

Password-Enabled PKI:

Virtual Smartcards versus Virtual Soft Tokens

Ravi Sandhu

SingleSignOn.Net Inc., and
George Mason University
rsandhu@singlesignon.net

Mihir Bellare

SingleSignOn.Net Inc., and
University of California, San Diego

mihir@cs.ucsd.edu

Ravi Ganesan

SingleSignOn.Net Inc.,
11417 Sunset Hills Road, Reston, VA

ravi@singlesignon.net

Abstract
Recently there has been considerable interest

among PKI vendors and researchers in the concept of
password-enabled PKI. Several viable proposals and
products have emerged. Fundamentally there are two
distinct methods for using passwords with private
keys. One method is to use the password to retrieve a
private key, while the other uses the password as one
component of the private key. We motivate the
names virtual soft tokens for the former and virtual
smartcards for the latter. The major characteristics of
these two approaches are identified and contrasted.

1. Introduction and Motivation

The notion of a password-enabled PKI sounds like an
oxymoron to those of us who have lived through the
last decade of discussion on PKI and its rosy
prospects. PKI was supposed to do away with
passwords. By all logic and forecast, passwords
should be a relic of the stone age of cyberspace and
should no longer be in use today. PKI was expected
to replace them with private keys securely generated
and forever safe in tamper-proof smartcards. In the
coming brave new world, these private keys would be
activated by appropriate biometrics securely
embedded and captured by the smartcard. The reality
of 2002, however, is that passwords are used in
cyberspace on a scale scarcely imagined a decade
ago. There are hundreds of millions, perhaps even
billions, of instances of password usage in
cyberspace every day. Conservatively, consider tens
of millions of users each invoking ten instances of
password usages per day. In contrast one has to look
high and low to find actual uses of smartcards, even
in laboratory or pilot situations.

Simply stated, it is an indisputable empirical
fact that smartcards have not happened.1 If the

1 This statement should be understood in context of the use of
smartcards for PKI on the Internet via widely available desktops

original vision of smartcards with ubiquitous readers
had become reality there would be no need to talk
about password-enabled PKI. All the same, it is
worth mentioning that the vision of smartcards has
not faded completely, and they may still happen some
day. At this moment the DoD is engaged in a major
rollout of smartcards in numbers that make sense in
the scale of today’s Internet.2 Not a few thousand or
even a few hundred thousand but in the scale of 2 to
5 million. The discipline and resources of the DoD
have few parallels in the world. This is a fascinating
experiment to watch. It may finally prove the
feasibility of a large-scale deployment of smartcards.
Nonetheless it will be hard for Federal Government
agencies, corporations, educational institutions, etc.
to emulate this scale of deployment of smartcards.
Note that the difficulty is not so much in the process
and cost of issuing the smartcards per se, but much
more in deploying smartcard readers on each and
every computer in use by the user population.
Proliferation of devices such as PDAs and wireless
phones further compounds the problem. Moreover,
we have needs at larger scale than the DoD
experiment. The Federal Government often deals
with 100’s of millions of users. It is not unusual for
large corporations to be in touch with 10’s of millions
of users. It is certainly within their vision to be in
touch with 100’s of millions and even billions of
users in the future. Given the multi-year deployment
of DoD smartcards, one wonders how the truly large
scale will ever be realized in this mode. It seems
rather unlikely that we will have a national scale
deployment of smartcards in the near future, let alone
a global scale deployment. Organizations whose PKI
strategy depends entirely on smartcards happening
very soon are making a rather risky bet.

and laptops. The use of smartcards in specialized applications has
seen considerable success, more so in Europe and Asia than in
North America. In these applications the smartcard is often
embedded in a device such as a wireless telephone or a television-
set top box, or in a credit-card with specialized readers.
2http://www.defenselink.mil/news/Oct2000/n10102000_20001010
7.html

