TRANSFORMATION OF ACCESS RIGHTS

Ravi Sandhu

Department of Computer and Information Science
The Ohio State University, Columbus, Ohio 43210

Abstract

We introduce the concept of transformation of access rights
to unify a variety of access-control mechanisms. These mech-
anisms have mostly been proposed independently of each
other to deal with various integrity issues. Their common
foundation is abstracted in a model called transform. The
formalization enables us to investigate the minimal features
required to support transform. The paper goes on to consider
the relation of transform to existing access-control models.
We show that for the access-matrix model transform is out-
side the class of systems for which safety is known to be de-
cidable. On the other hand we show transformis an instance
of the decidable cases of the schematic protection model.

1 INTRODUCTION

In this paper we unify a variety of access-control mechanisms
which deal with various integrity issues. These mechanisms
are mostly taken from the literature. Some have been imple-
mented in actual systems. They all have merit and should
certainly be supported, in one form or another, by any pro-
tection model which claims to be of general applicability.
However considered in isolation these mechanisms are di-
verse and most have been proposed independently of each
other. Simply lumping them together would result in a com-
plex ad hoc model in totality. This is not only inelegant but
also casts doubts about prospects for safety analysis (i.e., for
determining whether or not a particular subject can obtain
a specific right for some given object).

We propose the unifying concept of transformation of
rights to abstract the common foundation of these mecha-
nisms. Transformation of access rights takes place in two
different ways.

1. Self transformation or internal transformation allows
a subject who possesses certain rights for an object to
obtain additional rights.

. Grant transformation or external transformation oc-
curs in the granting of access rights by one subject to
another. The general idea is that possession of a right

CH2703-7/89/0000/0259$01.00 © 1989 IEEE

259

for an object by a subject allows that subject to give
some other right for that object to another subject.

(If a subject can grant transformed rights to itself ex-
ternal transformation implies internal transformation.
In most applications there are additional controls to
prevent such “self granting.”)

Internal transformations allow us to express consistency
in access-control policies such as the requirement that write
access implies append access. The well-known technique of
amplification [2, 22] for supporting abstract data types and
protected subsystems is another instance of internal transfor-
mation. The case for abstract data types and protected sub-
systems is well argued in several classic papers [3, 9, 16, 22].
More recently it has been argued [1] that the “access control
triple”, which is essentially similar in concept, is necessary
for support of integrity policies.

Grant transformations allow us to accommodate various
kinds of integrity controls. For instance we can distinguish
the ability to access an object from the ability to grant access
to that object. This distinction has been suggested as an es-
sential part of “commercial” access-control policies [15] and
is implemented in actual systems such as IBM’s RACF (Re-
source Access Control Facility). This distinction of course is
one form of separation of duties. Another instance of grant
transformations arises when operations on an object are con-
strained to occur in a specific sequence. This has similarities
to the manner in which separation of duties is enforced by
transaction control expressions [20].

Section 2 discusses several examples of internal and ex-
ternal transformations in an informal manner. Section 3 de-
velops the transform model to unify, and make precise, the
common theme running through these examples. This for-
malization in turn suggests additional applications. It also
enables us to investigate the minimal transformation facili-
ties required to support transform. In section 4 we go on to
consider the relation of transform to existing access-control
models. We show that for the access-matrix model [6] trans-
form s outside the class of systems for which safety is known
to be decidable. On the other hand we show transform is an
instance of the decidable cases of the schematic protection
model [18]. This is important since it will be evident from
our discussion that transformation of rights is an intricate

issue for which safety analysis is an essential consideration.
Section 5 concludes the paper.

2 EXAMPLES

The simplest example of transformation of rights arises when
one right is treated as stronger than another. Consider the
typical read, write and append operations on a file, respec-
tively authorized by the rights r, w and a. From the se-
mantics of these operations it is clear that possession of w
should imply possession of a. The ability to obtain a weaker
right by virtue of possessing a stronger one allows a subject
to work with the least privileges needed. In some cases we
require the stronger implication that w implies a and both
imply r. The motivation is one of integrity in that a subject
who writes a file should be able to check whether the writing
has been carried out properly, which requires he be able to
read the file. This is of course appropriate only in situations
where non-disclosure is not an issue.

We can generalize these examples somewhat by allowing
different implication relations for different types of files. For
instance we may define two types of files respectively with the
two implication relations discussed above and a third type
of file with no implied rights. However, so long as the ability
to obtain implied rights is uniformly available to every sub-
ject, internal transformation provides only for consistency in
authorization.

Significant power is added by restricting internal trans-
formation to certain subjects. The amplification operation
in the Hydra system {2] works in such a fashion, as the basis
for implementing abstract data types and protected subsys-
tems. To illustrate amplification consider the example of a
stack with push and pop operations implemented in terms
of a segment with read and write operations. We need to
enforce the following policy.

1. Subjects other than the type manager for stacks can
only possess push and pop rights for a stack.

. The type manager for stacks receives the right to push
(or pop) a stack when a subject executes the push (or
pop) operation. The manager amplifies the push (or
pop) right to obtain r and w rights for the segment
containing the stack.

