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Abstract 
Recently there has been considerable interest 

among PKI vendors and researchers in the concept of 
password-enabled PKI.  Several viable proposals and 
products have emerged.  Fundamentally there are two 
distinct methods for using passwords with private 
keys.  One method is to use the password to retrieve a 
private key, while the other uses the password as one 
component of the private key.  We motivate the 
names virtual soft tokens for the former and virtual 
smartcards for the latter.  The major characteristics of 
these two approaches are identified and contrasted. 

1. Introduction and Motivation 
 
The notion of a password-enabled PKI sounds like an 
oxymoron to those of us who have lived through the 
last decade of discussion on PKI and its rosy 
prospects.  PKI was supposed to do away with 
passwords.  By all logic and forecast, passwords 
should be a relic of the stone age of cyberspace and 
should no longer be in use today.  PKI was expected 
to replace them with private keys securely generated 
and forever safe in tamper-proof smartcards.  In the 
coming brave new world, these private keys would be 
activated by appropriate biometrics securely 
embedded and captured by the smartcard.  The reality 
of 2002, however, is that passwords are used in 
cyberspace on a scale scarcely imagined a decade 
ago.  There are hundreds of millions, perhaps even 
billions, of instances of password usage in 
cyberspace every day.  Conservatively, consider tens 
of millions of users each invoking ten instances of 
password usages per day. In contrast one has to look 
high and low to find actual uses of smartcards, even 
in laboratory or pilot situations.   

Simply stated, it is an indisputable empirical 
fact that smartcards have not happened.1 If the 

                                                 
1 This statement should be understood in context of the use of 
smartcards for PKI on the Internet via widely available desktops 

original vision of smartcards with ubiquitous readers 
had become reality there would be no need to talk 
about password-enabled PKI.  All the same, it is 
worth mentioning that the vision of smartcards has 
not faded completely, and they may still happen some 
day.  At this moment the DoD is engaged in a major 
rollout of smartcards in numbers that make sense in 
the scale of today’s Internet.2  Not a few thousand or 
even a few hundred thousand but in the scale of 2 to 
5 million.  The discipline and resources of the DoD 
have few parallels in the world.  This is a fascinating 
experiment to watch.  It may finally prove the 
feasibility of a large-scale deployment of smartcards.  
Nonetheless it will be hard for Federal Government 
agencies, corporations, educational institutions, etc. 
to emulate this scale of deployment of smartcards.  
Note that the difficulty is not so much in the process 
and cost of issuing the smartcards per se, but much 
more in deploying smartcard readers on each and 
every computer in use by the user population.  
Proliferation of devices such as PDAs and wireless 
phones further compounds the problem. Moreover, 
we have needs at larger scale than the DoD 
experiment.  The Federal Government often deals 
with 100’s of millions of users.  It is not unusual for 
large corporations to be in touch with 10’s of millions 
of users.  It is certainly within their vision to be in 
touch with 100’s of millions and even billions of 
users in the future.  Given the multi-year deployment 
of DoD smartcards, one wonders how the truly large 
scale will ever be realized in this mode.  It seems 
rather unlikely that we will have a national scale 
deployment of smartcards in the near future, let alone 
a global scale deployment. Organizations whose PKI 
strategy depends entirely on smartcards happening 
very soon are making a rather risky bet. 

                                                                         
and laptops.  The use of smartcards in specialized applications has 
seen considerable success, more so in Europe and Asia than in 
North America.  In these applications the smartcard is often 
embedded in a device such as a wireless telephone or a television-
set top box, or in a credit-card with specialized readers. 
2http://www.defenselink.mil/news/Oct2000/n10102000_20001010
7.html 
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If smartcards are not available where do we 
store the user’s private key and how do we make it 
portable?  Most systems today store the private key 
encrypted with a user-selected password on the hard 
disk.  Portability is achieved by transporting the 
encrypted private key on removable media, such as a 
floppy disk.  Currently one cannot guarantee 
availability of floppy disk readers, or other media-
specific devices, on every computer.  In general the 
portability of any media-specific transport is 
questionable in a truly open environment.  All the 
same the notion of a “soft token”, that is a private-
key encrypted with a password, in contrast to a “hard 
token”, that is a private-key which never leaves a 
smartcard, has been around for over a decade and has 
been deployed in several systems.  From the user’s 
perspective it is a natural progression to store the soft 
token on a network server rather than having to carry 
it around.  This is very easily achieved by copying 
the contents of the soft token onto a server. 

