Proc. IEEE Symposium on Research in Security and Privacy, OQakland, California, May 1992, pages 148-161.

Non-Monotonic Transformation of Access Rights

Ravi S. Sandhu and Gurpreet S. Surt

Center for Secure Information Systems

Department of Information and
Software Systems Engineering

George Mason University
Fairfax, VA 22030-4444

Abstract

The concept of transformation of access rights was
recently introduced wn the literature by Sandhu. It has
been previously shown that monotonic transformations
unify a number of diverse access control mechanisms
such as amplification, copy flags, separation of duties
and synergistic authorization. In this paper we demon-
strate the importance and expressive power of non-
monotonic transformations. A formal model called
Non-Monotonic Transform (NMT) is defined. A dis-
tributed itmplementation of NMT is proposed using a
client-server architecture. The itmplementation s re-
markably simple and modular in concept. It is based
on access control lists and allows for a variety of pow-
erful revocation operations.

1 Introduction

The concept of transformation of access rights was
recently introduced by Sandhu in [14]. Tt was shown
in [14] that this concept unifies a surprising variety
of access-control mechanisms found in the literature.
If these various mechanisms were to be lumped to-
gether, the result would be a complex ad hoc model
in totality. Instead it was demonstrated that a few
basic concepts, viz., strong typing, grant transforma-
tions and internal transformations, suffice to express
all these mechanisms and more.

The work in [14] was limited to monotonic trans-
formations, i.e., transformations which only add ac-
cess rights in the system but do not remove previ-
ously existing rights. It was shown in [14] that mono-
tonic transformations encompass diverse access con-
trol mechanisms such as amplification, copy flags, syn-
ergistic authorization and some common forms of sep-

aration of duties.

In this paper we extend the concept of transforma-
tion to include non-monotonic transformations, i.e.,
transformations which not only add access rights in
the system but in the process also remove previously
existing rights. We demonstrate the importance and
expressive power of non-monotonic transformations by
means of a number of examples.

A central contribution of this paper is the formu-
lation of a model called NMT (for Non-Monotonic
Transform). In particular we show that NMT has
a remarkably simple implementation in a distributed
environment, using a client-server architecture. The
implementation is based on access control lists and al-
lows for a variety of powerful revocation operations.
Moreover NMT has decidable safety analysis (i.e., the
determination of whether or not a given subject can
ever acquire a particular access right to a given ob-
ject).

The proposed implementation is “object-oriented”
in the sense that each server acts not only as the ref-
erence monitor for objects that it manages, but 1s also
responsible for exporting semantically correct abstract
operations on these objects. In other words the servers
are part of the TCB (Trusted Computing Base), rather
than subjects running on the TCB. This view has con-
siderable benefits for integrity-oriented applications.

The rest of this paper is organized as follows. Sec-
tion 2 discusses the basic concepts of monotonic and
non-monotonic transformations in an informal man-
ner. The NMT model is motivated and formalized in
section 3. Two detailed security policies expressed in
NMT are discussed in section 4. The proposed imple-
mentation of NMT is given in section 5. The imple-
mentation is further illustrated in context of a specific
security policy in 6. Section 8 concludes the paper.

2 Transformations

Transformation of access rights involves two basic
operations.

1. Internal transformation allows a subject who pos-
sesses certain rights for an object to obtain addi-
tional rights. In the course of doing so the subject
may lose one or more rights previously possessed
by the subject.

2. Grant transformation occurs in the granting of ac-
cess rights by one subject to another. The general
idea is that possession of a right for an object by
a subject allows that subject to give some other
rights for that object to another subject. Again,
in the course of this process the subject may lose
one or more rights previously possessed by the
subject.

In general these transformations are non-monotonic
in that they add some new rights to the system, as
well as delete previously existing rights. In the special
case where there is no deletion of rights, we say the
transformations are monotonic.

2.1 Monotonic Transformations

Let us first briefly review some monotonic transfor-
mations from [14]. The simplest example of monotonic
internal transformation of rights arises when one right
is treated stronger than another. Consider the typical
read, write and append operations on a file. From the
semantics of these operations it is clear that posses-
sion of write should imply possession of append. The
ability to obtain a weaker right by virtue of possess-
ing a stronger one allows a subject to work with the
least privileges needed. In some cases we require the
stronger implication that write implies append and
both imply read. The motivation is one of integrity
in that a subject who writes a file should be able to
check whether the writing has been carried out prop-
erly, which requires he be able to read the file. This
is of course appropriate only in situations where non-
disclosure is not an issue.

A more interesting application of monotonic inter-
nal transformation arises in situations described as
synergistic authorizations [11]. For instance consider
a situation where a scientist needs approval from a
security-officer and a patent-officer before he can re-
lease a document for publication. Say these two ap-
provals are respectively signified by possession of the
as and ap rights. A scientist then needs to be the

owner of a document and must possess the two ap-
provals before he can obtain the right to release the
document. The synergy in this internal transforma-
tion occurs only if we can guarantee that the as and
ap Tights are obtained from two independent sources.
As we will see this can be achieved by grant transfor-
mations. This example is discussed in greater detail
in section 4.

Next consider grant transformations. A simple
form of grant transformation occurs with the copy flag
(c¢). The concept goes back to the earliest abstract
models for access-control [7] and is a fundamental as-
pect of discretionary controls. The xc right (a privilege
x with a copy flag ¢ appended to it) is typically made
available to the creator of each object. In many access
control models the ability to grant access 1s treated as
stronger than the ability to perform access, that is
possession of xc¢ implies possession of x. Let us for the
moment make this assumption, which of course is an-
other example of monotonic internal transformation.
Now consider the following policies.

1. A user who possesses the xc right for an object
can grant the x right for that object to another
user.

2. A user who possesses the xc right for an object
can grant the xc or x right for that object to an-
other user.

These are both examples of grant transformations. In
the first case the xc right is transformed to the x right
as part of the grant operation. In the second case there
is a choice in the transformation, presumably at the
volition of the subject doing the granting. The choice
is between the identity transformation of xc to itself
or an attenuating transformation of xc to x.

Numerous additional examples of monotonic grant
and internal transformations are given in [14]. These
include amplification for abstract data types, n-step
copy flags, separation of duties, and variations of the
simple-security and x-properties.