. Only the type manager for stacks can do such internal
transformation.

Predicating the ability to amplify on the type of subject
doing the internal transformation enables implementation of
abstract data types. Pursuing the example further, we may
have stacks implemented in terms of lists which in turn are
implemented in terms of segments. Now we have two levels
of internal transformation. The first level from push or pop
rights to the head, tail or cons rights can only be done by

260

the type manager for stacks. The second level from head,
tail or cons rights to r and w rights can only be done by the
type manager for lists.

Next consider grant transformations. A simple form of
grant transformation occurs with the copy flag which distin-
guishes between the ability to access an object and the abil-
ity to grant access for that object to another subject. The
concept goes back to the earliest abstract models for access-
control [4, 8] and is a fundamental aspect of discretionary
controls. The idea is that possession of a right x authorizes
access to the object whereas possession of xc authorizes the
ability to grant access to that object to another subject. The
xc right is typically made available to the creator of each ob-
ject. In many models [4, 8, 10, for instance] the ability to
grant access is treated as stronger than the ability to perform
access, that is possession of xc implies possession of x. Let
us for the moment make this assumption, which of course is
another example of internal transformation. Now consider
the following policies.

1. A user who possesses the xc right for an object can
grant the x right for that object to another user.

2. A user who possesses the xc right for an object can
grant the xc or x right for that object to another user.

These are both examples of grant transformations. In the
first case the xc right is transformed to the x right as part of
the grant operation. In the second case there is a choice in
the transformation, presumably at the volition of the subject
doing the granting. The choice is between the identity trans-
formation of xc to itself or an attenuating transformation of
xc to x.

Let us call the copy-flag in the first case as the one-step
copy flag, denoted xc!, and in the second case as the un-
limited copy flag, denoted xc*. Both these copy flags were
proposed in the original access-matrix papers [4, 8]. The in-
terpretation is that xc* can be transformed to xc*, xc! or x
during a grant, whereas xc! can only be transformed to x.
This idea can easily be generalized to allow for n-step copy
flags by allowing the grant transformation of xc® to any one
of xc®~1, xc®=2, ..., xc! or x. The interpretation of copy flags
can also be made to depend on the types of subjects and ob-
jects involved in a grant operation. For instance, the copy
flag can be interpreted as a one-step flag for sensitive docu-
ments whereas for non-sensitive documents it is an unlimited
flag. As another example say we distinguish members of a
department from outsiders with the policy that the copy flag
for grants between members is transformed as an unlimited
flag, whereas for grants from a member to an outsider it is
transformed as a one-step flag. These are very reasonable
policies. It is clear that the possibilities are endless, particu-
larly in large systems with lots of subject and object types.

Next we introduce a new kind of copy flag, called the
separation copy flag, by dropping the assumption that pos-
session of xc implies possession of x. In this way we draw
a clear separation between the ability to grant access and

the ability to perform access. This separation has been sug-
gested by Moffett and Sloman [15] as a fundamental aspect
of “commercial” access-control policies. They note such sep-
aration is implemented in actual systems citing the example
of IBM’s RACF (Resource Access Control Facility). In our
framework this separation is easily achieved as an instance
of grant transformation where xc can only be transformed
to x. Now if a subject is allowed to grant to itself the intent
of the separation is defeated, since then possession of xc im-
plies possession of x by a grant to oneself. We can prevent
this by predicating the grant transformation on the types of
subjects involved. Say we distinguish security-officers from
users. The transformation of xc to x is allowed in a grant
from a security-officer to a user. However in a grant from
a security-officer to a security-officer the transformation is
from xc to null. This is the policy suggested in [15]. There is
the further question of how the ability to grant is obtained
in the first place by security-officers. Following [15], this it-
self can be obtained by grant transformation. The idea is
that some user owns the object in question. By possess-
ing the own right for that object the user is authorized to
grant xc (by transformation) to a security-officer. That is
the owner of an object can delegate the ability to grant ac-
cess to security-officers. We can play this game again and
ask how ownership is acquired. It should be clear by now

that this in turn can be achieved by grant transformation
if so desired. Alternatively it can be tied to creation of the
object or be determined at system initialization.

More general notions of separation of duties can also be
viewed as examples of grant transformations to some extent.
These relate to sequences of operations on an object which
must occur in a prescribed order and must be executed by
different types of subjects. For example, consider a policy in
which a check is prepared by a clerk, approved by a super-
visor and issued by a cashier. This is separation of duties
in that the different steps are to be executed by users with
different roles (types). We can enforce this policy by trans-
forming the prepare right into an approve right in the clerk to
supervisor grant, and again transforming the approve right
to an issue right in the supervisor to cashier grant. Note
that separation of duties achieved in this way is limited to
separation among roles. Consider the modified policy that
the check be issued by a clerk, rather than a cashier, with
the stipulation that the issuing clerk be different from the
one who prepared the check. Controls based solely on types
of subjects and objects cannot handle such cases. See [20] for
a mechanism which also deals with intra-type separation.