Password-enabled PKI relies on passwords to 
enable the use of private keys.  Passwords are 
extremely easy to use and are easily usable from 
multiple computers. Users continue to express 
frustration with passwords, mainly because they have 
too many of them and are often required to change 
them too often. Password-enabled PKI  alleviates 
both of these problems.  PKI facilitates use of the 
same digital identity at multiple relying parties, 
including those with whom the user has had no prior 
contact.  Thus a user need not be burdened with a 
separate password for every relying party.  With a 
dramatically reduced number of passwords to 
remember, users can be reasonably persuaded (or 
gently enforced) to choose passwords of adequate 
complexity without having to write them on paper as 
a memory aid.  Gentle enforcement of password 
complexity rules is more user-friendly than the 
current conventional wisdom of constantly chasing 
users to change passwords as a countermeasure to 
selection of weak passwords (or the writing on paper 
of many complex passwords).  

To a large extent password-enabled PKI has 
happened in spite of PKI orthodoxy which calls for 
smartcard-enabled PKI wherein the private key never 
leaves the smartcard.  As such the concept of 
password-enabled PKI has not really been studied 
systematically.  Instead a number of proposals have 
been published and implemented, each one motivated 
by its own principal considerations.  One of the goals 
of this paper is to provide a systematic analysis from 
security, functionality and operational perspectives.  
We specifically assume that the underlying 
cryptographic protocols are secure.  This is a 
reasonable assumption since in many cases proofs of 
security or at least strong informal arguments have 

been provided. Empirically, we can say that it is quite 
feasible to get the cryptography correct.  Our goal is 
to understand the overall security that is achieved and 
the functional and operational implications of 
specific approaches. 

2. Password Vulnerabilities 
 

It is generally agreed that password-enabled 
PKI will not provide the same level of security as 
smartcard-based3 or biometric-based PKI.4  All the 
same there is considerable confusion about the actual 
security vulnerabilities of passwords.  So we begin 
with a brief discussion of password vulnerabilities 
before turning to the main topic of the paper. 

There are some inherent vulnerabilities of 
password-based systems. A password can be 
compromised without knowledge of the legitimate 
owner.  There is no physical evidence of theft.  The 
possibility for undetected compromise is further 
enhanced if users reuse the same password at poorly 
protected sites, who may do something silly like 
storing passwords in the clear (or even less extreme).  
This is almost as bad as writing the password on 
paper and displaying it in a public place.  Conversely 
a password can be easily shared.  A common 
example is a corporate executive who shares her 
password with her secretary.  In absence of other 
convenient mechanisms for this purpose, sharing of a 
password is a simple means to provide the secretary 
access to the executive’s email. These inherent 
vulnerabilities cannot be completely addressed 
without cooperation and education of users.  
However, technology to mitigate these problems does 
exist.  Misuse detection systems can help in 
identifying occurrences of misuse due to compromise 
or sharing.  The concept of a trusted path can be used 
to ensure that passwords are revealed to trusted 
entities and not to software that spoofs the look and 
appearance of trusted entities.  Even more effective is 
the use of protocols that do not reveal passwords but 
instead prove knowledge of the password for 
authentication.   