1st Annual PKI Research Workshop---Proceedings

89

If smartcards are not available where do we
store the user’s private key and how do we make it
portable? Most systems today store the private key
encrypted with a user-selected password on the hard
disk. Portability is achieved by transporting the
encrypted private key on removable media, such as a
floppy disk. Currently one cannot guarantee
availability of floppy disk readers, or other media-
specific devices, on every computer. In general the
portability of any media-specific transport is
questionable in a truly open environment. All the
same the notion of a “soft token”, that is a private-
key encrypted with a password, in contrast to a “hard
token”, that is a private-key which never leaves a
smartcard, has been around for over a decade and has
been deployed in several systems. From the user’s
perspective it is a natural progression to store the soft
token on a network server rather than having to carry
it around. This is very easily achieved by copying
the contents of the soft token onto a server.

Password-enabled PKI relies on passwords to
enable the use of private keys. Passwords are
extremely easy to use and are easily usable from
multiple computers. Users continue to express
frustration with passwords, mainly because they have
too many of them and are often required to change
them too often. Password-enabled PKI alleviates
both of these problems. PKI facilitates use of the
same digital identity at multiple relying parties,
including those with whom the user has had no prior
contact. Thus a user need not be burdened with a
separate password for every relying party. With a
dramatically reduced number of passwords to
remember, users can be reasonably persuaded (or
gently enforced) to choose passwords of adequate
complexity without having to write them on paper as
a memory aid. Gentle enforcement of password
complexity rules is more user-friendly than the
current conventional wisdom of constantly chasing
users to change passwords as a countermeasure to
selection of weak passwords (or the writing on paper
of many complex passwords).

To a large extent password-enabled PKI has
happened in spite of PKI orthodoxy which calls for
smartcard-enabled PKI wherein the private key never
leaves the smartcard. As such the concept of
password-enabled PKI has not really been studied
systematically. Instead a number of proposals have
been published and implemented, each one motivated
by its own principal considerations. One of the goals
of this paper is to provide a systematic analysis from
security, functionality and operational perspectives.
We specifically assume that the underlying
cryptographic protocols are secure. This is a
reasonable assumption since in many cases proofs of
security or at least strong informal arguments have

been provided. Empirically, we can say that it is quite
feasible to get the cryptography correct. Our goal is
to understand the overall security that is achieved and
the functional and operational implications of
specific approaches.

2. Password Vulnerabilities

It is generally agreed that password-enabled
PKI will not provide the same level of security as
smartcard-based3 or biometric-based PKI.4 All the
same there is considerable confusion about the actual
security vulnerabilities of passwords. So we begin
with a brief discussion of password vulnerabilities
before turning to the main topic of the paper.

There are some inherent vulnerabilities of
password-based systems. A password can be
compromised without knowledge of the legitimate
owner. There is no physical evidence of theft. The
possibility for undetected compromise is further
enhanced if users reuse the same password at poorly
protected sites, who may do something silly like
storing passwords in the clear (or even less extreme).
This is almost as bad as writing the password on
paper and displaying it in a public place. Conversely
a password can be easily shared. A common
example is a corporate executive who shares her
password with her secretary. In absence of other
convenient mechanisms for this purpose, sharing of a
password is a simple means to provide the secretary
access to the executive’s email. These inherent
vulnerabilities cannot be completely addressed
without cooperation and education of users.
However, technology to mitigate these problems does
exist. Misuse detection systems can help in
identifying occurrences of misuse due to compromise
or sharing. The concept of a trusted path can be used
to ensure that passwords are revealed to trusted
entities and not to software that spoofs the look and
appearance of trusted entities. Even more effective is
the use of protocols that do not reveal passwords but
instead prove knowledge of the password for
authentication.

Passwords are also susceptible to guessing
attacks. On-line guessing requires the attacker to try

3 It should be noted that not all smartcards are equal. It is possible
to do smartcards very badly so they are not tamperproof. For
purpose of this paper we assume that smartcards can be made
tamperproof. In practice this is a difficult goal.
4 Currently there is considerable interest in biometrics for
authentication, especially following the events of September 11,
2001. Biometric-enabled PKI, with or without the use of
smartcards, is a fascinating possibility for higher assurance than
achieved by password-enabled PKI or even smartcard-enabled
PKI. Consideration of biometric-enabled PKI is beyond the scope
of this paper.

