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This paper briey describes ongoing research at GMU on the problem of designing
and implementing multilevel databases. In a nutshell the objective of our research is
to close the semantic gap between sophisticated requirements of MLS applications and
the relatively meager facilities provided by emerging MLS DBMS products. There is
a missing links in previous research in the MLS database arena. Previous research
has tended to focus either on

� the behavior of a relational MLS DBMS and problems associated with imple-
menting this behavior in di�erent MLS architectures, or

� on stating requirements for an MLS database using semantic data models and
related techniques.

There are several notable exceptions to this statement. Sell and Thuraising-
ham [ST94] have recently proposed a MultilevelObject Modeling Technique (MOMT),
patterned on OMT, for designing multilevel database applications using a relational
MLS DBMS platform. Lewis and Wiseman [LW93] have also recently described a
case study in mapping requirements stated in the SPEAR notation into SWORD
and SeaView. The RADC workshop several years ago did a case study of mapping
requirements into systems [Smi89, ST89, Hin89, Mai89, Stu89]. The TTCP XTP-1
Workshop on Research Progress in MLS Relational Database held prior to the 1994
RADC workshop also poses a case study.

Our research seeks to reconcile these two streams of activity by addressing the
missing-link question of how to achieve the stated requirements on a given data
model of MLS relations. It will build upon the prior research cited above. The Sell-
Thuraisingham and Lewis-Wiseman e�orts were targeted at element-level labeling of
MLS relations. Our project will go beyond this work by also considering tuple-level



labeling. This is particularly important because emerging MLS DBMS products pro-
vide tuple-level labeling rather than the element-level labeling discussed in most of
the research literature. This fact widens the semantic gap identi�ed above, and makes
the proposed research all the more topical and relevant to the practitioner seeking to
build MLS applications on these emerging platforms.

The basic premise of the proposed research is that the theoretical expressive power
of fairly simple models can be surprisingly general. The classic example of this is Tur-
ing machines, and related automata, which are capable of executing all computable
activity. At the same time, simple models are usually not practical to use directly
even though they are theoretically capable of solving the problem at hand. It is there-
fore necessary to develop additional tools to close the semantic gap in a practically
useful manner, rather than just declaring theoretical adequacy of a simple model.
This approach to closing the semantic gap has been repeatedly employed in com-
puter systems. Our expectation is it will also succeed in the arena of MLS relational
databases.

The reason for considering tuple-level labeling is that most of the emerging MLS
DBMS products are adopting this approach. This is a natural approach for DBMS
vendors, in that the tuple is the basic storage and retrieval unit in typical relational
DBMS implementations.

There has been some theoretical discussion of equivalence between tuple-level la-
beling and element-level labeling. Qian and Lunt [QL93] have published an interesting
claim that tuple-level labeling is equivalent to the SeaView model (under a particular
de�nition of equivalence) . We feel this issue needs to be studied more carefully, and
in a broader context than the SeaView model. The notion of what is meant by equiv-
alence itself needs a rigorous examination. We now illustrate the subtleties involved
here by contrasting two interpretations of tuple-level labeling.

A SIMPLISTIC INTERPRETATION OF TUPLE-LEVEL

LABELS

Let us consider a simple mapping from tuple-level labels to element-level labels. Say
we have the following tuple

(a1; a2; :::; an; c)

where the ai's are the individual data elements of the tuple, and c is the security label
on the tuple. The simplest mapping to element-level labelling is to simply put c as
the label of each of the individual elements, as well as let c be the tuple class. This
would give us the following tuple (with element-level labeling).

(a1; c; a2; c; :::; an; cn; c)

Each c labels the data element to its left, except for the rightmost one which labels the
entire tuple. This simple mapping severely cripples the expressive power of tuple-level



labeling. It is impossible to translate the following tuple with element-level labels to
an equivalent one with tuple-level labels.

(a1; U; a2; S; :::; an; S; S)

This tuple associates an unclassi�ed data element a1 with a number of secret data
elements a2 : : : an. Such an association cannot be expressed with this simplistic in-
terpretation of tuple-level labeling. But this is not the only possible interpretation.

ANALTERNATE INTERPRETATIONOF TUPLE-LEVEL

LABELS

Let us consider an alternate interpretation. We caution the reader that this inter-
pretation is being presented only for sake of example. We are not suggesting it as
an interpretation to be recommended. Finding useful interpretations of tuple-level
labeling is a task for the proposed research.

Let us assume that A1 (i.e., the �rst attribute) of a tuple is the apparent key. Now
suppose the following tuples are coexisting in a relation (with tuple-level labeling).

(a1; a2; :::; an; U)

(a1; a
0

2
; :::; a0

n
; S)

Note that there are two tuples with the same apparent key value (i.e., a1), so this
is a form of polyinstantiation. Now consider the following mapping to element-level
labeling.

� Data elements outside of the apparent key inherit the label of the tuple.

� The apparent key is assigned a label equal to the greatest lower bound of the
labels of all tuples in which it occurs.

For the pair of tuples shown above we obtain the following two tuples (with
element-level labeling) respectively.

(a1; U; a2; U; :::; U; an; U; U)

(a1; U; a
0

2
; S; :::; a0

n
; S; S)

Furthermore, consider the following tuple (with element-level labels) which we could
not map to an equivalent one with tuple-level labels under the previous interpretation.

(a1; U; a2; S; :::; an; S; S)



With the current interpretation we can attempt to translate this into two tuples (with
tuple-level labels) as follows.

(a1; null; :::; null;U)

(a1; a2; :::; an; S)

The �rst of these essentially �xes the label of a1 at U . The second gives the S values
associated with a1. Moreover, these two tuples can be interpreted as respectively
corresponding to the U and S views of the tuple (with element-level labels) they were
derived from.

This alternate interpretation illustrates the important point that it is possible
to have a richer semantics for tuple-level labeling than obtained by the simplistic
interpretation given earlier. There a number of research questions that need to be
addressed here.

Firstly, it is not clear if there is a consistent and useful semantics for tuple-level
labeling along the lines sketched out above. The work of Qian and Lunt address
this question from one perspective. We feel that a more comprehensive study of
this problem is called for, particularly since considerable progress on understanding
polyinstantiation has been made in the meantime. Moreover, Qian and Lunt do not
consider dynamic aspects of the relations, such as update semantics. In short, much
work remains to be done.

Secondly, we must consider the semantics of tuple-level labeling supported in
the emerging products. In particular, the update behavior is determined by these
DBMS's. It therefore constrains the range of interpretations we can impose on these
products.

Thirdly, we must consider how to practically map element-level requirements to
tuple-level models. Even if we can establish some kind of theoretical equivalence, we
will still need tools and possibly human guidance in achieving an e�ective mapping.
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