2.2 Non-Monotonic Transformations

It is evident that monotonic transformations are
a powerful and expressive concept in access control.
Nevertheless, monotonic transformations have sub-
stantial limitations. For example, transfer-only priv-
ileges (e.g., ownership) and countdown privileges are
inherently non-monotonic. It is a well known security
principle to have only one owner of each object. This
facilitates implementation of auditing and account-
ability procedures in a system. A situation may arise

where a user needs to delegate authority to another
user to work on an object on his behalf. To achieve
this, the creator of the document needs to grant the
other user the own right for that object. By mak-
ing this grant the creator is stripped of the ownership
privilege, and the other user becomes the owner of that
object. A similar concept can be found in the UNIX
operating system. The “chown” command, transfers
the ownership to the new user with the user issuing the
request losing the privilege for the object. Another ex-
ample of a transfer-only privilege is a write privilege in
a situation where we wish to have mutually exclusive
writing to an object.

The expressive power of a non-monotonic model
can be further appreciated in a situation where stu-
dents submit their assignments electronically. Once a
student has submitted an assignment for grading the
student should lose the write privilege for it. Here the
grant transformation from the student to the professor
for grading the answer sheets is a non-monotonic op-
eration in which the student loses the write privilege
for the answer-sheets. We will return to this example
in section 4.

3 The NMT Model

In this section we formally define and motivate the
Non-Monotonic Transform (NMT) model. The pro-
tection state in NMT can be viewed in terms of the
familiar access matrix [7]. There is a row for each sub-
ject in the system and a column for each object. In
NMT the subjects and objects are digjoint. NMT does
not define any access rights for operations on subjects,
which are assumed to be completely autonomous en-
tities.

NMT consists of a small number of basic constructs
and a language for specifying the commands which
cause changes in the protection state. For each com-
mand we have to specify the authorization required to
execute that command, as well as the effect of the com-
mand on the protection state. We generally call such
a specification as an authorization scheme (or simply
scheme) [12].

A scheme in the NMT model is defined by specify-
ing the following components.

1. A set of access rights R.

2. Disjoint sets of subject and object types, TS and
TO respectively.

3. A collection of NMT commands. Each command
specifies the authorization for i1ts execution and

the changes in the protection state effected by it.

The scheme is defined by the security administrator
when the system is first set up and thereafter remains
fixed. Each component of the scheme is discussed in
turn below.

3.1 Rights

Each system has a specified set of rights R. It is
important to understand that R is not specified in
the model but varies from system to system. We will
generally expect R to include the usual rights such as
own, read, write, append and execute. But this is not
required by the model. We also expect R to generally
include more complex rights, such as review, grade-
it, release etc. The meaning of these rights will be
explained wherever they are used in our examples.

The access rights serve two purposes. Firstly, pres-
ence of a right, such as r, in the [S, O] cell of the access
matrix may authorize S' to perform, say, the read op-
eration on O. Secondly, presence of a right, say o,
in [S, O] may authorize S to perform some operation
which changes the access matrix, e.g., by entering »
in [S7,0]. In other words, S as the owner of O can
change the permissions in the access matrix so that
S’ can read O. The focus of NMT is on this second
purpose of rights, i.e., the authorization by which the
access matrix itself gets changed.

3.2 Types of Subjects and Objects

The notion of type is fundamental to NMT. All
subjects and objects are assumed to be strongly typed.
Strong typing requires that each subject or object is
created to be of a particular type which thereafter
does not change. The concept of type is a familiar
one in computer science, and has a well-established
tradition in the security arena. Its application in NMT
is to group together subjects and objects into classes
(i.e., types) so that instances of the same type have
the same properties with respect to the authorization
scheme.

Strong typing is analogous (but not identical) to
tranquility in the Bell-LaPadula style of security mod-
els [2], whereby security labels on subjects and objects
cannot be changed. The adverse consequences of un-
restrained non-tranquility are well known [4, 9, 10].
Similarly, non-tranquility with respect to types has
adverse consequences for the safety problem [15].

NMT requires that a disjoint set of subject types,
TS, and object types, TO, be specified in a scheme.

For example, we might have TS={user, security-
officer} and TO={user-files, systems-files} with the
significance of these types indicated by their names.

3.3 NMT Commands

There are four kinds of commands in NMT.
1. Object Creation commands.
2. Grant Transformation commands.
3. Internal Transformation commands.
4. Revocation commands

These commands are described in detail below.

3.3.1 Creation Commands

First the formalism to create objects by subjects is
presented.’ Object creation is specified by a finite
number of creation commands, each of which has the
following format.

CREATE(S: u, O: o)
create object O;
enter Y into [S, OJ;

end

This command is interpreted as saying that a subject
S of type u can create an object O of type o. The effect
of creation is that the creator gets Y = {y1,...,¥m}
rights for the newly created object. In terms of the
access matrix, a new column for O is created with all
cells empty except for [S,0] which contains the rights
yi, - ym}

Each CREATE command can be invoked, much
like a procedure call, by substituting actual param-
eters for the formal parameters. However the com-
mand is executed only if the types of the subject and
the object involved match the types of the formal pa-
rameters. It is further required that object O does not
exist in the system, so that each object 1s created with
a unique identity. In specifying the CREATE com-
mands the security-administrator of the system can
only specify the variables Y, and the subject and ob-
ject types u and o respectively. The general structure
of the CREATE procedure cannot be changed, and
is a fixed component of NMT.

For example, consider a scheme where subjects of
type user are authorized to create objects of type file,

1We have employed a procedural notation for defining NMT
command in preference to a set theoretic notation. This is due
to our focus in this paper on implementation issues, which are
easier to relate to the formalism with a procedural notation.

and upon creation of a file the creator gets the own
right for 1t. This is specified by the following NMT
command.

CREATE(S: user, O: file)
create object O;
enter {own} into [S, OJ;
end

The same scheme might also include the following
command.

CREATE(S: user, O: doc)

create object O;

enter {own, read, write} into [S, OJ;
end

This authorizes users to create objects of type doc,
and as a result of creation get the own, read and write
rights for the object. Further examples of the CRE-
ATE command will be given in section 4.

3.3.2 Grant Transformation Commands

A grant transformation command has the general for-
mat given below.

GRANT_{X} (S1: u, S2: v, O: 0)
if X C [S1, O] then
enter Y into [S2, O];
delete 7 from [S1, O];

end

Here X, Y, and Z are subsets of R, with Z required
to be a subset of X. A grant transformation is inter-
preted as follows: subject S1 of type u can grant Y
= {y1,...,ym} rights for an object O of type o to sub-
ject S2 of type v provided S1 has X = {x3...,x, } rights
for O, but in the transformation S1 will lose the Z =
{71...,21} rights for O.

GRANT_{X} is a conditional procedure, where
the possession of X rights in the domain of the subject
granting the rights is checked prior to executing the
enter and delete primitives. The security adminis-
trator can choose X, Y, Z, u, v and o, while specifying
each GRANT command. The rest of the structure
of a GRANT command is fixed as part of NMT and
cannot be altered.