1st Annual PKI Research Workshop---Proceedings

90

password guesses directly against the protected
system and see if the guessed password works
successfully. Enforcement of password complexity
rules makes these attacks harder. The threat is
further mitigated by throttling schemes which slow
down the rate at which such attacks can be pursued.
With a simple “three guesses and out” rule it is
possible to introduce denial of service vulnerabilities
but more sophisticated approaches are possible. For
our purpose we assume that on-line guessing is taken
care of in some such manner.

The most serious threat to existing password-
based systems is the possibility of off-line dictionary
attacks. In these attacks the attacker has knowledge
of the outcome of some cryptographic operation
which uses the password as a “key”. The precise
knowledge available and attendant attack varies from
system to system. We will generically call this
information as known plaintext.5 We will also use
the shorter term dictionary attack to specifically mean
off-line dictionary attack. Known plaintext is
sufficient to allow an attacker to verify if a password
guess is correct or not. The crucial aspect is that the
guesses can be verified off-line. By trying large
numbers (tens or hundreds of thousands) of
commonly used passwords from a so-called
dictionary the attacker can succeed without searching
the entire key space. This problem has been well
known since at least 1979 [MT79] but it continues to
be a major vulnerability of existing password-based
systems [WU99]. We can distinguish between
network-based and server-based offline dictionary
attacks. In the former case the required known
plaintext is obtained from the network protocol,
possibly by network sniffing or more directly by
simply running the protocol. Server-based attacks
require capture of this information by server
penetration in some way. In particular system
administrators of the server will typically have easy
access to the requisite known plaintext.

To complicate dictionary attacks a password is
typically salted before it is used as a “key”. The salt
is a random number which is usually not kept secret.
Different users with different salts will generate
different known plaintext making the dictionary
attack more time consuming. In particular the
attacker cannot precompute known plaintext values
from the dictionary passwords alone, but must do so
separately for each value of the salt. This makes
precomputation of the dictionary attack infeasible
since the space of possible salts is very large.

5 It should be noted that known plaintext can be known structure
rather than known content.

3. Password-based Cryptographic
Protocols

The Kerberos system [KN93, NT94] was one
of the first to use passwords as a basis for
cryptographic protocols. Susceptibility of Kerberos
to network-based dictionary attacks is well-known
[BM91, WU99].6 A number of password-based
cryptographic protocols immune to network-based
dictionary attacks have since been published.
Notable amongst these are the EKE [BM92], SPEKE
[JAB96] and SRP [WU98] protocols, but there are
many others. All these protocols use public-key
cryptography in some way, a requirement that has
been shown to be theoretically necessary [HK99b].
We can reasonably claim that, since about 1992, we
know how to construct password-based cryptographic
protocols immune to network-based dictionary
attacks.7

In the above protocols both the client and the
server store the password. Server compromise is
however a real threat, and in this case it immediately
yields the password to the attacker. In the augmented
EKE [BM93] and SNAPI-X [MPS00] protocols, the
server holds a hash of the password rather than the
password, so server-compromise does not
immediately yield the password to the adversary, but
the attacker, having compromised the server, can still
mount a dictionary attack based on the password
hash. Immunity to server-based dictionary attack is
not so easy to achieve. An approach based on
multiple servers has recently emerged. The user’s
password is used to retrieve shares of a secret from
multiple servers without exposure to network-based
dictionary attacks. The secret is then assembled at
the client computer from its shares. This long
random secret can then be used for a variety of
cryptographic purposes. Ford and Kaliski [FK00]
present an elegant n-of-n scheme for this purpose,
and suggest using 2-of-2 in practice. In general all n
servers need to be penetrated by an attacker.
Compromise of (n-1) is not sufficient. Jablon
[JAB01] proposes schemes with additional desirable
properties.