3 THE TRANSFORM MODEL

It is apparent from the foregoing discussion that there is
a common theme underlying the several examples we have
seen. Our objective in this section is to make this intuition
precise by means of a formal model called transform. For-
malization is rarely useful as an end by itself. In formulating
transform we hope to uncover additional applications of the

261

transformation theme. An abstract formulation also clarifies
the nature of basic mechanisms needed to support such poli-
cies in actual systems. Another important goal is to relate
transform to existing access-control models so as to deter-
mine to what extent it is subsumed by these, particularly
with regard to safety analysis.

The notion of type is fundamental to most examples we
have considered. In fact much of the power of transformation
derives from predicating the ability to transform on the types
of subjects and objects involved. We therefore assume that
subject and objects are classified into types. Object types
identify classes of objects which are treated differently for

transformation of rights. Subject types similarly identify
classes of subjects which have varying ability to transform
rights. Subject types also abstract the concept of roles often
used in the literature [15, 20, 21, for instance].

We define the sets TS and TO for subject types and ob-
ject types respectively. Each subject is an instance of some
subject type and each object an instance of some object type.
We assume strong typing in that the type of a subject or ob-
ject is determined when it is created and does not change
thereafter.

Before considering transformation of rights let us first
deal with creation. It is clear subjects need to create objects.
There are two issues involved in creation. Firstly subjects
need authorization to create objects. Secondly the rights
obtained as a result of creation also need to be specified.
In transform we authorize creation of objects by means of a
can-create function as follows.

cc: TS — 270

The interpretation is that subjects of type u are authorized
to create objects of types in cc(u). The effect of creation is
defined by create-rules of the following form where R is the
set of rights.

cr: TS x TO — 2R

The interpretation is that when subject U of type u creates
an object O of type o the creator U obtains the rights er(u,0)
for O. For example if cc(user) = {file} and cr{user,file)
{own} the creator of a file gets the own right for it. For
readability we usually drop the set parenthesis around sin-
gleton sets, for instance cc(user) = file and cr{user,file) =
own.

Now consider the authorization for internal transforma-
tion. As discussed earlier internal transformation of rights
for an object in a subject’s domain involves consideration of
their types. So what we need is an internal transformation
function of the following form.

itrans: TS x TO x R — 2R
The interpretation of itrans(u,0,x) = {x1,...,Xn} is that a

subject of type u who has the x right for an object of type o
can obtain the xq, ..., x, rights for that object by internal

transformation. For example, the policy that write implies
append and both imply read can be stated in either of the
following ways.

itrans(user, file, w)
itrans(user, file, a)

{a, 1}

itrans(user, file,r) = ¢
(a)
itrans(user, file, w) = a
itrans(user, file,a) = r
itrans(user, file,r) = ¢

(b)

In (a) the transformation from w to r is achieved directly
whereas in (b) it is done indirectly in two steps. We allow for
either formulation in the model. The amplification example
of a stack implemented by a list which in turn is implemented
by a segment can be specified as follows.

itrans(stack-manager, stack, pop)
itrans(stack-manager, stack, push)

{head, tail}

cons

{r, w}
{r, w}
{r, w}

itrans(list-manager, stack, head)
itrans(list-manager, stack, tail)
itrans(list-manager, stack, cons)

1l

Il

All other values of itrans are empty

Here the ability to amplify push and pop to head, tail or
cons is restricted to the stack manager, while amplification
from head, tail and cons to r and w is restricted to the list
manager. Realistically of course these would be fragments
of a larger specification involving additional types.

The internal transformation function generalizes in an
obvious way as follows to amplify sets of rights (as opposed
to single rights).

itrans: TS x TO x 2R - 2R

The interpretation of itrans(u,0,{x1,...,%a}) = {¥1,- - ,¥m}
is that a subject of type u who has all the x; rights specified
on the left hand side for an object of type o can obtain the
rights y1, ..., Ym for that object by internal transformation.
This is useful in situations described as synergistic autho-
rization in [13] and as command authorization in [5]. For
instance consider a situation where a scientist (abbreviated
as sci) needs approvals from a security officer and a patent
officer before he can release a document (abbreviated as doc)
for publication. Say these two approvals are respectively sig-
nified by possession of the a, and ap rights. We can express
this policy as follows.

itrans(sci, doc, {own, as, a}) = release

A scientist then needs to be the owner of a document and
must possess the two approvals before he can obtain the
right to release the document. The synergy in this internal

262

transformation occurs only if we can guarantee that the a,
and aj, rights are obtained from two independent sources. As
we will see this can be achieved by grant transformations.