The transfer-only privilege of ownership, discussed
in the previous section, can be easily expressed by the
following GRANT command.

GRANT {own} (S1: user, S2: user, O: file)
if {own} C [S1, O] then
enter {own} into [S2, OJ;
delete {own} from [S1, OJ;

end

Transfer of ownership of objects in a system 1s a com-
mon occurrence, and underscores the importance of
non-monotonic operations.

A monotonic grant transformation is a special case
of our GRANT command, in which Z 1s empty. In
such cases we will omit the delete primitive from the
body of the command. For example, the following is
a monotonic command

GRANT {own} (S1: user, S2: user, O: file)
if {own} C [S1, O] then
enter {read} into [S2, O];
end

which allows the owner of a file to grant read access for
that file to another user, without affecting ownership
of the file.

The example of a mutually exclusive write privilege,
discussed in section 2, can be expressed in NMT as
follows.

GRANT _{write} (S1: user, S2: user, O: file)
if {write} C [S1, O] then
enter {write} into [S2, O];
delete {write} from [S1, O];

end

Here user S1 can give away the write access to O but
only by losing it in the process. The motivation is one
of safety so that both users do not end up writing to
the file concurrently.

3.3.3 Internal Transformation Commands

An internal transformation command has the general
format given below.

ITRANS_{X} (S: u, O: 0)
if X C [S, O] then
enter Y into [S, OJ;
delete Z from [S, O];

end

As in grant transformation Z is a subset of X, and
X and Y are subsets of R. The interpretation of this
command is that a subject S of type u who has the
X = {x1...,xn} rights for an object O of type o can
obtain the Y = {yj...,ym} rights for O by internal
transformation, but in the process S will lose the rights
Z ={z...,7} for O.

This is also a conditional procedure where the sys-
tem checks for the presence X rights in the [S,0] cell
of the matrix, before executing the command. The
security-administrator specifies X, Y, Z and the types
of the subject and object involved, i.e., u and o re-
spectively, for each ITRANS command.

With this notation in place it is easy to express the
n-step copy flag discussed in section 2. To understand
the ITRANS command given below we define the
xgive privilege first. It basically allows a user to do a
one time grant of the x access to another user. This is
expressed by the following non-monotonic grant com-
mand.

GRANT _{xgive} (S1: user, S2: user, O: file)
if {xgive} C [S1, O] then
enter {x} into [S2, OJ;
delete {xgive} from [S1, OJ;

end

Having defined xgive, the n-step copy flag policy is
expressed by the following sequence of n ITRANS
commands.

ITRANS _{xc"} (S: user, Otfile)
if {xc"} C [S, O] then
enter {xc"~1 xgive} into [S, OJ;
delete {xc"} from [S,0];

end

ITRANS {xc®~1} (S: user, Ofile)
if {xc"~1} C [S, O] then
enter {xc"~? xgive} into [S, OJ;
delete {xc"~!} from [S,0];

end

ITRANS_{xc} (S: user, Ofile)
if {xc} C [S, O] then

enter {xgive} into [S, OJ;

delete {xc} from [S,0];

end

The above policy simulates a countdown copy flag ac-
cess right, in which S by virtue of possessing xc" for
O can grant x for O exactly n times to other users.

If the Z set of rights is an empty set, the internal
transformation reduces to its monotonic case. In such
cases the delete command is omitted from the body
of ITRANS. For example, consider the policy that
write implies both append and read with no deletion
of rights. This i1s expressed as shown below.

ITRANS {write} (S: user, O:file)
if {write} C [S, O] then
enter {append} into [S, OJ;
end

ITRANS {write} (S: user, O:file)
if {write} C [S, O] then
enter {read} into [S, OJ;
end

3.3.4 Revocation Commands

In distributed systems implementing revocation 1s a
major problem, since the subjects are completely au-
tonomous with no centralized authorities enforcing
security. There are various issues with respect to
which the implementation of revocation can be com-

pared [16].

1. Partial or Complete: Whether it is possible to
revoke a specific right or whether all rights have
to be revoked to get any sort of denial of access
in the system?

2. Immediate or Delayed: If the implementation ex-
ecutes revocation immediately or 1t comes into
force only the next time the subject tries to ac-
cess the object?

3. Selective or General: Does the revocation process
affect all users or a select group of users having
access over the object?

4. Temporary or Permanent: Is access to be denied
permanently or if once it is revoked, is it retriev-
able?

A major advantage of a client-server architecture with
a stateless server is that revocation takes effect imme-
diately. Hence our implementation proposes to have
stateless servers providing for immediate revocation.
On the other aspects enumerated above our proposal
provides for each of the possibilities identified.

We propose a simple revocation policy in NMT:
only the owners of objects can revoke rights of other
subjects for it. If an owner of an object grants a right
to a second user and the second user in turn grants
the right to a third user, only the owner is able to
revoke the right for the second or third users. We
provide revocation by using a dynamic ACL. When
revocation is requested, the revoked rights are simply
deleted from the list.

The command for Partial revocation is given below.

REVOKE(S], 52, O, Z: set of rights)
if {own} C [S1, O] then
delete Z from [S2, O];

end

7 1s the only variable in this command which can be
specified by the subject invoking the command. This

command is interpreted as saying that if subject S1
is the owner of object O it can revoke Z = {z;...,7}
rights of a subject S2 for the object O. This is a con-
ditional procedure as well where the presence of own
right is checked in [S1, O] before deleting Z rights from
[S2, O]. Note that typing is not a relevant factor in this
owner-based revocation.

Our syntax for REVOKE is slightly different that
the syntax for the ITRANS and GRANT because
the nature of REVOKE command is somewhat dif-
ferent. In particular 7Z is a variable here which can
take on any value as determined by the subject in-
voking the command, whereas in the GRANT and
ITRANS commands 7 is fixed by the security policy
and therefore is not a argument to the command.

The owner of an object has the flexibility either to
have complete revocation (i.e. to revoke all the rights
of other subjects for the object) or to invoke partial
revocation (i.e. to revoke some subset of the rights).
For partial revocation the server only deletes the rights
{z1...,2i} from the ACL that are specifically mentioned
in the REVOKE command. For complete revocation
the owner needs to specify all the rights a subject pos-
sesses or use the REVOKE-ALL command discussed
below. The REVOKE-ALL command for complete
revocation has the following format.

REVOKE-ALL(S1, O)
if {own} C [S1, O] then
forallS2+#£S1
do [S2, O] := ¢;

end

This command is more powerful than the previous
REVOKE command in that it eliminates all accesses
to the object O by subject S2 other than the owner
S1 in a single execution.