In practice schemes with multiple servers
impose operational requirements to keep additional
servers online and available. Moreover these servers
may be subject to common-mode security failures.

6 Kerberos failure to server attacks is complete and absolute
obviating the need to do a server-based dictionary attack. It is
interesting to note that Kerberos employs the user name and realm
name as salt in its string_to_key function [KN93].
7 Security analysis of such protocols is however subtle, and
definitions of security goals, together with proven secure protocols,
including a proof for the core of EKE, have emerged only more
recently [BPR00, BMP00].

1st Annual PKI Research Workshop---Proceedings

91

Once an attacker knows how to break one server,
likelihood of success on the other is quite significant
in practice. Possibility of insider attacks could be
reduced due to requirement of insider collusion
across multiple servers, but outsider attacks may not
be significantly mitigated. At the same time
operational quality may be degraded. Security
infrastructure is expected to be more robust than the
infrastructure it protects. Each security server would
generally be replicated for reliability purposes. Each
additional server therefore counts as two.
Appropriate hardening of a single server with suitable
separation of duties and least privilege could present
a more viable approach to outsider and insider
attacks.

4. Password-enabled PKI

With this background and motivation we now
address the main topic of this paper. There are
fundamentally two distinct ways to implement
password-enabled PKI.
1. Employ the user’s password as a means to

securely retrieve the user’s private key on to any
computer from where it can then be used without
further online interaction.

2. Employ the user’s password as a component of
the user’s private key which can be used only in
conjunction with another component which, in
turn, can only be used on an online server.

The principal distinction between these two
approaches is whether or not the user’s private key is
completely resident on the user’s computer in a
usable form. In the first case the user’s key is
available in the clear on the user’s computer and can
be used independent of any further interaction with
the online server. Network-based storage of a user’s
private key in this manner is analogous to storage of
an encrypted private key on a soft token. Once this
private key is decrypted on a computer it can be used
indefinitely without continued need for the soft
token. Because of this analogy we call this approach
a virtual soft token (or network-based soft token).

In the second approach the password only
enables usage of the private key without bringing the
entire private key together in one place. The overall
private key is split into two components. One
component is computed from the user’s password.
The other is resident on a secure online server. Let
us call the former component the password
component and the latter component the server
component. Both components are required whenever
the user wishes to use her overall private key but they
are never brought together in one place. Instead an
interactive protocol is carried out to achieve that

result. Network-based usage of a component of the
user’s private key in this manner is analogous to
usage of a private key in a smartcard. Just as the
private key never leaves the smartcard, the server
component of a user’s overall private key never
leaves the network server. Because of this analogy
we call the second approach a virtual smartcard (or
network-based smartcard).8

In the remainder of this paper we identify
major characteristics of these two approaches to
password-enabled PKI and compare them.

4.1. Virtual Soft Tokens

Virtual soft tokens enable retrieval of a user’s
private key onto any computer of the user’s choice.
A simplistic approach to this task would be to store
each user’s key encrypted with the user’s password
on an online server. Anyone could retrieve any of
these encrypted keys, but without knowledge of the
correct password would not be able to directly
decrypt them. The virtual soft token is simply a
substitute for the physical soft token.9 Unfortunately
this scheme is susceptible to dictionary attacks. An
attacker who has access to the encrypted private key
can verify guesses for the password by decrypting the
private key with the guess and verifying success or
failure with respect to the known public key.10

A virtual soft token therefore cannot be freely
accessible for download. Instead it must be protected
from network-based dictionary attacks by one of the
password-based protocols such as EKE, SPEKE or
equivalent.

