
Proceedings of the OOPSLA-93 Conference Workshop on Security for Object-Oriented Systems,

Washington DC, September 26, 1993

Concurrency, Synchronization, and Scheduling

to Support High-assurance Write-up in

Multilevel Object-based Computing

Roshan K. Thomas and Ravi S. Sandhu1

Center for Secure Information Systems
&

Department of Information and Software Systems Engineering
George Mason University, Fairfax, VA 22030-4444

Abstract

We discuss concurrency, synchronization, and scheduling issues that arise with the sup-
port of high-assurance RPC-based (synchronous) write-up actions in multilevel object-based
environments. Such environments are characterized by objects classi�ed at varying security
levels (called classi�cations) and accessed by subjects with varying security clearances. A
write-up action occurs when a low level object sends a message to a higher one, triggering
an update in the latter. While such actions do not directly violate the security policy, their
abstract nature in object-based systems poses con�dentiality leaks by opening up signaling
channels. We present an approach to closing such channels by executing the methods in
the sender and receiver objects concurrently, whenever a write-up action is issued. How-
ever, these concurrent computations have to be synchronized and scheduled so that they
preserve the semantics of the original and synchronous (sequential) execution. We utilize a
multi-version synchronization scheme and various scheduling strategies to achieve this.

1 Introduction

We are currently investigating support for secure and e�cient RPC-based write-up actions in
multilevel object-based computing environments. Such environments are characterized by ob-
jects classi�ed at varying security levels (also called classi�cations or access classes) and accessed
by subjects with varying security clearances. These security levels form a lattice structure and
mandatory access control is governed by a security policy. The notion of multilevel security
originated in the 1960's when the U.S. Department of Defense wanted to protect classi�ed in-
formation processed by computers. The Bell-LaPadula (BLP) [1] security model was the �rst
one formally used to implement the military security policy, and even today remains the de
facto standard. BLP characterizes (and governs) access control and information
ow with the
following two rules (l denotes the label of the corresponding subject (s) or object (o)).

� Simple Security Property. Subject s can read object o only if l(s) � l(o).

� ?-Property. Subject s can write object o only if l(s) � l(o).

1The work of both authors is partially supported by a grant from the National Security Agency, contract
No: MDA904-92-C-5140. We are grateful to Pete Sell, Howard Stainer, and Mike Ware for their support and
encouragement.

A W A C S

Write-up message with "NIL" reply

Read-down message

Legend:

REPORT-POSITIO
N

- Difficulty-level

- Target-coordinate

- Position-coordinate

- Landmarks

- Position-coordinate

POSITION-UPDATE (C)

TARGET-LOCATOR (S)

TARGET-TO-SHIP-DISTANCE (S)

R
E

PO
R

T
-D

IS
T

A
N

C
E

DETERMINE-ACTION

DETAILS

- Target-coordinate

- Ship2-distance

- Ship1-distance

CA
LC-D

ISTA
N

CE

- Target-coordinate
- Time-of-action
- Attack-veh-id
- Success-prob

ACTION-UPDATE (TS)

Figure 1: Write-up in situation assesement

In a nutshell, the BLP rules boil down to the fact that a low subject cannot read a high
object (called a read-up) and a high subject cannot write a low object (called a write-down).
But the BLP mandatory rules do allow write-up actions whereby a low level subject can initiate
an update in a high object. However, it is interesting to note that most multilevel (ml) systems
such as relational ml DBMS's typically do not allow write-up, due to integrity problems arising
from the blind nature of write-up operations in these systems.2 In object-based computing
environments, on the other hand, sending messages upwards in the security lattice does not
present an integrity problem because such messages will be processed by appropriate methods
in the destination object. Further, write-up operations are very useful in many applications.