Our implementation has facilities for total denial of
access as required in the TCSEC [5]. Total denial of
access 1s indicated by the null right represented by the
symbol L. This is a special right, whose occurrence in
the ACL invalidates all other rights for that subject.
So long as a subject “possesses” the L right in an ob-
ject’s ACL, all access rights the subject may acquire
through GRANT or ITRANS commands will not
take effect, i.e., denial of access holds for these addi-
tional rights as well. This i1s a feature of permanent
revocation.

REVOKE(SL, S2, O, 1)
if {own} C [S1, O] then
enter {1} into [S2, O];
end

In short if there is a L present it supersedes all
other rights that may be present and implies that the
object 1s totally inaccessible to that subject.

3.4 Summary

This completes our definition of the NMT model.
To summarize the NMT model, we have the follow-
ing definition. A scheme for transformation of rights
is stated in NMT by specifying the following compo-
nents.

1. A set of rights R.

2. Disjoint sets of subject types TS and object types
TO.

3. A finite set of NMT commands in the following
format.

(a) Object Creation commands.

CREATE(S: u, O: o)
create object O;
enter Y into [S, OJ;

end

(b) Grant Transformation commands.

GRANT_{X} (S1: u, S2: v, O: o)
if X C [S1, O] then
enter Y into [S2, OJ;
delete Z from [S1, O];

end
(¢) Internal Transformation commands.

ITRANS_{X} (S:u, O: v)
if X C [S, O] then
enter Y into [S, OJ;
delete Z from [S, O];

end
4. The three Revocation commands.

(a) REVOKE(SI, S2, O, Z: set of rights)
if {own} C [S1, O] then
delete Z from [S2, O];
end
(b) REVOKE-ALL(S1, 0)
if {own} C [S1, O] then
forallS2#51
do [S2, O] := ¢;
end
(c) REVOKE(S1, $2, O, L)
if {own} C [S1, O] then
enter {1} into [S2, O];
end

In all these commands X, Y, and Z are subsets of R.
Moreover Z is also a subset of X.

Revocation commands are usually not listed in the
definitions of our schemes since they are fixed in NMT
and do not vary from scheme to scheme.

3.5 Safety Analysis of NMT

Safety analysis determines, for a given scheme
and initial state, whether or not it is possible for a
given privilege to be acquired by a particular sub-
ject. Safety analysis issues were first formalized by
Harrison, Ruzzo and Ullman [6] in a model commonly
known as HRU. It has been previously shown by Lip-
ton and Snyder [8] that for the case of HRU with
absence of subject creation safety i1s decidable. Now
NMT allows only object creation with no provisions
for subject creation. It can be shown that NMT is
subsumed by this subcase of HRU. This demonstra-
tion is omitted here due to lack of space. It does follow
that safety is decidable for NMT.?

4 Example Schemes

This section provides two detailed schemes in NMT
so as to demonstrate the natural expressive power of
the model. The examples include both monotonic as
well as non-monotonic aspects.

4.1 Grading Example

Consider the example of a class in which a profes-
sor gives the students a take-home test, whose solu-
tion is to be prepared and submitted electronically.
A student creates a document called Answer-Sheet on
which he/she writes the answers. As a result of cre-
ating Answer-Sheet, the student gets the own, read
and write privileges for it. Once the solution has been
completed, Answer-Sheet is submitted to the profes-
sor for grading. To prevent the student from altering
Answer-Sheet once it has been submitted for grad-
ing, it is imperative that the student loses the abil-
ity to write on Answer-Sheet. In other words, sub-
mission of the Answer-Sheet will be by means of a
non-monotonic grant transformation. We will arrange
that the professor, to whom Answer-Sheet has been
submitted for grading, can acquire read and append
access to Answer-Sheet by internal transformations.

Tt should be noted that the decision procedure of [8] has
exponential complexity. Because of the simplicity of NMT rel-
ative to the general case considered in [8], we are hopeful that
efficient safety analysis for NMT can be achieved.

The student will be allowed to retain the read privi-
lege for Answer-Sheet, so as to discuss the grading.
An NMT scheme for this policy is shown below.

1. R = {own, read, write, append, grade-it}
2. TS = {student, faculty}, TO = {answer-sheets}

3. The commands of the scheme are expressed be-
low.

CREATE(S: student, O: answer-sheets)
create object O;
enter {own, read, write} into [S, O];
end

GRANT _{own, write} (S1: student, S2: faculty,
O: answer-sheets)

if {own, write} C [S1, O]; then

enter {grade-it} into [S2, O];

delete {write} from [S1, O];

end

ITRANS {grade-it} (S: faculty, O: answer-sheets)
if {grade-it} C [S, O] then
enter {read, append} into [S, O];
end

The subjects in this system are of the types faculty
and student, for professors and students respectively.
There 1s only one object type, viz., answer-sheets.

The student in our scenario, creates Answer-Sheet
using the CREATE command above, prepares the so-
lution, submits it for grading to the professor by using
the GRANT _{own,read} command, who then uses
the ITRANS _{grade-it} command to acquire read
and append access to Answer-Sheet. Realistically, this
would be a fragment of a larger scheme which included
additional object types and perhaps additional subject
types to deal with other access control aspects of the
overall system policy.

4.2 Document Release Example

Next let us take the case of a scientist who cre-
ates a document and consequently gets the own, read
and write privileges for it. We stipulate that prior to
releasing this document for publication, the scientist
needs approvals from two separate and independent
sources. The security-officers and the patent-officers
of the organization are the two types of users who can
grant the scientist each of these separate approvals.
They, of course, need to review the document before
granting approval.

After preparing the document for publication, the
scientist can internally transform the own right to
acquire the seek-approval right, which is the neces-
sary authorization to request the security and the
patent officers to review the document. This is a
non-monotonic transformation in which the scientist
gets seek-approval privilege but in the process loses
the write privilege for the document. This is done to
ensure that the scientist is not able to alter the docu-
ment once the review process has started. In order to
enforce this point of the policy the write privilege of
the scientist is deleted once the request for a review of
the document has been invoked.3

With the seek-approval right for a document,
the scientist can request the security-officer and the
patent-officer to review the document. Once the
security-officer and the patent-officer have reviewed
the document, they grant the scientist their respec-
tive approvals. And after granting their approvals, it
is reasonable to disallow any further attempts by them
to review the document. Thus their review privilege
for the document is deleted at this point.

Now, having obtained both approvals the scientist
can internally transform and acquire the release priv-
ilege needed to release the document for publication.

This policy is expressed by the following NMT
scheme.