Virtual soft tokens were first proposed in the
SPX system [TA91]. The designers of SPX did not
feel comfortable downloading the user’s long-term
private key to the client machine. Instead they
proposed creation of a short-term private key whose
public-key certificate was signed by the user’s long-
term private key. Only the short term key would be
downloaded to the client machine for unrestricted use
within its short life. In a sense this proposal is
stronger than a physical soft token since compromise

8 It should be noted that the term virtual smartcard has been used
for schemes that are virtual soft tokens in our terminology. This is
inappropriate since an essential characteristic of a smartcard is that
the private key never leaves the smartcard.
9 People who use soft tokens can trivially virtualize them in this
manner by simply copying the soft token to some server from
where it is accessible.
10 Hoover and Kausik [HK99a] suggest that this dictionary attack
can be avoided by protecting disclosure of the public key.
Unfortunately their approach of “cryptographic camouflage”
negates the main advantage of PKI where the public key does not
need to be confidential. Technically, Hoover and Kausik also
require elimination of redundancy in encryption of the private key
so “known structure” attacks are not possible.

1st Annual PKI Research Workshop---Proceedings

92

of the client leads to compromise of a short-term key
with a life of say 8 hours. Compromise of a client
with a long-term key with a life of say 1 year is more
devastating. In another sense the SPX soft token is
weaker with respect to non-repudiation. The user’s
long-term key is exposed on the SPX server where it
is needed to construct the certificate for the short-
term key. The SPX server can therefore impersonate
the user via knowledge of the long-term key.
Novell’s NetWare v4 deployed a similar process for
downloading a temporary private key [KPC95]
(although it used a different set of underlying
cryptographic algorithms).

Recent proposals for virtual soft tokens have
returned to the idea of retrieving the long-term
private key on to the client. As we have seen we
know how to prevent network-based dictionary
attacks in this context. A number of protocols for
this purpose were recently presented by Perlman and
Kaufman [PK99]. There are some significant
differences in detailed properties of these protocols.
Nonetheless from our vantage they all share a
common core of security properties: exposure of
long-term private keys on the client and immunity to
network-based dictionary attacks.

Ford and Kaliski [FK00], and later Jablon
[JAB01], propose solutions to server-based
dictionary attacks. As discussed earlier these
solutions require additional servers which may
degrade operational quality while the gain in security
may be diminished due to common-mode failures.

4.2. Virtual Smartcards

Virtual Smartcards are based on split private
keys. In classical 2-key RSA the public and private
keys for given n are related by the following
equation.

e*d = 1 mod φ(n)

The splitting of d into d1 and d2 is computed as
follows.

d1*d2 = d mod φ(n)

The fundamental operation of exponentiation in RSA
then gives us the following equations.

(Md1)d2 mod n =
(Md2)d1 mod n =
Md1*d2 mod n =

Md mod n

This idea can be extended to more than two
splits of the original private key d if so desired. It
can also be applied to an additive rather than
multiplicative split. These ideas were first published
by Colin Boyd [BOY89]. Their first application to
virtual smartcards is due to Ganesan [GAN95,
GAN96]. Ganesan’s innovation was to realize that
one of the split keys, say d1, can come from a
password and therefore easily remembered and
carried around mentally by a user. Nonetheless
security of d2 is equivalent to security of a traditional
RSA private key.11

To summarize, in a 3-key RSA system there
are 2 private keys whose multiplication mod φ(n) is
equivalent to a single overall private key. One of
these keys d1 is computed from the user’s password
and known only to the user. It is the password
component of the overall private key. The server
component of the overall private key is d2 which is
stored and used only on a secure online server. The
server component constitutes a virtual smartcard
which can be used only if knowledge of d1 is
demonstrated. The overall private key d is never
reconstructed on the client or the server. Every use
of d involves an online interaction between the client
and server.12

An immediate benefit of virtual smartcards is
the ability to do instant revocation. The server
resident d2 can be revoked at any time rendering the
password component d1 completely useless. From
here on d1 cannot be used to generate a signature
even if the certificate for (e,n) continues to be valid.
The network-based virtual smartcard will refuse to
participate in the signing protocol. This is a
tremendous benefit relative not only to virtual soft
tokens but also to local smartcards. Another benefit
is potential for misuse detection by monitoring usage
of the virtual smartcard. Note that these benefits
continue to accrue even if d1 is stored on a local
smartcard rather than computed from a password. As
such virtual smartcards provide valuable additional
services even when we reach the age of ubiquitous
smartcards (and smartcard readers).