Passwords are also susceptible to guessing 
attacks.  On-line guessing requires the attacker to try 

                                                 
3 It should be noted that not all smartcards are equal.  It is possible 
to do smartcards very badly so they are not tamperproof.  For 
purpose of this paper we assume that smartcards can be made 
tamperproof.  In practice this is a difficult goal.   
4 Currently there is considerable interest in biometrics for 
authentication, especially following the events of September 11, 
2001.  Biometric-enabled PKI, with or without the use of 
smartcards, is a fascinating possibility for higher assurance than 
achieved by password-enabled PKI or even smartcard-enabled 
PKI.  Consideration of biometric-enabled PKI is beyond the scope 
of this paper.   
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password guesses directly against the protected 
system and see if the guessed password works 
successfully.  Enforcement of password complexity 
rules makes these attacks harder.  The threat is 
further mitigated by throttling schemes which slow 
down the rate at which such attacks can be pursued.   
With a simple “three guesses and out” rule it is 
possible to introduce denial of service vulnerabilities 
but more sophisticated approaches are possible.  For 
our purpose we assume that on-line guessing is taken 
care of in some such manner. 

The most serious threat to existing password-
based systems is the possibility of off-line dictionary 
attacks. In these attacks the attacker has knowledge 
of the outcome of some cryptographic operation 
which uses the password as a “key”.  The precise 
knowledge available and attendant attack varies from 
system to system.  We will generically call this 
information as known plaintext.5  We will also use 
the shorter term dictionary attack to specifically mean 
off-line dictionary attack.  Known plaintext is 
sufficient to allow an attacker to verify if a password 
guess is correct or not.  The crucial aspect is that the 
guesses can be verified off-line. By trying large 
numbers (tens or hundreds of thousands) of 
commonly used passwords from a so-called 
dictionary the attacker can succeed without searching 
the entire key space.  This problem has been well 
known since at least 1979 [MT79] but it continues to 
be a major vulnerability of existing password-based 
systems [WU99].  We can distinguish between 
network-based and server-based offline dictionary 
attacks.  In the former case the required known 
plaintext is obtained from the network protocol, 
possibly by network sniffing or more directly by 
simply running the protocol.  Server-based attacks 
require capture of this information by server 
penetration in some way.  In particular system 
administrators of the server will typically have easy 
access to the requisite known plaintext. 

To complicate dictionary attacks a password is 
typically salted before it is used as a “key”.  The salt 
is a random number which is usually not kept secret.  
Different users with different salts will generate 
different known plaintext making the dictionary 
attack more time consuming.  In particular the 
attacker cannot precompute known plaintext values 
from the dictionary passwords alone, but must do so 
separately for each value of the salt.  This makes 
precomputation of the dictionary attack infeasible 
since the space of possible salts is very large.  

                                                 
5 It should be noted that known plaintext can be known structure 
rather than known content. 

3. Password-based Cryptographic 
Protocols 
 

The Kerberos system [KN93, NT94] was one 
of the first to use passwords as a basis for 
cryptographic protocols.  Susceptibility of Kerberos 
to network-based dictionary attacks is well-known 
[BM91, WU99].6 A number of password-based 
cryptographic protocols immune to network-based 
dictionary attacks have since been published.  
Notable amongst these are the EKE [BM92], SPEKE 
[JAB96] and SRP [WU98] protocols, but there are 
many others.  All these protocols use public-key 
cryptography in some way, a requirement that has 
been shown to be theoretically necessary [HK99b].  
We can reasonably claim that, since about 1992, we 
know how to construct password-based cryptographic 
protocols immune to network-based dictionary 
attacks.7 

In the above protocols both the client and the 
server store the password.  Server compromise is 
however a real threat, and in this case it immediately 
yields the password to the attacker.  In the augmented 
EKE [BM93] and SNAPI-X [MPS00] protocols, the 
server holds a hash of the password rather than the 
password, so server-compromise does not 
immediately yield the password to the adversary, but 
the attacker, having compromised the server, can still 
mount a dictionary attack based on the password 
hash. Immunity to server-based dictionary attack is 
not so easy to achieve. An approach based on 
multiple servers has recently emerged.  The user’s 
password is used to retrieve shares of a secret from 
multiple servers without exposure to network-based 
dictionary attacks.  The secret is then assembled at 
the client computer from its shares.  This long 
random secret can then be used for a variety of 
cryptographic purposes.  Ford and Kaliski [FK00] 
present an elegant n-of-n scheme for this purpose, 
and suggest using 2-of-2 in practice.  In general all n 
servers need to be penetrated by an attacker.  
Compromise of (n-1) is not sufficient.  Jablon 
[JAB01] proposes schemes with additional desirable 
properties. 