1. R = {own, read, write, seek-approval, review, a,
ap, release}

2. TS = {sci, sec-off, pat-off}, TO = {doc}

3. The commands of the scheme are given below.

CREATE(S: sci, O: doc)

create object O;

enter {own, read, write} into [S, OJ;
end

ITRANS {own, write} (S: sci, O: doc)
if {own, write} C [S, O] then

enter {seek-approval} into [S, O];
delete {write} from [S,0];

end

GRANT _{seek-approval} (S1: sci, S2: sec-off, O:doc)
if {seek-approval} C [S1, O]; then
enter {review} into [S2, O];
end

3Tt is assumed, and must be ensured by the scheme, that no
subject other than the owner in the system can possesses the
write privilege for objects of type doc.

GRANT _{seek-approval} (S1: sci, S2: pat-off, O:doc)
if {seek-approval} C [S1, O]; then
enter {review} into [S2, OJ;
end

GRANT {review} (S1: sec-off, S2: sci, O: doc)
if {review} C [S1, O]; then
enter {ag} into [S2, OJ;
delete {review} from [S1, OJ;
end

GRANT {review} (S1: pat-off, S2: sci, O: doc)
if {review} C [S1, O]; then
enter {a,} into [S2, O];
delete {review} from [S1, OJ;
end

ITRANS {aq, ap} (S: sci, O: doc)
if {as, ap} C [S, O] then
enter {release} into [S, OJ;
end

5 Implementation Of NMT

This section proposes an implementation of NMT
in a distributed system, using the typical client-server
architecture. Each server acts as a mediator for the set
of objects it manages. For simplicity of exposition, we
assume that each server manages exactly one type of
object. The extension to servers which manage several
types of objects is straightforward. We do allow the
same type of object to be managed by several servers.
Each of these servers will manage a disjoint collection
of instances of this object type.

All accesses to an object pass through its server
who determines the validity of the request. The object
server furthermore is responsible for ensuring semantic
correctness of the objects with respect to the abstract
operations exported from the server. In other words
objects are encapsulated within their servers, for both
integrity and information hiding in the sense of data
abstraction as well as for access control.

We emphasize that the object servers are not sub-
jects in the system but rather a part of the trusted
computing base (TCB). We assume each server is
physically secure with integrity and authentication of
the client-server communication ensured by using the
standard encryption based techniques [3]. If neces-
sary, confidentiality of the communication can also be
ensured by encryption.

We assume the server maintains an access control
list (ACL) for each of the objects it is required to
manage. We depict the access list as follows.

object

| subjects | rights |

An ACL is associated with each object, specifying the
subjects who can access the object and the access right
authorized for each of them. The ACL makes the ac-
cess to the object dependent on the identity of the sub-
ject. Every time a subject makes a request—whether
it be for access to the object (e.g., read the object) or
for a grant or internal transformation of rights—the
request is checked against this list. The access request
is valid only if the access requested is authorized by
the rights present for the subject in the ACL for the
object.

This ACL is dynamic in nature. Every time the
server receives a request for creation of a new object
the CREATE commands are checked. If the CRE-
ATE commands allow such a creation, the new object
is created with an entry in the access list. The access
rights for it are added to the list according to the en-
ter primitive of the CREATE commands. The ACL
is similarly checked and modified for the ITRANS
and GRANT commands.

Each server only needs to know about the CRE-
ATE, ITRANS and GRANT commands for the
object type that it manages. This makes the sys-
tem modular, in the sense that new object types can
be introduced (along with their servers) without any
need to inform previously existing servers. Similarly
when new subject types are introduced, only those
servers whose commands are affected by this intro-
duction need to be informed.

The rest of this section discusses various aspects of
the proposed implementation in detail.

5.1 Identity and Type

Every subject and object is assigned a type when
it gets created. The typing is strong and cannot be
altered thereafter. Moreover each subject or object
in the system has a globally unique identifier. Sub-
jects can only be created by the system administra-
tor, who assigns their type and unique name at the
moment of creation. Objects are created by object
servers in response to requests by subjects. Each ob-
ject server manages only one type of object, so the
type is uniquely determined. The object servers en-
sure that each object has a globally unique identifier.

We assume the type of a subject or object is embed-
ded 1n its identifier. Henceforth, we refer to a subject
identifier by sid and a object identifier by oid. These
identifiers have the following structure.

| type | identifier |

The type field denotes the type of the subject or the
object. The identifier field uniquely identifies each
subject or object among instances of the same type.
Uniqueness of oid’s reduces to requiring each object to
have a unique identifier among instances of the same
type. If a particular type is managed by more than one
server, uniqueness of oid’s can be ensured by having
the following structure.

| type | server identifier | identifier |

Having made this point, we will use the former oid
structure in rest of this paper.

5.2 Access Mediation

All accesses to a object are mediated by the server
responsible for managing that object. Authentication
is also carried out at the time of object access, and
must be incorporated into the RPC (Remote Proce-
dure Call) mechanism of the client-server architecture.
The object server must authenticate the source of ev-
ery RPC request. This can be achieved by any of the
encryption protocols found in the literature [3]. One
method would be to arrange for every subject to place
its digital signature on every RPC communication to
a object server. Digital signatures for the reverse com-
munication from object servers to subjects can also be
incorporated.

5.3 Creation

When a subject requests an object creation the ob-
ject server checks the CREATE commands given be-
low to check the validity of the request.

CREATE (S: u, O: o)
create object O;
enter Y into [S, OJ;

end

In this command sid = u.S. When the server receives
the object creation request it performs a series of ac-
tions listed below.

1. The first step involves authenticating the subject.
If the authentication test fails the request is de-
nied.

2. Then the server checks the types of the subject S
and object O involved in creation. If the subject
S is of type u and object O of type o the request
is valid and the server goes on to execute the next
two steps. If the request is invalid (the types of
the subjects and the objects do not match), the
command procedure is aborted.

3. Next the server makes the existence check, i.e.,
whether the object O already exists in the server
or not? If it does the CREATION request is
refused, otherwise a new object O of type o is
created with an empty ACL. The oid = 0.0 1is
assigned to this object.

4. And finally, the enter primitive of the proce-
dure is checked to determine the rights to be
awarded to the subject S for the object O. The Y
={y1...,¥ym} rights are added into the ACL under
the respective object heading for the subject S.

5.4 Grant Transformation

A grant request from a subject S1 of sid = u.S1 for
object O of oid = 0.0 to a subject S2 of sid = v.52,
is implemented according to the following definition.

GRANT.X (S1: u, S2: v, O: 0)
if X C [S1, O] then
enter Y into [S2, O];
delete 7 from [S1, O];

end

When the object server receives the GRANT re-
quest it performs the various tasks listed below.

1. On receiving the GRANT request the server
authenticates the subject. If the authentication
check fails the request is denied.