Grant transformations can be modeled as a grant function
of the following form.

grant: TS x TS x TO x R — 2R

The interpretation of grant(u,v,0,x) = {X1,...,Xa} is that a
subject of type u who has the x right for an object of type o
can grant one or more of the xy, ..., X, rights for that object
to a subject of type v. The unlimited copy flag xc* and the
one-step copy flag xc! of section 2 can then be specified as
follows.

grant(user, user, file, xc*)
grant(user, user, file, xc')
grant(user, user, file, x)

{xc*, xc!, x}
X
¢

The extension to n-step copy flags is obvious. There are
actually several ways of specifying even this rather simple
policy. For instance we could combine grant and internal
transformations to achieve the same net effect as follows.

grant(user, user, file, xc*) = {xc*xc'}
itrans(user, file, xc*) = xc!
grant(user, user, file, xc!) = x
grant(user, user, file,x) = ¢

This property appears to be inevitable in any sophisticated
model. We cannot realistically hope to have a unique speci-
fication for a policy in a general model.

The separation copy flag of section 2 is also easily speci-
fied as follows.

grant(user, security-officer, file, own) = xc
grant(security-officer, user, file, xc} = x
itrans(security-officer, file, xc) = ¢

That is a user who owns a file can delegate the authority to
grant access to that file to a security officer. The security
officer can grant access to that file to other users but cannot
himself access it.

Next let us go back to the example of a scientist who
needed multiple approvals for releasing a document for pub-
lication. We had mentioned that consideration of grants is
required for a complete statement. One possibility is shown
below.

grani(sci, security-officer, doc, own) = review
grant(sci, patent-officer, doc, own) = review
grant(security-officer, sci, doc, review) = a,
grant(patent-officer, sci, doc, review) = a;
itrans(sci, doc, {own, as, ap}) = release

As the owner of a document a scientist can request it be
reviewed by a security-officer and a patent-officer by granting
them the review right. In turn they can grant the scientist

who gave them the review right appropriate approval rights.
Finally the scientist can internally transform these rights to
acquire the release right.

Consider a slight modification to the above policy. Say
that we require separation of duties regarding release of a
document. A scientist is responsible for gathering the nec-
essary approvals. The actual release however must be done
by a librarian who is responsible for cataloging information
about the document before releasing it. To achieve this we
can replace the internal transformation above by the follow-
ing grant transformation.

grant(sci, librarian, doc, {own, as, ap}) release

To do so we can generalize grant as follows in the same way
that itrans was generalized.

grant: TS x TS x TO x 2R — 2R

The interpretation of grant(u,v,0,{x1,...,xn}) = {¥1,---,¥m}
is that a subject of type u who has all the x; rights specified
on the left hand side for an object of type o can grant one
or more of the rights yi, ..., ym for that object to a subject
of type v.

This completes our description of the model. To summa-
rize we have the following definition for transform.

Definition 1 A policy for transformation of rights is stated
in transform by specifying the following (finite) components.

1. Disjoint sets of subject types TS and object types TO.

2. A set of rights R.

. A can-create function cc: TS — 270,
. Create-rules ¢r: TS x TO — 2R,

. An internal transformation function
itrans: TS x TO x 28 — 2R,

. A grant transformation function
grant: TS x TS x TO x 2R — 2R,

Having formulated this abstract model the natural ques-
tion is what can be learned from it. It is clear that the ab-
straction captures a wide variety of powerful features. The
full generality of the abstraction is convenient for specifying
a desired policy. However the question does arise as to what
are the minimal features required to support this model in an
actual implementation. For instance do we really need the
synergistic ability in grant as well as in itrans. The scope of
this paper does not permit us to investigate such questions
completely. We focus on one issue of particular importance.
In their general formulation both itrans and grant are am-
plifying in that they are required to create new rights. Since
this is a powerful facility the question is to what extent can
it be minimized. Let us make this question precise.

263

It is clear that internal transformations are useful only if
they are amplifying in the sense that new rights are obtained.
That is we can assume without loss of generality,

itrans(u,0,R;)) = Ry = RyNRi = ¢

Next consider the grant transformation grant(u,v,0,R;) =
R;. That is possession of R; rights enables transfer of R;
rights. Clearly if RjCR; such a grant is attenuating or non-
amplifying in that the source subject cannot give away rights
that he does not possess. But note that the source subject

may be able to internally amplify the R; rights, so in defin-
ing attenuation we need to also consider implied rights. Now
implied rights can be obtained directly by one application of
ttrans or indirectly by several applications. This leads us to
the following definition.

Definition 2 Let itrans* be the transitive closure of itrans.
A grant transformation is attenuating provided

grant{u,v,0,R;) = R; = R; C R; U itrans*(u,0,R;)
Otherwise it is amplifying.

For example, grant(user,user,file,x) = x is trivially atten-
uating. On the other hand for grant(user,user,file,xc)
x we need to consider the interpretation of the copy flag.
With the assumption that xc is strictly stronger than x, i.e.,
itrans(user,file,xc) = x, the latter grant is attenuating. How-
ever for the separation copy flag with itrans(user,file,xc) = ¢
this grant is amplifying. This is clearly consistent with the
intuitive concept of attenuation.