In practice schemes with multiple servers 
impose operational requirements to keep additional 
servers online and available.  Moreover these servers 
may be subject to common-mode security failures.  
                                                 
6 Kerberos failure to server attacks is complete and absolute 
obviating the need to do a server-based dictionary attack.  It is 
interesting to note that Kerberos employs the user name and realm 
name as salt in its string_to_key function [KN93]. 
7 Security analysis of such protocols is however subtle, and 
definitions of security goals, together with proven secure protocols, 
including a proof for the core of EKE, have emerged only more 
recently [BPR00, BMP00]. 

1st Annual PKI Research Workshop---Proceedings

91



 

Once an attacker knows how to break one server, 
likelihood of success on the other is quite significant 
in practice.  Possibility of insider attacks could be 
reduced due to requirement of insider collusion 
across multiple servers, but outsider attacks may not 
be significantly mitigated. At the same time 
operational quality may be degraded.  Security 
infrastructure is expected to be more robust than the 
infrastructure it protects.  Each security server would 
generally be replicated for reliability purposes.  Each 
additional server therefore counts as two.  
Appropriate hardening of a single server with suitable 
separation of duties and least privilege could present 
a more viable approach to outsider and insider 
attacks.        

4. Password-enabled PKI 
 

With this background and motivation we now 
address the main topic of this paper.  There are 
fundamentally two distinct ways to implement 
password-enabled PKI. 
1. Employ the user’s password as a means to 

securely retrieve the user’s private key on to any 
computer from where it can then be used without 
further online interaction. 

2. Employ the user’s password as a component of 
the user’s private key which can be used only in 
conjunction with another component which, in 
turn, can only be used on an online server. 

The principal distinction between these two 
approaches is whether or not the user’s private key is 
completely resident on the user’s computer in a 
usable form.  In the first case the user’s key is 
available in the clear on the user’s computer and can 
be used independent of any further interaction with 
the online server.  Network-based storage of a user’s 
private key in this manner is analogous to storage of 
an encrypted private key on a soft token.  Once this 
private key is decrypted on a computer it can be used 
indefinitely without continued need for the soft 
token.  Because of this analogy we call this approach 
a virtual soft token (or network-based soft token). 

In the second approach the password only 
enables usage of the private key without bringing the 
entire private key together in one place.  The overall 
private key is split into two components.  One 
component is computed from the user’s password.  
The other is resident on a secure online server.  Let 
us call the former component the password 
component and the latter component the server 
component.  Both components are required whenever 
the user wishes to use her overall private key but they 
are never brought together in one place.  Instead an 
interactive protocol is carried out to achieve that 

result.  Network-based usage of a component of the 
user’s private key in this manner is analogous to 
usage of a private key in a smartcard.  Just as the 
private key never leaves the smartcard, the server 
component of a user’s overall private key never 
leaves the network server.  Because of this analogy 
we call the second approach a virtual smartcard (or 
network-based smartcard).8 

In the remainder of this paper we identify 
major characteristics of these two approaches to 
password-enabled PKI and compare them. 

4.1. Virtual Soft Tokens 
 

Virtual soft tokens enable retrieval of a user’s 
private key onto any computer of the user’s choice.  
A simplistic approach to this task would be to store 
each user’s key encrypted with the user’s password 
on an online server.  Anyone could retrieve any of 
these encrypted keys, but without knowledge of the 
correct password would not be able to directly 
decrypt them.  The virtual soft token is simply a 
substitute for the physical soft token.9  Unfortunately 
this scheme is susceptible to dictionary attacks.  An 
attacker who has access to the encrypted private key 
can verify guesses for the password by decrypting the 
private key with the guess and verifying success or 
failure with respect to the known public key.10 

A virtual soft token therefore cannot be freely 
accessible for download.  Instead it must be protected 
from network-based dictionary attacks by one of the 
password-based protocols such as EKE, SPEKE or 
equivalent. 