MacKenzie and Reiter [MK01] have an
interesting variation on the use of split-key RSA.
They show how to make the loss of a local smartcard
safe in that there is no private key within the
smartcard that can be extracted. Also the smartcard
is useless without knowledge of the user’s password.
In a nutshell the password component of a user’s
password is much the same as in Ganesan’s scheme.

11 This notion is formally proved in Appendix A.
12 Contrast this with SPX discussed above where the entire private
key is resident on the server. SPX thereby fails to provide non-
repudiation.

1st Annual PKI Research Workshop---Proceedings

93

The server component, however, is stored encrypted
with the server’s public on the smartcard, i.e., d2
encrypted with the server’s public key. Cooperation
of the server is therefore required whenever the
smartcard is used. This is much like the virtual
smartcard scheme. However, revocation is done out
of band and requires the servers to maintain the
equivalent of revocation lists. Mobility in this scheme
is achieved by moving the device from computer to
computer which requires a suitable reader or
interface. This is a characteristic of conventional
local smartcards.

5. Conclusion

In this paper we have identified two
approaches to password-enabled PKI. We have
motivated the reasons for calling these virtual soft
tokens versus virtual smartcards. Virtual smartcards
remove exposure of the user’s private key on a client
computer while allowing for misuse detection and
instant revocation. Conversely, virtual soft tokens
expose the user’s private key on client computers and
cannot support misuse detection or instant revocation.
These are substantial differences.

As we look to the future, PKI thinking must
depart from its conventional reliance on smartcards
as the technology which will make PKI real. With
hundreds of millions of computers deployed all over
the world today retrofitting smartcard readers on each
one is a formidable task. A variety of wireless and
personal computing devices are also proliferating.
Uniform availability of smartcard readers across all
these devices is extremely unlikely. Instead we
should look to an environment where virtual
smartcards are pervasive with local smartcards and
biometrics being used for higher assurance situations.

The recent big push for identity services on the
Internet has veered away from PKI to proposals that
are entirely password based and make extensive use
of symmetric cryptography. In the past year we have
seen a number of such initiatives from big players in
the Information Technology arena. PKI still offers
considerable advantages over symmetric technology.
But if the PKI community is not alert and adaptive to
industry trends we may find the baby is thrown out
with the bath water.

References

[BM91] Bellovin, S and Merritt, M. “Limitations

of the Kerberos authentication system.”
Proceedings of the Winter USENIX
Conference, 1991, pp 253-267.

[BM92] Bellovin, S and Merritt, M. “Encrypted
key exchange: password-based protocols
secure against dictionary attacks.”
Proceedings of the IEEE Symposium on
Security and Privacy, 1992, pp. 72 –84.

[BM93] Bellovin, S and Merritt, M. “Augmented

encrypted key exchange: a password-
based protocol secure against dictionary
attacks and password file compromise.”
Proceedings of the ACM Conference on
Computer and Communications Security,
1993, pp. 244 – 250.

[BPR00] M. Bellare, D. Pointcheval and P.

Rogaway. “Authenticated Key Exchange
Secure Against Dictionary Attacks.”
Advances in Cryptology - Eurocrypt 2000
Proceedings, Lecture Notes in Computer
Science Vol. 1807, B. Preneel ed,
Springer-Verlag,2000.

[BMP00] V. Boyko, P. MacKenzie and S. Patel.
“Provably Secure Password Authenticated
Key Exchange Using Diffie-Hellman.”
Advances in Cryptology - Eurocrypt 2000
Proceedings, Lecture Notes in Computer
Science Vol. 1807, B. Preneel ed,
Springer-Verlag, 2000.

[BOY89] C. Boyd. Digital multisignatures. In

Cryptography and Coding, H. Beker and
F. Piper eds., Oxford University Press,
1989, pp. 241-246.