One can take issue with this definition in that we are
ignoring implied rights in the destination domain. That is
what we really need is the following requirement

R; U itrans*(v,0,R;) C

) = R.
grant(u,v,0,R;) = R; = R; U itrans*(u,0,R;)

Let us call such grants strictly attenuating. This require-
ment is very strong and will not allow for the grants re-
quired to support abstract data types or protected subsys-
tems, as illustrated by our stack example. These features are
of such fundamental importance that it is clear we cannot
limit ourselves to strictly attenuating grants in the frame-
work of transform.

The question therefore is whether or not we can limit our-
selves to attenuating grants. In other words, do amplifying
grants add any power not already available with amplifying
internal transformations? The answer turns out to be no,
L.e., grant amplifications can be built out of internal ampli-
fications. This observation is significant because it allows us
to conceive of mechanisms which only allow internal ampli-
fication and require attenuating grants and yet realize the
power of iransform. To see the redundancy of amplifying
grants consider the separation copy flag specified earlier as
follows.

grant(user, security-officer, file, own)
grant(security-officer, user, file, xc)

Xc
X

These grants are clearly amplifying. An equivalent policy
with attenuating grants is achieved by introducing new right
symbols as follows.

itrans(user, file, own) = delegate
grant(user, security-officer, file, delegate) = delegate
itrans(sec-off, file, delegate) = xc
itrans(sec-off, file, xc) = cando-x
grant(security-officer, user, file, cando-x) = cando-x
itrans(user, file, cando-x) = X

The two amplifying grants of the original policy are respec-
tively simulated by the two sequences above. The general
principle is evident from this example. Each amplifying
grant is simulated by an internal amplification at the source,
followed by a grant with the trivial and attenuating identity
transformation, finally followed by another internal transfor-
mation at the destination.

A general construction can be outlined as follows. Let
r€grant(u,v,0,R;) and r¢R;Uitrans*(u,0,R;). That is r makes
this grant amplifying. Modify the given transform specifica-
tion as follows.

1. Define the new right r.u.v.o.R;. The entire symbol sig-
nifies a single right. The components in this symbol
emphasize that we need a new right for each combina-

tion of the components.
. Modify itrans(u,0,R;) to include r.u.v.o.R;.
3. Modify grant(u,v,0,R;) by replacing r with r.u.v.o.R;.

4. Define itrans(v,o,r.u.v.0.R;) =r.

It is clear that r no longer makes this modified grant(u,v,0,R;)
amplifying. By repeating this procedure we can therefore get
rid of all amplifying grants. Since new rights are introduced
for each iteration of this procedure there is no interaction
between different amplifications removed in this way. The
original amplifying grants are then simulated as follows.

itrans(u,0,R;) = r.u.v.o.R;
ra.v.o.R; € grant(u,v,0,R;)
itrans(v,o,r.w.v.o.R;) =1

regrant(u,v,0,R;) &

The correctness of this construction is self evident. A formal
inductive proof can be given showing every reachable state
with the fo- mer policy has an equivalent counterpart with
the modified policy, and vice versa. The details are tedious
and shed little insight. We summarize the above discussion
by the following theorem.

Theorem 1 It can be assumed without loss of generality that
all grant transformations are attenuating.

264

Next consider the question of whether internal amplifi-
cation is necessary? It appears to be so in the framework
of transform. However by a slight shift of viewpoint we can
replace internal amplification by an attenuating operation.
We will return to this issue in section 4.2.

4 INSTANTIATIONS OF
TRANSFORM

In this section we consider the relation of transform to ex-
isting access-control models, specifically the access-matrix
model as formalized in [6] and the schematic protection model
(SPM) [18]. We have two objectives in doing so. First the
ability to instantiate transform is a measure of the expres-
sive power of these models. Secondly the SPM instantiation
shows that safety is decidable for transform. Whereas for
the access-matrix model transform cannot be instantiated
within its decidable cases. This serves as a demonstration of
the superior analysis framework provided by SPM.

4.1 THE ACCESS-MATRIX MODEL

The access-matrix model was originally proposed by Lamp-
son [8]. The matrix has a row and a column for each subject
and a column for each object. The [I,J] cell contains rights
which subject I possesses for the subject or object J. In the
original formulation a specific set of rules for modifying the
matrix were defined. These correspond to a policy in which
the creator of an object has complete discretion over access
to it. Harrison, Ruzzo and Ullman [6] observed that the rules
for modifying the matrix should properly be determined by
the context for each system. They proposed these rules be
defined by a set of commands. Each command has a condi-
tion part and a body. The condition specifies rights required

to exist in the matrix before the body can be executed for
its actual arguments. The condition can test for presence of
rights but not for their absence. Formally the condition is
composed of terms of the form re[X,Y] where r is a right,
X is a row and Y a column of the matrix. These terms are
combined by conjunction or disjunction but negation cannot
be used. The body consists of a sequence of primitive oper-
ations. The primitive operations enter or delete a right from
a cell of the matrix or create a new row or column or destroy
an existing row or column.

It turns out that in this model, henceforth called HRU,
safety is undecidable under surprisingly weak assumptions.
Specifically it was shown by Harrison and Ruzzo {7] that
safety is undecidable even if the conditions can have at most
two terms. Limiting conditions to a single term is very re-
strictive. We argue that transform cannot be instantiated
with such commands. For simplicity we consider the simpler
form of transformin which only single rights are transformed.
The argument thereby applies a fortiori to the more general
case of transform.