Figure 1 illustrates a simple situation assessement application in the military setting. The
messages REPORT-POSITION, REPORT-DISTANCE, and DETERMINE-ACTION initiate
write-up actions. For example, the sending of the REPORT-POSITION message from the lower
object POSITION-UPDATE (con�dential) to the higher object TARGET-LOCATOR (Secret)
results in the invocation of a method that locates a target and updates the attribute `Target-
coordinate' in the latter. It is important to understand why the above cannot be implemented
neatly with read-down operations. In applications such as battle management and process
control, processing is often initiated by triggered events in the environment. In such scenarios it
is di�cult to determine the correct polling window for read-down operations. In our example, the
higher object TARGET-LOCATOR would have to periodically poll the lower object POSITION-
UPDATE for updates in the aircraft's position. If it polls too slowly, the object may miss many
position updates. If it polls too frequently the lower object may be inundated with read-down
requests, causing considerable processing overhead, and in extreme cases may not be able to
keep up with the vital updates from the aircraft. In either case, position updates from the
aircraft will be missed with the disastrous consequence that many targets may go unidenti�ed.

However, supporting write-up operations in object-based systems is complicated by the fact
that such operations are no longer primitive read's and write's; but can be arbitrarily complex

2A good discussion of the con
ict between integrity and con�dentiality can be found in [4].

and therefore can take arbitrary amounts of processing time. Dealing with the timing of write-
up operations consequently has broad implications on con�dentiality (due to the possibility of
signaling channels), integrity, and performance. Consider what happens when a write-up is
initiated and methods (computations) are executed serially. Thus the method in the sender
object is suspended until the method in the receiver object has �nished executing and returns
a reply. Now in the security context, the actual contents of the actual reply from the receiver
object cannot be to the lower object (this will be prevented by trusted computing base/security
kernel). However we may return an innocuous `nil' reply. But the very timing of the reply
can be observed by the low level suspended method when it is resumed, and this information
can be exploited for signaling channels [5]. These channels form means through which high-level
subjects can leak information to cooperating lower level subjects. It is important to address these
channels since it is well known that mandatory access controls do not provide any protection
against them.

We are currently investigating an asynchronous computation model to handle write-up ac-
tions. This requires concurrent computations (methods) to be generated whenever write-up
actions are issued, and for them to be scheduled and synchronized so that the net e�ect is logi-
cally that of a sequential computation (mimicing RPC semantics). In other words, after sending
a message to a higher object, the method in the lower sender object continues executing. The
method in the receiver object is executed by a newly created message manager process. In
this way, the signaling channel is closed as a lower level object never has to wait for a higher
one. Our work utilizes an underlying message �lter security model to enforce basic mandatory
con�dentiality [3, 6].

While concurrent computations can close signaling channels, we now have to pay the price
of providing synchronization. Synchronization is required to ensure that the concurrent com-
putations have the same e�ect as the intended serial execution. When this is guaranteed we
say that the concurrent computations preserve serial correctness. Further, we must ensure that
synchronization itself does not cause con�dentiality leaks (for otherwise we would be chasing
our own tail). To see how serial correctness could be violated, consider again the REPORT-
POSITION message in �gure 1. Now suppose on receiving the message, the receiver object
TARGET-LOCATOR requests additional information about the position identi�ed (such as
`Landmarks') in a read-down message DETAILS. In a serial execution, the DETAILS message
would correctly retrieve the required information from the lower object POSITION-UPDATE.
This is because processing in this object is temporarily suspended and thus its state would
not have been updated after the sending of the REPORT-POSITION message. Contrast this
with a concurrent execution, where before the arrival of the DETAILS message, the object
POSITION-UPDATE may have updated its state (as it is no longer suspended). Hence DE-
TAILS if allowed to retrieve the `Landmarks' attribute, would erroneously obtain the values for
some later target. Our solution to this synchronization problem calls for lower level objects to
save their states before sending write-up messages. The DETAILS message would now retrieve
the version of POSITION-UPDATE object whose state existed before the write-up message
REPORT-POSITION was issued.