Virtual soft tokens were first proposed in the 
SPX system [TA91].  The designers of SPX did not 
feel comfortable downloading the user’s long-term 
private key to the client machine. Instead they 
proposed creation of a short-term private key whose 
public-key certificate was signed by the user’s long-
term private key. Only the short term key would be 
downloaded to the client machine for unrestricted use 
within its short life.  In a sense this proposal is 
stronger than a physical soft token since compromise 

                                                 
8  It should be noted that the term virtual smartcard has been used 
for schemes that are virtual soft tokens in our terminology.  This is 
inappropriate since an essential characteristic of a smartcard is that 
the private key never leaves the smartcard. 
9 People who use soft tokens can trivially virtualize them in this 
manner by simply copying the soft token to some server from 
where it is accessible. 
10 Hoover and Kausik [HK99a] suggest that this dictionary attack 
can be avoided by protecting disclosure of the public key.  
Unfortunately their approach of “cryptographic camouflage” 
negates the main advantage of PKI where the public key does not 
need to be confidential.  Technically, Hoover and Kausik also 
require elimination of redundancy in encryption of the private key 
so “known structure” attacks are not possible. 
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of the client leads to compromise of a short-term key 
with a life of say 8 hours.  Compromise of a client 
with a long-term key with a life of say 1 year is more 
devastating.  In another sense the SPX soft token is 
weaker with respect to non-repudiation.  The user’s 
long-term key is exposed on the SPX server where it 
is needed to construct the certificate for the short-
term key.  The SPX server can therefore impersonate 
the user via knowledge of the long-term key.  
Novell’s NetWare v4 deployed a similar process for 
downloading a temporary private key [KPC95] 
(although it used a different set of underlying 
cryptographic algorithms). 

Recent proposals for virtual soft tokens have 
returned to the idea of retrieving the long-term 
private key on to the client.  As we have seen we 
know how to prevent network-based dictionary 
attacks in this context.  A number of protocols for 
this purpose were recently presented by Perlman and 
Kaufman [PK99].  There are some significant 
differences in detailed properties of these protocols.  
Nonetheless from our vantage they all share a 
common core of security properties: exposure of 
long-term private keys on the client and immunity to 
network-based dictionary attacks. 

Ford and Kaliski [FK00], and later Jablon 
[JAB01], propose solutions to server-based 
dictionary attacks.  As discussed earlier these 
solutions require additional servers which may 
degrade operational quality while the gain in security 
may be diminished due to common-mode failures. 

4.2. Virtual Smartcards 
 

Virtual Smartcards are based on split private 
keys.  In classical 2-key RSA the public and private 
keys for given n are related by the following 
equation. 
 

e*d = 1 mod φ(n) 
 

The splitting of d into d1 and d2 is computed as 
follows. 
 

d1*d2 = d mod φ(n) 
 

The fundamental operation of exponentiation in RSA 
then gives us the following equations. 
 

(Md1)d2 mod n = 
(Md2)d1 mod n = 
Md1*d2 mod n = 

Md mod n 
 

This idea can be extended to more than two 
splits of the original private key d if so desired.  It 
can also be applied to an additive rather than 
multiplicative split.  These ideas were first published 
by Colin Boyd [BOY89]. Their first application to 
virtual smartcards is due to Ganesan [GAN95, 
GAN96].  Ganesan’s innovation was to realize that 
one of the split keys, say d1, can come from a 
password and therefore easily remembered and 
carried around mentally by a user.  Nonetheless 
security of d2 is equivalent to security of a traditional 
RSA private key.11 

