days (Monday through Friday). Alice can then use
the corresponding certi�cate each day during her on-duty hours. In this case, Alice does
not need to receive the certi�cate every morning, and does not have the privilege based on
the certi�cates after her on-duty hours. Alternatively, if we make the certi�cate valid for a
set period of duration, for instance, from 9:00 A.M. to 5:00 P.M., but not between 5:00 P.M.
and 9:00 A.M., the employee needs only one certi�cate for a week. However, this approach
has a higher probability of compromise and possibly requires using CRLs.

5.1.1 Attribute-Based Access Control

When a user, let's say Alice, using a Web browser contacts a Web server that has been con�g-
ured to request smart certi�cates, which contain users' attributes, the browser is required to
present Alice's smart certi�cate and prove that she is the rightful owner. After client authen-
tication, the Web server makes access control decisions based on attributes [PSG99, PS99],
such as roles [San98], clearance, and group membership, contained within the smart certi�-
cate itself.

5.1.2 Electronic Transactions

If a merchant site uses smart certi�cates (which contain customers' encrypted credit card
numbers) customers do not need to key their credit card numbers in for every transaction.
For more convenient service, the merchant can issue a smart certi�cate containing special
tokens for customers, such as electronic coupons (which have the coupon's ID number and
discount information). For instance, if Alice received an electronic coupon contained within
her smart certi�cate, she can use it before the coupon's expiration date at the merchant
site. In this case, the merchant site needs to keep a record of the coupon to protect replay
usages of the same coupon.



5.1.3 Eliminating Single-Point Failure

Usually, a merchant site has a customer-information database maintained on a server. One
of the disadvantages of this method is that if the server keeping customers' information
is penetrated by an attacker, all the customers' information, such as credit card numbers,
preferences, addresses, and other sensitive information in the server, are open to the at-
tacker. Furthermore, if a domain has multiple servers with multiple customer-information
databases, maintenance and synchronization of this information is burdensome. There are
also signi�cant privacy concerns about data stored by servers, since such data can easily be
misused. Users may feel more comfortable with servers that pledge not to maintain such
data.

Smart certi�cates can solve these problems especially in the electronic commerce �eld. If
a merchant site issues and uses smart certi�cates, the site does not need to have a customer-
information database unless the site needs to track customers' access histories, since each
customer's sensitive information is distributed and stored securely in the customer's smart
certi�cates. Using smart certi�cates provides a more secure environment by eliminating
customer-information databases, which can cause a single-point failure. Furthermore, the
merchant can reduce the cost for the maintenance of customer-information databases.

5.1.4 Replace X.509

Besides using the extension �elds in an X.509 certi�cate, a smart certi�cate provides new
features, including containing attributes, eliminating CRLs by short-lived certi�cates, pro-
viding multiple CAs, supporting postdated and renewable services, and encrypting sen-
sitive information in the certi�cates. However, it is still compatible with X.509, since a
smart certi�cate keeps the same data format as the X.509. For instance, as the original
X.509 supports the Secure Socket Layer (SSL) protocol for secure communications between
clients and servers, the smart certi�cates can also be used as server certi�cates and client
certi�cates for SSL without modifying the protocol.

6 Conclusions

In this paper, we have identi�ed two operational models for attribute services on the Web:
user-pull model and server-pull model. To support these models, we have extended an
existing digital certi�cate, X.509, with several new features. The extended certi�cates,
smart certi�cates, provide short-lived lifetime, attributes, multiple CAs, postdated and
renewable services, and con�dentiality services in PKI. According to the requirements of
applications, some of these new features can be selectively used in conjunction with currently
existing technologies.



References

[Far98a] Stephen Farrell. An Internet AttributeCerti�cate pro�le for Authorization, Au-
gust 1998. draft-ietf-tls-ac509prof-00.txt.

[Far98b] Stephen Farrell. TLS extensions for AttributeCerti�cate based authorization,
February 1998. draft-ietf-tls-attr-cert-00.txt.

[HFPS98] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 public key infras-

tructure certi�cate and CRL pro�le, September 1998. draft-ietf-pkix-ipki-part1-
11.txt.

[HS98] Yung-Kao Hsu and Stephen P. Seymour. An internet security framework based
on short-lived certi�cates. IEEE Internet Computing, pages 73{79, March/April
1998.

[ITU93] ITU-T Recommendation X.509. Information technology - Open systems Intercon-

nection - The Directory: Authentication Framework, 1993. ISO/IEC 9594-8:1993.

[Neu94] B. Cli�ord Neuman. Using Kerberos for authentication on computer networks.
IEEE Communications, 32(9), 1994.

[PS99] Joon S. Park and Ravi Sandhu. RBAC on the web by smart certi�cates. In
Proceedings of 4th ACM Workshop on Role-Based Access Control. ACM, Fairfax,
VA, October 28-29 1999.

[PSG99] Joon S. Park, Ravi Sandhu, and SreeLatha Ghanta. RBAC on the Web by secure
cookies. In Proceedings of the IFIP WG11.3 Workshop on Database Security.
Chapman & Hall, July, 1999.

[San98] Ravi Sandhu. Role-based access control. Advances in Computers, 46, 1998.

[SNS88] J.F. Steiner, C. Neuman, and J.I. Schiller. Kerberos: An authentication service
for open network systems. In Proc. Winter USENIX Conference, 1988.

[WS96] D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In Proceedings of

the Second UNIX Workshop on Electronic Commerce, November 1996.