1(U)

2(S) 3(TS) 4(C)

5(TS) 6(S)

 7(TS)

2 3

4 5

1

6

0000

1000 2000 3000

3100 3200

3210

Figure 2: A tree of concurrent computations

2 Concurrency, Synchronization, and Serial Correctness

We now elaborate on concurrency and serial correctness in more general terms. We can visualize
a set of concurrent computations as forming a tree such as the one shown in �gure 2. The label on
the arrows indicate the order in which the messages and the associated computations (methods)
would be processed in a serial execution. Note that this order can be derived by a depth-�rst
traversal of the tree. Serial correctness requires that a computation such as 3(TS) in the tree,
see all the latest updates of lower level computations to its left, and no updates of lower level
computations to its right. Thus 3(TS) should see the latest updates of 2(S) but not of 4(C)
and 6(S). This is achieved in our multi-version synchronization scheme by making sure that the
versions at levels C (con�dential) and S (secret) that are available to 3(TS) are the ones that
existed before 4(C) and 6(S) were created (forked). Further, serial correctness also mandates
that a computation such as 3(TS) not get ahead of earlier forked ones to its left. Thus 3(TS)
should not be started until 2(S) and its children (if any) have terminated.

If no system component has a global snapshot (such as that embedded in a tree) of the
entire set of computations, then we need to explicitly capture the global serial order of messages
and computations. This can be done by a scheme that assigns a unique forkstamp to each
computation, as shown in �gure 2. Starting with an initial forkstamp of 0000 for the root,
every subsequent child of the root is given a forkstamp by progressively incrementing the most
signi�cant digit of this initial stamp by one. To generalize this for the entire tree, we require
that with increasing levels, a less signi�cant digit be incremented.

We can now succinctly state the requirements for serial correctness in terms of the following
constraints that need to hold whenever a computation c is started at a level l:

� Correctness-constraint 1: There cannot exist any earlier forked computation (i.e. with
a smaller forkstamp) at level l, that is pending execution;

� Correctness-constraint 2: All current non-ancestral as well as future executions of
computations that have forkstamps smaller than that of c, would have to be at levels l or
higher;

� Correctness-constraint 3: At each level below l, the object versions read by c would
have to be the latest ones created by computations such as k, that have the largest fork-

m3

m1

m2

A

B

v1

(a) (b)

A

(low)

B
 (high)

m1

m2

m3

v2
Message manager

Message manager visibility

Legend

Figure 3: Handling recursion

stamp that is still less than the forkstamp of c. If k is an ancestor of c, then the latest
version given to c is the one that was created by k just before c was forked.

In summary, the maintenance of serial correctness requires careful consideration on how
computations are scheduled as well as on how versions are assigned to process read down requests.

Discussion

In concluding this section on concurrency and synchronization, it is important to note that
approaches to synchronization across multiple security levels are heavily in
uenced by manda-
tory security rules. These approaches thus di�er (as they pose a di�erent set of problems)
from existing synchronization mechanisms proposed in the literature for general (non multi-
level) object-based computing. For example, in asynchronous message passing, the sender and
receiver execute concurrently and when the sender needs to access the reply to the message,
synchronization is achieved through the notion of futures. When the sender wants the reply
from the receiver, it pauses and accesses a future data structure to which the receiver would
have returned a reply. In the multilevel context, there is no need for futures as a low level
sender can never actually access the reply from the higher receiver since this violates mandatory
security.

In [2], the authors describe an execution model for distributed object-oriented computation,
where methods execute concurrently. To provide synchronization, an approach based on discrete-
event simulation is pursued. They describe an interesting scenario with recursion where it may
not be possible to �nish processing one message before beginning another. As shown in �gure
3(a), a message m1 is sent to object A, which in turn sends a message m2 to object B. A
cyclical wait occurs, when B in processing the m2 message, sends another message m3 back
to object A. More precisely, A cannot complete the processing of m1 until B completes its
own processing of m2, and B cannot do this until A completes the processing of message m3.
Further, if these messages are processed sequentially, serial correctness requires the following:
(1) object A should process the m3 message with its state not re
ecting any of the updates after
the message m2 was sent; (2) when object A continues processing m1 after sending m2, its state
should re
ect all updates intitiated by message m3.