2. The server then attempts to validate the
GRANT request by checking it with respect to
the authorized GRANT commands. For the re-
quest to be valid the subject S1 has to be of type
u, subject S2 of type v and the object type o. If
these types do not match, the request 1s turned
down.

3. Then the server checks that S1 possesses
X={xj...,xp} rights in the ACL.% If these rights
are present only then the server proceeds to exe-
cute the next two steps, otherwise the request is
not serviced.

4. Next the Z={z1, ..., 2} rights of subject S1 for the
object O are deleted from the ACL. Recall that
these deleted rights are a subset of X.

4In this interpretation the L right negates access rights, such
as read and write, used for true access to the object. However, L
does not negate access rights for the purpose of transformation
operations. NMT can, of course, be easily extended to allow for
1 to override existing access rights for this purpose too.

5. The last step is the addition of transformed rights.
The server adds to the ACL for the subject S2 the
Y={y1, ..., ym} rights for the object O.

5.5 Internal Transformation

All internal transformations are interpreted accord-
ing to the definition given below for the type of subject
and object involved. Here the sid = u.S and oid = 0.0.

ITRANS_{X} (S: u, O: 0)
if X C [S, O] then
enter Y into [S, OJ;
delete Z from [S, O];

end

The server on receiving the ITRANS request per-
forms a series of actions enumerated below.

1. As before, the server authenticates the subject.
If the authentication check fails the request is de-
nied.

2. The validity of the ITRANS request is checked
by matching the types of subjects and objects in-
volved. The request is valid if the subject S is of
type u and the object O of type o, otherwise the
request is turned down.

3. The server then checks the access list to see if the
subject possesses the X={x;...,x,} rights for the
object O. If this is true then only the server exe-
cutes the following two steps, otherwise it denies
the subject’s request.

4. Next the Z={z;...,} rights (a subset of X) of the
subject S for that object O are deleted from the
access list.

5. And lastly the server adds the to the ACL for the
subject S the Y={y;...,ym} rights for the object
0.

5.6 Revocation

Partial revocation is implemented using the com-
mand given below.

REVOKE(S], 52, O, Z: set of rights)
if {own} C [S1, O] then
delete Z from [S2, O];

end

On seeing the REVOKE command the server exe-
cutes the following steps.

1. First the server authenticates the subject. If the
authentication fails the request is denied.

2. The server then checks in the ACL if the subject
S1 issuing the request has own privilege for the
object O. If this is false the request is turned down
and if it is true (i.e. S1 is the owner of O) the
server executes step 3.

3. The server deletes the {z;...,2;} rights of S2 for O
from the ACL.

For complete revocation for all users the following
command is invoked.

REVOKE-ALL(SL, O)
if {own} C [S1, O] then
forallS2#S1 do [S2, O] := ¢;

end

This command too is implemented as the previous
one except that the server purges all entries in the
ACL for O except those entries for S1.

Finally for denial of access we have the following
command.

REVOKE(SL, S2, O, 1)
if {own} C [S1, O] then
enter {1} into [S2, O];
end

The implementation of this command is also simi-
lar to the REVOKE command except that in step 3
instead of deleting the {z;...,2i} rights of S2 for O it
adds L right into the ACL.

6 Implementation Example

In this section we consider the security and patent
officer example discussed in section 4. OQur aim is to
demonstrate how the policy is implemented using the
protocols described in the previous section.

In the scheme of section 4 a scientist (say Tom)
creates a document (say TST) on his workstation. In
order to release this document Tom needs multiple
approvals, one from the security-officer and another
from the patent-officer. The following is the sequence
of steps is required to achieve the release of TST.

1. Tom requests creation of TST. The kernel of
Tom’s host, makes a remote procedure call (RPC)
to the object server which is responsible for the
objects created by Tom. This RPC contains the
action requested, and the sid; all signed under
Tom’s digital signature. In this instance, the sid
= sc1. Tom.

2. On receiving the request the server authenticates

the origin as being Tom. The server then checks
the CREATE commands to ascertain the valid-
ity of the request:

CREATE(Tom: sci, TST: doc)

create object TST;

enter {own, read, write} into [Tom, TST];
end

After determining the validity of the request it
performs the existence check to ascertain whether
there exists another object in the server with the
name TST. Suppose there exists no other object
with name TST. The server then creates a doc-
ument TST with oid = doc. TST and an initially
empty ACL. The ACL is then adjusted as per the
enter primitive to give us the following.

doc. TST

| sci. Tom | own, read, write |

That 1s, Tom 1s the owner of TST and can read
and write into it.

. Now Tom is ready to release the document. He
initiates the internal transformation request to
the server to get the seek-approval right through
the ITRANS command. The RPC has informa-
tion about the action requested and the oid and
sids of the subjects and objects involved. The
ITRANS request is of the following form:

ITRANS_{own, write} (Tom: sci, TST: doc)

The server on receiving the RPC authenticates
its origin as Tom. Then the server checks the
types of the Tom and object TST. As they match
with the required types for the above ITRANS
command invocation, the server proceeds to check
in the ACL for TST whether Tom has the own
and write privileges for TST. Next the server adds
into the ACL for TST the seek-approval right for
Tom and deletes the Tom’s write right from the

ACL. The updated ACL is as follows.

doc. TST

| sci. Tom | own,read seek-approval |

Note the write is now missing in the ACL, hence
Tom’s subsequent attempts to write to TST will
fail. Tom cannot modify TST even after he gets
approvals from both the security-officer and the
patent-officer.

. With the seek-approval privilege for TST, Tom

can have TST reviewed by a security-officer, say
Sam, and a patent-officer, say Jill. Tom issues
two separate GRANT commands.

GRANT _{seek-approval} (Sam: sec-off, TST:
doc)
GRANT _{seek-approval} (Jill: pat-off, TST:
doc)

For each of the above requests the server, as be-
fore authenticates the origin of the request as
Tom. Then the server checks whether Tom, Sam,
Jill and TST are of the type sci, sec-off, pat-off
and doc respectively. As the request is valid the
server services the request by adding the review
rights in the ACL as shown below.

doc. TST

sci. Tom own,read seek-approval
sec-off.Sam | review
pat-off.Jill | review

No rights are deleted from the ACL as this is
a monotonic operation. (There is, of course, no
need for these GRANTS to be made at the same
time. It just makes our exposition briefer. Sim-
ilarly, the GRANTSs below do not need to be
synchronized.)

. Now the security-officer and the patent-officer can

access TST to review it. After review the officers
can send their respective approvals to Tom. They
both individually request the server to grant Tom
the approval rights. The GRANT requests of
Sam and Jill are shown below respectively.