HRU does not have a notion of type built in. However
types can be simulated by right symbols. Let X be of type x.
This can be represented by putting the x right in the [X,X]
cell. This of course requires that the objects of transform be
treated as HRU subjects, since the [X,X] cell requires a row
and column for X. This is acceptable because the only right
in row X is the one representing the type of X. With this
method for simulating types we can instantiate transformin
HRU as follows.

1. Let the set of HRU right symbols be R U TS U TO.

9. For every o€cc(u) with er{(u,0) = {r,...,rx} define the
command:

command create.u.o(U,0)
if uelU,U]
then create row O;
create column O;
enter o in [0,0};
enter r; in [U,0};

enter ry in [U,0];
end

3. For every itrans(u,0,r) = {r1,...,1x} define the com-
mand:

command itrans.u.0.r(U,0)
if ue[U,U] A 0€[0,0] A re[U,0]
then enter r; in [U,0};

enter ry in [U,0];
end

4. For every r;€grant(u,v,o,r) define the command:

command grant.u.v.o.r.r{(U,V,0)
if uelU,U] A ve[V,V] A o€[0,0] A
re[U,0]
then enter 1; in [V,0];
end

The commands simulating itrans and grant have multiple
terms in their conditions. This appears to be inevitable ir-
respective of how we encode the types. So HRU certainly
has the expressive power to simulate transform. However it
cannot do so within its decidable cases for safety.

4.2 THE SCHEMATIC PROTECTION
MODEL

We begin with a brief review of SPM. The dynamic privi-
leges in SPM are tickets of the form Y/x where Y identi-
fies some unique entity (subject or object) and x is a right.
SPM subjects and objects are strongly typed. The type of a
ticket is determined by the type of entity it addresses and the

265

right symbol it carries, that is type(Y/x) is the ordered pair
type(Y)/x. Tickets are acquired in accordance with rules
which comprise the scheme which is defined by specifying
the following (finite) components.

1. Disjoint sets of subject types TS and object types TO.
Let T = TS U TO.

. A set of rights R. The set of ticket types is thereby
TxR.

. A can-create function cc: TS — 2T.

. Create-rules of the form ery(u,v) = ¢/Ry U p/Rq,
cre(u,v) = ¢/R3 U p/Ry.

. A collection of link predicates {link;}.

. A filter function f;: TSxTS — 2T*R for each predicate
link;.

The Create Operation. Subjects of type u can create entities
of type v if and only if v€ce(u). Tickets introduced as the
side effect of creation are specified by a (different) create-
rule for every (u,v) such that v€ce(u). Each create-rule has
two components shown above, where p and ¢ respectively
denote parent and child and the R;’s are subsets of R. When
subject U of type u creates entity V of type v the parent
U gets the tickets V/R, and U/R,. The child V similarly
gets the tickets V/R3 and U/R4. For example, file€ cc(user)
authorizes users to create files. And cry(user,file) = c¢/rw
and cr.(user,file) = ¢ gives the creator r and w tickets for
the created file.

The Copy Operation. A copy of a ticket can be transferred
from one subject to another leaving the original ticket in-
tact. SPM has a copy flag built in which we denote as k to
distinguish it from the copy flags of transform. Possession
of Y/xk implies possession of Y/x but not vice versa. Let
dom(U) signify the set of tickets possessed by U. Let x :k de-
note x or xk, with multiple occurrences in the same context
either all read as x or all as xk. Three independent pieces of
authorization are required to copy Y/x:k from U to V.

1. Y/xk€dom(U), i.e., U must possess Y /xk for copying
either Y/xk or Y/x.

[

. There is a link from U to V. Links are established by
tickets for U and V in the domains of U and V. The
predicate link;(U,V) is defined as a conjunction or dis-
junction, but not negation, of one or more of the fol-
lowing terms for any z€R: U/z€dom(U), U/z€dom(V),
V/zedom(U), V/z€dom(V), and true. Some exam-
ples from the literature are given below {10, 11, 14, 17,
respectively].

linkeg(U,V) V/gedom(U) v U/tedom(V)

link(U,V) = UJtedom(V)
links(U,V) = V/s€dom(U) A U/redom(V)
link,(U,V) = true

3. The last condition is defined by the filter functions
fi: TSxTS — 2T*R_ one per predicate link;. The value
of fi(u,v) specifies types of tickets that may be copied
from subjects of type u to subjects of type v over a
link;. Example values are TxR, TOXR and ¢ respec-
tively authorizing all tickets, object tickets and no tick-
ets to be copied.

In short Y/x:k can be copied from U to V if and only if
Y/xkedom(U) A (Ilink;)[linki(U,V) A y/x:kefi(u,v)]

where the types of U, V and Y are respectively u, v and
y. Note that f; determines whether or not the copied ticket
can have the copy flag. This completes our review of SPM.
Motivation for defining SPM in this manner and its resulting
expressive power are discussed in [17, 18, 19].