How is the above scenario handled in our model when methods execute at di�erent security
levels? To start with, we note that a low level object such as A will never have to wait for the

1(U)

2(S) 3(TS) 4(C)

2 3

5

1

6

4

 7(TS)

6(S)5(TS)

(a)

 3(TS)

2 3

5

1

6

5(TS) 6(S)

4

4(C)

 7(TS)

2(S)

1(U)

(c)

2(S) 3(TS)

2 3

5

1

6

4(C)

5(TS) 6(S)

4

 7(TS)

1(U)

(b)

 3(TS)

2 3

5

1

4

1(U)

4(C)2(S)

5(TS) 6(S)

 7(TS)

6

(d)

2 3

5

1

5(TS)

 7(TS)

6

4

6(S)

4(C)

1(U)

2(S) 3(TS)

(f)

2 3

5

1

5(TS)

 3(TS)

 7(TS)

6

4

6(S)

4(C)

1(U)

2(S)

(e)

2 3

5

1

 7(TS)

6

4

1(U)

4(C) 3(TS)2(S)

5(TS) 6(S)

(g)

Figure 4: Conservative Scheduling
1(U)

 3(TS)

2 3

5

1

6

4

 7(TS)

6(S)5(TS)

2(S) 4(C)

2 3

5

1

6

5(TS) 6(S)

4

1(U)

 7(TS)

2(S) 3(TS) 4(C)

2 3

5

1

6(S)

4

1(U)

2(S) 3(TS) 4(C)

5(TS)

 7(TS)

2 3

5

1

5(TS)

4

1(U)

2(S) 3(TS)

6(S)

6

4(C)

 7(TS)(d)

2 3

5

1

 7(TS)

4

1(U)

4(C) 3(TS)2(S)

5(TS) 6(S)

6

(e)

Queued

Unborn

Active

Terminated

Legend

(b)(a) (c)

Figure 5: Aggressive Scheduling

2(S) 3(TS)

2 3

5

1

6

4(C)

5(TS) 6(S)

4

 7(TS)

1(U)

(b)

2(S) 3(TS)

2 3

5

1

6

4(C)

5(TS) 6(S)

4

 7(TS)

1(U)

(a)

 3(TS)

2 3

5

1

6

5(TS) 6(S)

4

1(U)

4(C)

 7(TS)

2(S)

(c)

(d)

 3(TS)

2 3

5

1

5(TS) 6(S)

 7(TS)

6

4

1(U)

4(C)2(S)

2 3

5

1

5(TS)

 7(TS)

6

4

6(S)

4(C)

1(U)

2(S) 3(TS)

(f)

2 3

5

1

5(TS)

 3(TS)

 7(TS)

6

4

6(S)

4(C)

1(U)

2(S)

(e)

2 3

5

1

 7(TS)

6

4

1(U)

4(C) 3(TS)2(S)

5(TS) 6(S)

(g)

Figure 6: Hybrid Scheduling

processing of message m2 sent to the higher level object B. As soon as m2 is sent, an immediate
reply is returned and A continues processing. The second requirement (listed above) for serial
correctness, is trivially satis�ed since the message m3 can only be a read-down message and can
never update the state of object A. The �rst requirement is satis�ed by requiring this read-down
message m3 to retrieve an older version of object A that existed before m2 was sent. This is
illustrated in �gure 3(b) where object A is required to archive its state as a version (v1) just
before the write-up message m2 is issued. The message manager for the method in object A
resumes execution but now accesses and updates a new version (v2) of object A. Meanwhile,
on receiving the message m2, the message manager created to process this message suspends
execution of the method in object B, and executes the method in object A to process message
m3. However it now accesses (reads) the older version of (v1) of object A.3

3 Scheduling Concurrent Computations

From the above discussion it should be clear that we need to enforce some discipline on concurrent
computations as arbitrary concurrency makes synchronization di�cult and could lead to the
violation serial correctness (thereby a�ecting the integrity of objects). A scheduling strategy
which guarantees serial correctness and at the same time enforces some discipline on concurrency,

3Whenever this message manager accesses an object classi�ed lower than the level of object B, it will be
prevented from writing to such objects. Otherwise, a write-down violation will occur.

must take into account the following considerations.

� The scheduling strategy itself must be secure in that it should not introduce any signaling
channels.

� The amount of unnecessary delay a computation experiences before it is started should be
reduced.