GRANT {review} (Sam: sec-off, Tom: sci,
TST: doc)
GRANT {review} (Jill: pat-off, Tom: sci,
TST: doc)

On receiving these requests the server makes the
necessary authentication and validity tests. As
per the definitions of the GRANT commands,
the server updates the ACL in the following way.

doc. TST

| sci. Tom | own,read,seek-approval,ag, a, |

Note that the entries for Sam and Jill have been
deleted, since the policy requires that once Sam
and Jill grant the approval rights to Tom, their
review privilege for TST will be deleted.

6. Now the scientist Tom possesses the approvals to
get the release privilege by internal transforma-
tion. The RPC for the the internal transforma-
tion is shown below.

ITRANS {aq, ap} (S: sci, O:doc)

The server then checks the ACL to see if Tom has
the as and ap rights for TST, which are required
to get the additional release privilege. As this is
in the affirmative the server updates the ACL to
provide Tom with the release right.

doc. TST

| sci. Tom | own,read seek-approval,as, ap,release |

With this release right domain Tom can release

TST.

This completes the grant and internal transformation
aspect of the example.

To illustrate the implementation of revocation as-
pect of the model consider a subject (say Jack) of type
user who has the own, read and write privileges for a
object (say SDI) of the type doc. Also assume there
is another user (say Mary) also possesses the read,
write and execute privileges for SDI. Our revocation
policy allows Jack to revoke the access rights of Mary.
The ACL for SDI has the following entries before the
REVOKE command is invoked.

doc.SDI

own,read,write
read,write,execute

user.Jack
user.Mary

Revocation is illustrated as follows.

1. Jack being the owner of SDI can revoke any of
the rights Mary has for SDI. For Jack to revoke
the execute privilege of Mary the following RE-
VOKE command is sent to the server.

REVOKE (Jack, Mary, SDI, execute)

The server receives the command in the form of
an RPC from Jack’s workstation.

2. When the REVOKE command is invoked, the
server invokes the following implementation pro-
cedure.

REVOKE(Jack, Mary, SDI, execute)
if {own} C [Jack, SDI] then
delete {execute} from [Mary, SDIJ;
end

Besides making the regular authentication checks,
the server verifies the possession of own privilege
by Jack for SDI by looking in SDI’s ACL. When
this fact is confirmed the server removes the exe-
cute privilege from Mary’s domain. The updated
ACL is given below.

doc.SDI

user.Jack | own read,write
user.Mary | read,write

3. After this if Mary tries to execute SDI, her re-
quest will be denied by the server. For Jack to
revoke all the rights of Mary he would have to
make additional REVOKE request for read and
write.

4. If Jack wants SDI to be totally inaccessible to
Mary he can “grant” Mary the L right.

REVOKE(Jack, Mary, SDI, 1)
if {own} C [Jack, SDI] then
enter {1} into [Mary, SDIJ;
end

The server verifies that Jack is the owner of SDI.
When this 1s confirmed the server enters the L
right into Mary’s entry in the ACL for SDI, as
follows.

doc.SDI

user.Jack | own read,write
user.Mary | L,read,write

Any future accesses by Mary to SDI will be denied
by the server. The L right overrides any other
rights the subject may have for the object. It may
be noted that the access rights are not deleted
from the ACL in this denial of access request.
Only the owner of the object can invoke the de-
nial of access procedure and only the owner can
restore services by revoking the null right from
the subject’s domain.

To summarize, in our implementation any subject who
is the owner of an object can revoke the rights of other
subjects for the same object. The implementation pro-
vides facilities for an efficient revocation with total de-
nial of access service built into it.

7 Revocation

Revocation was not formally defined in the abstract
NMT model, because it is usually closely tied to the

implementation due to performance reasons. In dis-
tributed systems implementing revocation is a ma-
jor problem, since the subjects are completely au-
tonomous with no centralized authorities enforcing
security. There are various issues with respect to
which the implementation of revocation can be com-

pared [16].

1. Partial or Complete: Whether it is possible to
revoke a specific right or whether all rights have
to be revoked to get any sort of denial of access
in the system?

2. Immediate or Delayed: If the implementation ex-
ecutes revocation immediately or 1t comes into
force only the next time the subject tries to ac-
cess the object?

3. Selective or General: Does the revocation process
affect all users or a select group of users having
access over the object?

4. Temporary or Permanent: Is access to be denied
permanently or if once it is revoked, is it retriev-
able?

A major advantage of a client-server architecture with
a stateless server is that revocation takes effect imme-
diately. Hence our implementation proposes to have
stateless servers providing for immediate revocation.
On the other aspects enumerated above our proposal
provides for each of the possibilities identified.

We provide revocation by using a dynamic ACL.
When revocation is requested, the revoked rights are
simply deleted from the list. We propose a simple re-
vocation policy for our implementation of NMT: only
the owners of objects can revoke rights of other sub-
jects for it. If an owner of an object grants a right to
a second user and the second user in turn grants the
right to a third user, only the owner is able to revoke
the right for the second or third users.

Partial revocation is implemented using the com-
mand given below.

REVOKE(S], 52, O, Z: set of rights)
if own € [S1, O] then
delete Z from [S2, O];

end

7 1s the only variable in this command which can be
specified by the subject invoking the command.® On

50Our syntax for REVOKE is slightly different that the syn-
tax for the ITRANS and GRANT because the nature of RE-
VOKE command is somewhat different. In particular 7Z is a
variable here which can take on any value as determined by

seeing the REVOKE command the server executes
the following steps.

1. First the server authenticates the subject. If the
authentication fails the request is denied.

2. The server then checks in the ACL if the subject
S1 issuing the request has own privilege for the
object O. If this is false the request is turned down
and if it is true (i.e. S1 is the owner of O) the
server executes step 3.

3. The server deletes the {z;...,2,} rights of S2 for
O from the ACL.

Note typing is not an important factor in this owner-
based revocation. Anyone can revoke anybody’s ac-
cess privileges provided they are the owner of that
object.

The owner of a object can revoke all the rights
(complete revocation) of other subjects or he can re-
voke some subset of the rights (partial revocation).
The server only deletes the rights {x;...,x,} from the
ACL that are specifically mentioned in the REVOKE
command. For complete revocation the owner needs
to specify all the rights a subject possesses and conse-
quently the server deletes all the rights. And similarly
for partial revocation he needs to specify only those
rights he wants deleted. For complete revocation “X”
is equal to the set of rights in the revoked subject’s
domain for a object while in partial revocation “X” is
a proper subset of these rights.

We also provide for complete revocation for all users
by the following command.

REVOKE-ALL(SL, O)
if own € [S1, O] then
forall S2#S1 do [S2, O] := ¢;

end

In terms of the ACL this command is easily imple-
mented by purging all entries in the ACL for O except
those entries for S1.