To summarize, in a 3-key RSA system there 
are 2 private keys whose multiplication mod φ(n) is 
equivalent to a single overall private key.  One of 
these keys d1 is computed from the user’s password 
and known only to the user.  It is the password 
component of the overall private key.  The server 
component of the overall private key is d2 which is 
stored and used only on a secure online server.  The 
server component constitutes a virtual smartcard 
which can be used only if knowledge of d1 is 
demonstrated.  The overall private key d is never 
reconstructed on the client or the server.  Every use 
of d involves an online interaction between the client 
and server.12 

An immediate benefit of virtual smartcards is 
the ability to do instant revocation.  The server 
resident d2 can be revoked at any time rendering the 
password component d1 completely useless.  From 
here on d1 cannot be used to generate a signature 
even if the certificate for (e,n) continues to be valid.  
The network-based virtual smartcard will refuse to 
participate in the signing protocol.  This is a 
tremendous benefit relative not only to virtual soft 
tokens but also to local smartcards.  Another benefit 
is potential for misuse detection by monitoring usage 
of the virtual smartcard.  Note that these benefits 
continue to accrue even if d1 is stored on a local 
smartcard rather than computed from a password.  As 
such virtual smartcards provide valuable additional 
services even when we reach the age of ubiquitous 
smartcards (and smartcard readers). 

MacKenzie and Reiter [MK01] have an 
interesting variation on the use of split-key RSA.  
They show how to make the loss of a local smartcard 
safe in that there is no private key within the 
smartcard that can be extracted.  Also the smartcard 
is useless without knowledge of the user’s password.  
In a nutshell the password component of a user’s 
password is much the same as in Ganesan’s scheme.  

                                                 
11 This notion is formally proved in Appendix A. 
12 Contrast this with SPX discussed above where the entire private 
key is resident on the server.  SPX thereby fails to provide non-
repudiation.   
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The server component, however, is stored encrypted 
with the server’s public on the smartcard, i.e., d2 
encrypted with the server’s public key.  Cooperation 
of the server is therefore required whenever the 
smartcard is used.  This is much like the virtual 
smartcard scheme.  However, revocation is done out 
of band and requires the servers to maintain the 
equivalent of revocation lists. Mobility in this scheme 
is achieved by moving the device from computer to 
computer which requires a suitable reader or 
interface.  This is a characteristic of conventional 
local smartcards. 

5. Conclusion 
 

In this paper we have identified two 
approaches to password-enabled PKI.  We have 
motivated the reasons for calling these virtual soft 
tokens versus virtual smartcards.  Virtual smartcards 
remove exposure of the user’s private key on a client 
computer while allowing for misuse detection and 
instant revocation. Conversely, virtual soft tokens 
expose the user’s private key on client computers and 
cannot support misuse detection or instant revocation.  
These are substantial differences. 

As we look to the future, PKI thinking must 
depart from its conventional reliance on smartcards 
as the technology which will make PKI real. With 
hundreds of millions of computers deployed all over 
the world today retrofitting smartcard readers on each 
one is a formidable task. A variety of wireless and 
personal computing devices are also proliferating.  
Uniform availability of smartcard readers across all 
these devices is extremely unlikely.  Instead we 
should look to an environment where virtual 
smartcards are pervasive with local smartcards and 
biometrics being used for higher assurance situations. 

The recent big push for identity services on the 
Internet has veered away from PKI to proposals that 
are entirely password based and make extensive use 
of symmetric cryptography. In the past year we have 
seen a number of such initiatives from big players in 
the Information Technology arena.  PKI still offers 
considerable advantages over symmetric technology.  
But if the PKI community is not alert and adaptive to 
industry trends we may find the baby is thrown out 
with the bath water. 
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Appendix A: Equivalence of 3-key 
RSA To 2-key RSA 
 
We show that the security of 2-key RSA is equivalent 
to the security of 3-key RSA, following Ganesan and 
Yacobi [GY94] who first established this conjecture 
of Boyd [BOY89].13 
 
A traditional 2-key RSA pair is generated as follows. 
 