Now consider how transform can be instantiated in SPM.
Note the SPM copy operation is attenuating in that a sub-
ject must possess a ticket which is copied from its domain.
We have seen in theorem 1 that a transform policy can be as-
sumed to have only attenuating grants. To make the grants
correspond to SPM copy operations we can go one step fur-
ther and replace every grant(u,v,0,R;} = R; by the following

grant(u, v, o, R; U itrans*(u,0,R;)) = R;

This will guarantee that R; is a subset of rights on the left
hand side. We must still deal with amplifying internal trans-
formations in some way. To do so we simulate a transform
object as an SPM subject of limited abilities. The crucial ad-
ditional assumption is that each object possesses all rights for
itself. These rights can always be introduced by the create-
rules. Since an object is a passive entity this assumption is
quite harmless. Moreover we do not allow grants to object
so these are the only rights an object will ever possess. Also
we understand that a grant from an object to a subject is
actually initiated by the subject.

With this setting we can simulate internal transforma-
tions by SPM copy operations. Consider itrans*(u,0,R;) =
R;. Let U be a transform subject of type u and O a trans-
form object of type o. These are respectively modeled as
SPM subjects of types u and o respectively. Let the posses-
sion of O/R; by U set up a linkg, from O to U. The internal
transformation is effected by defining fr;(u,0) to be o/R;.

The only tickets that O can ever possess are tickets for itself
so the copy operation authorized in this manner has pre-
cisely the same effect as the internal transformation. The
SPM copy flag is irrelevant to the construction and we as-
sume it is allowed to be carried along by every filter function
we define.

This construction is formally expressed by the follow-
ing SPM scheme for a given instance of transform, which
is assumed (without loss of generality) to have attenuating
grant’s.

266

1. TS =TSUTO, TO = ¢

2. R' = {x:k| xeR}

3. For all ueTS: cc’(u) = cc(u)
Tor all 0€TO: cc’(0) = ¢

4. ¢rp'(u,0) = ¢/Ry, where cr{u,0)=R;
cre!(u,0) = ¢/R

5. Define the following link predicates
link,(U,V) = true
linkg;(0,U) = O/R;€dom(U), for all R;CR

6. Let Rjk denote {xk| x€R;}

Define fr;(o,u) = o/R;k, where itrans*(u,0,R;) = R;
Define fu(u,v) = {o/R;k| (3R;) grant(u,v,0,R;)=R;}
All other values of the filter functions are empty

The simulation can be summarized as follows.

, . _ linkg, (O,U)=0/R;€dom(U)
itrans*(u,0,R;)=R; & { fr (o) = ofR;k
linky(U,V) = true
r€grant(u,v,0,R;) & { oftkef.(u,v)
An internal transformation is replaced by a subject copy-
ing the transformed tickets from the object’s domain. For
grant transformations we have already shown that we can
assume r€R; so they are reduced to copying a ticket over
the universal link. Formal correspondence between the orig-
inal transform policy and the constructed SPM scheme can
be established by a straightforward inductive proof that the
reachable states in both cases are equivalent.

The SPM instantiation is instructive in two respects.
Firstly it establishes that safety is decidable for transform.
This follows from the known result for SPM [18] that safety
is decidable provided cc is acyclic in the following sense: the
directed graph with edges {(u,v)| v€cc(u)} is acyclic. Since
the only edges in this graph for cc’ are from types in TS to
types in TO, cc’ is trivially acyclic. Moreover this graph for
cc’ is sparse which guarantees that the decision procedure is
efficient [18].

Secondly the instantiation shows that amplification is not
required to support transform. Internal amplification can be
simulated by an attenuating copy operation so long as the
amplified tickets are available in some domain. Our con-
struction in particular requires that object tickets be created
along with each object and stored as part of the object itself.
This is a very reasonable implementation. Its advantage is
that creation of tickets (capabilities) is thereby coupled with
object creation, at which point we anyway need to create
tickets in the creator’s domain. By isolating ticket creation
in this manner we can limit the use of this very sensitive
function. Thereafter tickets can only be copied from one
domain to another in an attenuating fashion.

We note that Minsky [12] establishes a similar result for
his operation-control model. In addition to tickets this model
has a new kind of privilege called an activator. Minsky shows
that abstract data types in particular can be realized by at-
tenuating external and internal transformations of activa-
tors and tickets. Our construction achieves the same effect
without requiring activators. Instead we replace amplifying
internal transformations by attenuating copy operations.

5 CONCLUSION

To summarize we have described a wide variety of access-
control mechanisms from the literature with the common
theme of transformation of access rights. We have unified
these mechanisms in a model called transform. We have
shown that transform cannot be instantiated within the cases
of the access-matrix model [6] for which safety is decidable.
On the other hand transform can be instantiated within the
efficiently decidable cases of SPM [18]. We have also shown
that transform can be implemented without any amplifying
primitives.