Our implementation has facilities for total denial
of access as required in the TCSEC [5]. Total denial
of access is indicated by the null right represented by
the symbol L. This is a special right, whose occur-
rence in the ACL invalidates all other rights for that
subject. So long as a subject possesses the L right in
an object’s ACL, all access rights the subject may ac-
quire through GRANT or ITRANS commands will
not take effect, 1.e., denial of access holds for these

the subject invoking the command, whereas in the GRANT
and ITRANS commands it is fixed by the security policy and
therefore is not a argument to the command.

additional rights as well. This is a feature of perma-
nent revocation. The ACL does not specify negative
rights. If a particular access right is not present that
particular type of access is refused. And if there is a
L present, it supersedes all other rights that may be
present and implies as the object being totally inac-
cessible to that subject.

To illustrate the implementation of revocation as-
pect of the model consider that a subject (say Jack) of
type user has the own, read and write privileges for a
object (say SDI) of the type doc. Also assume there is
another user (say Mary) also who possesses the read,
write and execute privileges for SDI. Our revocation
policy allows Jack to revoke the access rights of Mary.
The ACL for SDI has the following entries before the
REVOKE command is invoked.

doc.SDI

own,read,write
read,write,execute

user.Jack
user.Mary

Revocation is illustrated as follows.

1. Jack being the owner of SDI can revoke any of
the rights Mary has for SDI. For Jack to revoke
the execute privilege of Mary the following RE-
VOKE command is sent to the server.

REVOKE (Jack; Mary; SDI; execute)

The server receives the command in the form of
an RPC from Jack’s workstation.

2. When the REVOKE command is invoked, the
server invokes the following implementation pro-
cedure.

REVOKE(Jack; Mary; SDI; execute)
if own € [Jack, SDI] then
delete {execute} from [Mary, SDIJ;
end

Besides making the regular authentication checks,
the server verifies the possession of own privilege
by Jack for SDI by looking in the ACL. When this
fact is confirmed the server removes the execute
privilege from Mary’s domain. The updated ACL
is given below.

doc.SDI

user.Jack | own,read,write
user.Mary | read,write

3. After this if Mary tries to execute SDI, her re-
quest will be denied by the server. For Jack to
revoke all the rights of Mary he would have to
make additional REVOKE request for read and
write.

4. If Jack wants SDI to be totally inaccessible to
Mary he can “grant” Mary the L right.

REVOKE(Jack; Mary; SDI; *)
if own € [Jack, SDI] then
enter {1} into [Mary, SDIJ;
end

On seeing the * the server interprets the com-
mand as if total denial of access for Mary for the
object SDI is being requested. First the server
verifies that Jack is the owner of SDI. When this
is confirmed the server enters the L right into
Mary’s entry in the ACL for SDI, as follows.

doc.SDI

user.Jack | own read,write
user.Mary | L,read,write

Any future accesses by Mary to SDI will be de-
nied by the server. The L right is considered to
override any other rights the subject may have
for the object. It may be noted that the access
rights are not deleted from the ACL in this denial
of access request. Only the owner of the object
can invoke the denial of access procedure and only
the owner can restore services by revoking the null
right from the subject’s domain.

To summarize, in our implementation any subject who
is the owner of an object can revoke the rights of other
subjects for the same object. The implementation pro-
vides facilities for an efficient revocation with total de-
nial of access service built into it.

8 Conclusion

In this paper we have demonstrated the importance
and expressive power of non-monotonic transforma-
tions. We have developed a formal model called NMT
(for Non-Monotonic Transform) and shown that it has
decidable safety analysis. NMT is based on a few con-
cepts and yet is very expressive and flexible as shown
by the examples in this paper.

We have proposed a simple and efficient implemen-
tation for NMT in a distributed environment, using

a client-server architecture. This implementation is
based on access control lists. It provides for effi-
cient and immediate revocation which could be par-

tial,

complete, selective, temporary or permanent.

References

(1]

Ammann, P. and Sandhu, R.S. “Extending the
Creation Operation in the Schematic Protection
Model.” Proc. Sizth Annual Computer Security
Applications Conference, 340-348 (1990).

Bell, D.E. and LaPadula, L.J. “Secure Computer
Systems: Unified Exposition and Multics In-
terpretation.” MTR-2997, Mitre, Bedford, Mas-
sachusetts (1975).

Davies, D.W. and Price, W.L. Security in Com-
puter Networks. John Wiley & Sons (1989).

Denning, D.E. “A Lattice Model of Secure
Information Flow.” Communications of ACM

19(5):236-243 (1976).

Department of Defense National Computer Secu-
rity Center. Department of Defense Trusted Com-
puter Systems Fvaluation Criteria. DoD 5200.28-
STD, (1985).

Harrison, M.H., Russo, W.L. and Ullman, J.D.
“Protection in Operating Systems.” Communica-

tions of ACM 19(8):461-471 (1976).

Lampson, B.W. “Protection.” 4th Princeton
Symposium on Information Science and Systems,
437-443 (1971). Reprinted in ACM Operating
Systems Review 8(1):18-24 (1974).

Lipton, R.J. and Snyder, L. “On Synchronization
and Security.” In DeMillo, R.A., Dobkin, D.P.,
Jones, AK. and Lipton, R.J. (Editors). Foun-
dations of Secure Computations. Academic Press

(1978), pages 367-385 (1978).

McLean, J. “A Comment on the ‘Basic Secu-
rity Theorem’ of Bell and LaPadula.” Informa-
tion Processing Letters 20(2):67-70 (1985).

McLean, J. “Specifying and Modeling Computer
Security.” IEEE Computer 23(1):9-16 (1990).

Minsky, N. “Synergistic
Authorization in Database Systems.” 7th Inter-
national Conference on Very Large Data Bases

543-552 (1981).

[12] Sandhu, R.S. “The Schematic Protection Model:
Its Definition and Analysis for Acyclic Attenu-
ating Schemes.” Journal of ACM 35(2):404-432
(1988).

[13] Sandhu, R.S. “Transaction Control Expressions
for Separation of Duties.” Aerospace Com-
puter Security Applications Conference, 282-286
(1988).

[14] Sandhu, R.S “Transformation of Access Rights”
IEEE Sympostum on Security and Privacy, 259-
268 (1989).

[15] Sandhu, R.S. “The Typed Access Matrix Model”
IEEE Symposium on Research in Security and
Privacy, this proceedings (1992).

[16] Silberschatz, A., Peterson, J., and Galvin, P. Op-
erating System Concepts. Addison Wesley (1991).

Acknowledgments

We are indebted to Howard Stainer and Sylvan Pin-
sky for their support and encouragement, making this
work possible.