1. Generate two large, distinct primes p, q of 

roughly equal bit-length 
2. Compute n=p*q 
3. Select e such that gcd(e,φ(n))=1 and 1<e<φ(n), 

where φ(n)=(p-1)*(q-1) 
4. Compute d, such that 1<d<φ(n) and e*d =1 mod 

φ(n) 

                                                 
13 We note that this argument only reflects key-recovery attacks. 
Security arguments for our schemes that consider forgery attacks 
are more involved, and provided in [BS01]. 
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5. Destroy p, q 
6. Public key is e, n and private key is d 
 
In the password-based 3-key system steps 1-4 are as 
above, followed by the steps given below. 
5. Ask user to select a password Pwd that meets 

password selection rules 
6. Pick an iteration count IC 

Repeat 
6.1 Pick a random SALT 
6.2 Compute d1 = Expand(Pwd,SALT,IC) 
Until (gcd(d1, φ(n))=1 and 1<d1<φ(n) ) 
[The function Expand is specified via PKCS5. 
The IC value and the final SALT value are 
accessible for subsequent use by the user.] 

7. Compute d2 such that 1<d2<φ(n) and d1*d2 = d 
mod φ(n).  

8. Destroy p, q, d 
9. Public key is e, n; user's private key component 

is d1 (user remembers password Pwd from 
which d1 is computed) and appliance private key 
component for that user is d2. 

 
We claim that the expected number of iterations of 
the repeat loop in Step 6 is around 2, so that the loop 
terminates quite fast. (Assume the Expand function 
is random and has range {0,1}k where 2k-1≤ n <2k. 
Then the expected number of iterations is at most 
(2*n)/φ(n) which is very close to 2.) 
 
The strength of the split-key setting is that it provides 
as much security as RSA even if the user password is 
compromised, in the following sense: the problem of 
computing d2 given n, e, d1 is as hard as the 
traditional RSA problem of computing the secret 
exponent given the public key in the standard setting. 
 
To detail this claim, we recall that the traditional 
RSA problem is defined as follows:  
 
Given: n, e 
Compute: d such that e*d=1 mod φ(n) and 1<d<φ(n) 
 
We define the split-key RSA problem as follows: 
 
Given: n, e, d1 
Compute: d2 such that e*d1*d2 =1 mod φ(n) and 
1<d2<φ(n) 
 
We claim that if the split-key RSA problem is 
tractable, then so is the traditional RSA problem. To 
justify this claim, we assume we are given a method 
of solving the split-key RSA problem relative to a 
password generation process (formally, randomized 
algorithm) P that models the client's choice of 
password.  The following code shows how we can 

then solve the traditional RSA problem.  
Explanations follow the code. 
 
Given n, e, 
1. Run P to obtain a password Pwd 
2. Pick random SALT, and IC, and compute d1 = 

Expand(Pwd,SALT,IC) 
3. Run the given split-key RSA solving method on 

input n, e, d1 to obtain d2 
4. Let m = e*d1*d2 - 1 
5. Use m, e to factor n [see later text for why this is 

possible] 
6. Use the factorization of n to compute φ(n) 
7. Let d be the inverse of e modulo φ(n) 
8. Output d 
 
Note that the value d1 chosen in Step 2 may not be 
relatively prime to φ(n) and in that case the algorithm 
will probably not succeed. However, d1 as chosen in 
step 2 has probability around 1/2 of being relatively 
prime to φ(n) and hence the success probability of the 
algorithm above is about one-half that of the given 
method for solving the split-key RSA problem. 
 
The value m computed in Step 4 is a multiple of φ(n), 
because, modulo φ(n) we have: 
 
   e*d1*d2 -1 = e*d1*d2 - e*d = e*[d1*d2-d] = 0. 
 
Step 5 uses a well-known fact, namely that given a 
multiple of φ(n) it is possible to factor n. 
 
One might ask why the algorithm does not, after step 
3, simply compute d = d1*d2, output d and halt, since 
this d satisfies e*d mod φ (n) = 1.  However this d 
may not satisfy 1<d<φ(n). 
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