We are convinced that any protection model which claims
to be of general applicability should be able to instantiate
transform. In fact such a model is likely to need facilities be-
yond those provided by transform. The encouraging result
is that safety analysis appears to be feasible for such mod-
els. It is also encouraging that amplification can actually be
built out of non-amplifying primitives since this will simplify
implementations.

Our examples demonstrate that fairly complicated poli-
cies arise in even rather simple situations. The examples
have used a few types of subjects and objects. Realisti-
cally in large organizations we would have hundreds of types.
The complexity will rapidly multiply. We believe that au-
thorization policies will necessarily be formulated in terms
of local and incremental considerations of the kind we have
discussed. Safety analysis becomes very important to en-
sure that the cumulative global effect of local incremental
authorizations is consistent with our objectives.

Looking towards the future it is clear that much work
remains to be done to produce a truly general and powerful
model for access-control. It is not enough to develop a model.
We must also develop methodologies for specifying policies in
the model. And of course the model must be implementable
in terms of a small number of primitive mechanisms.

267

References

[1] Clark, D.D. and Wilson, D.R. “A Comparison of Com-
mercial and Military Computer Security Policies.” IEEE
Symposium on Security and Privacy, 184-194 (1987).

(2] Cohen, E. and Jefferson, D. “Protection in the Hydra
Operating System.” 5th ACM Symposium on Operating

Systems Principles, 141-160 (1975).

Dennis, J.B. and Van Horn, F.C. “Programming Seman-
tics for Multiprogrammed Computations.” Communica-

tions of ACM 9(3):143-155 (1966).

Graham, G.S. and Denning, P.J. “Protection - Princi-
ples and Practice.” AFIPS Spring Joint Computer Con-
Jerence 40:417-429 (1972).

{5

Harkness, W. and Pittelli, P.A. “Command Authoriza-
tion as a Component of Information Integrity.” Com-
puter Security Foundations Workshop, 219-226 (1988).

{6

Harrison, M.H., Ruzzo, W.L. and Ullman, J.D. “Protec-
tion in Operating Systems.” Communications of ACM
19(8):461-471 (1976).

Harrison, M.H. and Ruzzo, W.L. “Monotonic Protec-
tion Systems.” In DeMillo, R.A., Dobkin, D.P., Jones,
A.K. and Lipton, R.J. (Editors). Foundations of Secure
Computations. Academic Press (1978).

[8

Lampson, B.W. “Protection.” 5th Princeton Symposium
on Information Science and Systems, 437-443 (1971).
Reprinted in ACM Operating Systems Review 8(1):18-
24 (1974).

{9

Linden, T.A. “Operating System Structures to Support
Security and Reliable Software.” ACM Computing Sur-
veys 8(4):409-445 (1976).

[10] Lipton, R.J. and Snyder, L. “A Linear Time Algo-
rithm for Deciding Subject Security.” Journal of ACM

24(3):455-464 (1977).

(11} Lockman, A. and Minsky, N. “Unidirectional Transport
of Rights and Take-Grant Control.” IEEE Transactions

on Software Engineering SE-8(6):597-604 (1982).

(12] Minsky, N. “The Principle of Attenuation of Privileges
and its Ramifications.” In DeMillo, R.A., Dobkin, D.P.,
Jones, A.K. and Lipton, R.J. (Editors). Foundations of

Secure Computations. Academic Press (1978).
13

Minsky, N. “Synergistic Authorization in Database Sys-
tems.” 7th International Conference on Very Large Data
Bases, 543-552 (1981).

14

Minsky, N. “Selective and Locally Controlled Transport
of Privileges.” ACM Transactions on Programming Lan-
guages and Systems 6(4):573-602 (1984).

(15]

[16]

(17)

ey
o0
o0

[19]

[20]

[21]

22]

Moffett, J.D. and Sloman, M.S. “The Source of Author-
ity for Commercial Access Control.” IEEE Computer
21(2):59-69 (1988).

Saltzer, J.H. and Schroeder, M.D. “The Protection
of Information in Computer Systems.” Proceedings of
IEEFE 63(9):1278-1308 (1975).

Sandhu, R.S. and Share, M.E. “Some Owner Based
Schemes with Dynamic Groups in the Schematic Protec-
tion Model.” IEEFE Symposium on Security and Privacy,
61-70 (1986).

Sandhu, R.S. “The Schematic Protection Model:
Its Definition and Analysis for Acyclic Attenuating
Schemes.” Journal of ACM 35(2):404-432 (1988).

Sandhu, R.S. “Expressive Power of the Schematic Pro-
tection Model.” Computer Security Foundations Work-
shop, 188-193 (1988).

Sandhu, R.S. “Transaction Control Expressions for Sep-
aration of Duties.” 4th Aerospace Computer Security
Applications Conference, 282-286 (1988).

Report of the Invitational Workshop on Integrity Policy
in Computer Information Systems (WIPCIS), Bentley
College, MA, October 1987.

Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R.,
Pierson, C. and Pollack, F. “Hydra: The Kernel of a
Multiprocessor Operating System.” Communications of
ACM 17(6):337-345 (1974).

268