[BS01] M. Bellare and R. Sandhu. “The security

of practical two-party RSA signature
schemes.” Manuscript, November 2001.
Manuscript available via
http://www.cse.ucsd.edu/users/mihir.

[FK00] Ford, W. and Kaliski, B. “Server-assisted

generation of a strong secret from a
password.” Proceedings 9th IEEE
International Workshops on Enabling
Technologies: Infrastructure for
Collaborative Enterprises, 2000, pp 176 –
180.

[GY94] R. Ganesan and Y. Yacobi. A Secure

Joint Signature and Key Exchange
System. Bellcore Technical Report TM-
24531, October 1994.

[GAN95] Ravi Ganesan. Yaksha: Augmenting

Kerberos with public-key cryptography.

1st Annual PKI Research Workshop---Proceedings

94

Proceedings of the ISOC Network and
Distributed Systems Security Symposium,
1995.

[GAN96] R. Ganesan. Yaksha: Towards Reusable

Security Infrastructures. PhD Thesis.
Johns Hopkins University, Baltimore,
MD, 1996.

[HK99a] D. Hoover and B. Kausik, “Software

smart cards via cryptographic
camouflage.” Proceedings of the IEEE
Symposium on Security and Privacy,
1999.

[HK99b] S. Halevi and H. Krawcyzk. “Public-key

cryptography and password protocols.”
ACM Transactions on Information and
System Security (TISSEC)
Volume 2 , Issue 3 (August 1999),
Pages: 230 – 268.

[JAB96] D. Jablon, “Strong password-only

authenticated key exchange.” ACM
Computer Communications Review,
October 1996.

[JAB01] D. Jablon, “Password authentication using

multiple servers.” Proceedings RSA
Conference: Cryptographers' Track, 2001
San Francisco, CA, April 8-12, 2001,
Springer LNCS 2020.

[KPC95] C. Kaufman, R. Perlman and M. Speciner,

“Network Security: Private
Communication in a Public World.”
Prentice-Hall, 1995.

[KN93] J. Kohl and C. Neuman. The Kerberos

Network Authentication Service (V5).
RFC 1510, September 1993.

[MPS00] P. MacKenzie, S. Patel and R.

Swaminathan. “Password Authenticated
Key Exchange based on RSA.” Advances
in Cryptology - Asiacrypt 2000
Proceedings, Lecture Notes in Computer
Science Vol. 1976, T. Okamoto ed,
Springer-Verlag, 2000.

[MR01] P. MacKenzie and M. Reiter. “Networked

cryptographic devices resilient to
capture.” Proceedings of the IEEE
Symposium on Security and Privacy,
2001.

[MT79] Robert Morris and Ken Thompson,
“Password Security.” Communications of
the ACM, Volume 22 Issue 11, November
1979.

[NT94] C. Neuman and T. Ts'o. “Kerberos: An

Authentication Service for Computer
Networks.” IEEE Communications,
32(9):33-38. September 1994.

[PK99] R. Perlman and C. Kaufman, “Secure

password-based protocols for
downloading a private key.” Proceedings
of the ISOC Network and Distributed
Systems Security Symposium, 1999.

[TA91] J. Tardo and K. Alagappan, “SPX: global

authentication using public key
certificates” Proceedings of the IEEE
Symposium on Security and Privacy,
1991, pp. 232-244.

[WU98] T. Wu, “The Secure Remote Access

Protocol.” Proceedings of the ISOC
Network and Distributed Systems
Security Symposium, 1998.

[WU99] Thomas Wu, “A Real-World Analysis of

Kerberos Password Security.”
Proceedings of the ISOC Network and
Distributed Systems Security Symposium,
1999.

Appendix A: Equivalence of 3-key
RSA To 2-key RSA

We show that the security of 2-key RSA is equivalent
to the security of 3-key RSA, following Ganesan and
Yacobi [GY94] who first established this conjecture
of Boyd [BOY89].13

A traditional 2-key RSA pair is generated as follows.