The �rst condition above requires that a low-level computation never be delayed waiting for
the termination of another one at a higher or incomparable level. If this were allowed, a po-
tential for a signaling channel is again opened up. The second consideration admits a family of
scheduling strategies o�ering varying degrees of performance. Informally, we say a computation
is unnecessarily delayed if it is denied immediate execution on being forked, for reasons other
than the violation of serial correctness.

We now consider two scheduling strategies that appear to approach the ends of a spectrum
of secure (and correct) scheduling strategies, and a third one that lies somewhere in the middle
of such a spectrum. These schemes that lie at the ends of this spectrum are referred to as con-
servative and aggressive schemes, and they are governed by the following invariants, respectively.

Inv-conservative: A computation is executing at a level l only if all computations at lower

levels, and all computations with smaller fork stamps at level l, have terminated.

Inv-aggressive: A computation is executing at a level l only if all non-ancestor computa-

tions (in the corresponding computation tree) with smaller fork stamps at levels l or lower, have

terminated.

Given a lattice of security levels, the conservative scheme essentially boils down to executing
computations on a level-by-level basis in forkstamp order, starting at the lowest level in the
lattice. At any point, only computations at incomparable levels can be concurrently executing.
However, with the aggressive scheme, we are not following a level-by-level approach. Rather,
a forked computation is denied immediate execution only if (at the time of fork) there exists
at least one non-ancestral lower level computation with an earlier (smaller) forkstamp, that
has not terminated. If denied execution, such a computation is queued and later released for
execution when this condition is no longer true (as a result of one or more terminations). A
third hybrid strategy can be formulated by executing computations again on a level-by-level
basis, but allowing the immediate children of any executing computation to proceed as well.
Figures 4, 5, and 6 illustrate the progressive execution of the tree of concurrent computations in
�gure 2 under the conservative, aggressive, and hybrid strategies, respectively. In each of these
�gures, the termination of one or more computations (indicated by shaded circles) advances the
tree to the next stage. As can be seen in these �gures, the tree progresses to termination fastest
under the aggressive scheme, since it induces no unnecessary delays. We conjecture that there
exists several other variations of the above three scheduling schemes. Finally, it is important
to note that the security of these schemes stem from the fact a low level computation is never
suspended (delayed) because of a higher one.

4 Summary and Conclusions

In this paper, we have brie
y discussed the problem of signaling channels in multilevel object-
based computing. The impasse formed by these channels, appears to be fundamental due to the
intrinsic abstract nature of operations in object-based computing. We have discussed a solution
to close these channels that is based on an asynchronous model of computing and at the price of
providing synchronization. Our approach provides a solution that meets the con
icting goals of
con�dentiality, integrity, and performance. We are currently looking into the scheduling schemes
to exploit more intra-level concurrency. In particular, we are investigating how existing general
mechanisms can be harmoniously incorporated with the mechanisms to provide synchronization
across security levels.

References

[1] D.E. Bell and L.J. LaPadula. Secure computer systems: Uni�ed Exposition and Multics
Interpretation. EDS-TR-75-306, The MITRE Corp., Bedford, MA., March 1976.

[2] E.H. Bensley and T.J. Brando and M.J. Prelle. An execution model for distributed object-
oriented computation. Proc. of the ACM OOPSLA conference, pp. 316{322, September,
1988.

[3] S. Jajodia and B. Kogan. Integrating an object-oriented data model with multi-level secu-
rity. Proc. of the 1990 IEEE Symposium on Security and Privacy, pp. 76{85, May 1990.

[4] B. Maimone and R. Allen. Methods for resolving the security vs. integrity con
ict. In Proc.

of the fourth RADC Database Security Workshop, Little Compton, Rhode Island, April
1991.

[5] R.S. Sandhu, R. Thomas, and S. Jajodia. Supporting timing-channel free computations in
multilevel secure object-oriented databases. Proc. of the IFIP 11.3 Workshop on Database

Security, Sheperdstown, West Virginia, November 1991.

[6] R.K. Thomas and R.S. Sandhu. Implementing the message �lter object-oriented security
model without trusted subjects. Proc. of the IFIP 11.3 Workshop on Database Security,
Vancouver, Canada, August 1992.