1. Generate two large, distinct primes p, q of

roughly equal bit-length
2. Compute n=p*q
3. Select e such that gcd(e,φ(n))=1 and 1<e<φ(n),

where φ(n)=(p-1)*(q-1)
4. Compute d, such that 1<d<φ(n) and e*d =1 mod

φ(n)

13 We note that this argument only reflects key-recovery attacks.
Security arguments for our schemes that consider forgery attacks
are more involved, and provided in [BS01].

1st Annual PKI Research Workshop---Proceedings

95

5. Destroy p, q
6. Public key is e, n and private key is d

In the password-based 3-key system steps 1-4 are as
above, followed by the steps given below.
5. Ask user to select a password Pwd that meets

password selection rules
6. Pick an iteration count IC

Repeat
6.1 Pick a random SALT
6.2 Compute d1 = Expand(Pwd,SALT,IC)
Until (gcd(d1, φ(n))=1 and 1<d1<φ(n))
[The function Expand is specified via PKCS5.
The IC value and the final SALT value are
accessible for subsequent use by the user.]

7. Compute d2 such that 1<d2<φ(n) and d1*d2 = d
mod φ(n).

8. Destroy p, q, d
9. Public key is e, n; user's private key component

is d1 (user remembers password Pwd from
which d1 is computed) and appliance private key
component for that user is d2.

We claim that the expected number of iterations of
the repeat loop in Step 6 is around 2, so that the loop
terminates quite fast. (Assume the Expand function
is random and has range {0,1}k where 2k-1≤ n <2k.
Then the expected number of iterations is at most
(2*n)/φ(n) which is very close to 2.)

The strength of the split-key setting is that it provides
as much security as RSA even if the user password is
compromised, in the following sense: the problem of
computing d2 given n, e, d1 is as hard as the
traditional RSA problem of computing the secret
exponent given the public key in the standard setting.

To detail this claim, we recall that the traditional
RSA problem is defined as follows:

Given: n, e
Compute: d such that e*d=1 mod φ(n) and 1<d<φ(n)

We define the split-key RSA problem as follows:

Given: n, e, d1
Compute: d2 such that e*d1*d2 =1 mod φ(n) and
1<d2<φ(n)

We claim that if the split-key RSA problem is
tractable, then so is the traditional RSA problem. To
justify this claim, we assume we are given a method
of solving the split-key RSA problem relative to a
password generation process (formally, randomized
algorithm) P that models the client's choice of
password. The following code shows how we can

then solve the traditional RSA problem.
Explanations follow the code.

Given n, e,
1. Run P to obtain a password Pwd
2. Pick random SALT, and IC, and compute d1 =

Expand(Pwd,SALT,IC)
3. Run the given split-key RSA solving method on

input n, e, d1 to obtain d2
4. Let m = e*d1*d2 - 1
5. Use m, e to factor n [see later text for why this is

possible]
6. Use the factorization of n to compute φ(n)
7. Let d be the inverse of e modulo φ(n)
8. Output d

Note that the value d1 chosen in Step 2 may not be
relatively prime to φ(n) and in that case the algorithm
will probably not succeed. However, d1 as chosen in
step 2 has probability around 1/2 of being relatively
prime to φ(n) and hence the success probability of the
algorithm above is about one-half that of the given
method for solving the split-key RSA problem.

The value m computed in Step 4 is a multiple of φ(n),
because, modulo φ(n) we have:

 e*d1*d2 -1 = e*d1*d2 - e*d = e*[d1*d2-d] = 0.

Step 5 uses a well-known fact, namely that given a
multiple of φ(n) it is possible to factor n.

One might ask why the algorithm does not, after step
3, simply compute d = d1*d2, output d and halt, since
this d satisfies e*d mod φ (n) = 1. However this d
may not satisfy 1<d<φ(n).

1st Annual PKI Research Workshop---Proceedings

96

