
Role Activation Hierarchies*

Ravi Sundhu
Laboratory for Information Security Technology and
Information and Software Engineering Department

George Mason University

Abstract

The concept of a role hierarchy (that is, partial order)
is often included in role-based access control (RBAC)
models and systems. In current practice the same hier-
archy is typically used for two distinct purposes. Mem-
bers of a senior role in the hierarchy inherit permissions
from juniors. We call this the usage (or permission-
usage) aspect of role hierarchies. Membership in a se-
nior role also authorizes users to activate junior roles.
For purpose of least privilege a user may choose to acti-
vate only a junior role on a particular occasion, leaving
the senior roles dormant. We call this the activation (or
role-activation) aspect of role hierarchies.

In this paper we introduce and motivate the idea that
there are useful situations where these two hierarchies
should not be identical, and the activation hierarchy
should extend the inheritance hierarchy. In particular
we explore RBAC with respect to read-write access, and
its relationship to traditional lattice-based access con-
trol or LBAC (also known as mandatory access control).
More generally, we consider roles that are required to
have dynamic separation of duty.

1 Introduction

R.ole based access control (RBAC) has emerged as
a familiar alternative to classical discretionary and
mandatory access controls [SCFYSG]. Several models
of RBAC have been published and several commercial

‘This work is partially supported by grant CCR-9503560 from
the National Science Foundation at, the Laboratory for Informa-
tion Security Technology at George Mason University.

All correspondence should be addressed to Ravi Sandhu, ISE
Department, Mail Stop 4A4, George Mason University, Fairfax,
VA 22030, sandhu@isse.gmu.edu, www.list.gmu.edu.

Permission to make digital or hard copa of all or part of this work for
personal or classroom use is granwd without fee prwided that copies
arc not made or distrihubxi for prolit or commercicll ad>wtage and that
topics hear this notlcc and the full citation on the first page. TO copy
otherwise. to republish, to post on scrvcrs or to redistribute to lists,
requlrrs prior specific prrm~sswn nnJ;or il fee.

3rd AC% Workshop on Role-Bused Access Fairfax VA
Copyright ACM 1998 I-581 13-113-5/98/10...$5.00

implementations are available. A common aspect of
RBAC is the use of role hierarchies (partial orders) to
simplify management of authorizations.

In current, practice the same hierarchy is typically
used for two distinct purposes. Members of a senior role
in the hierarchy inherit permissions from juniors. We
call this the usage (short for permission-usage) aspect of
role hierarchies. We also refer to this as the permission
inheritance hierarchy.

Membership in a senior role also authorizes users to
activate junior roles. For purpose of least privilege a
user may choose to activate one or more ,junior roles on
a particular occasion, leaving the senior roles dormant.
We call this the a&v&ion (or role-activation) aspect
of role hierarchies. It should be mentioned that not all
R.BAC models support role activation, but at the same
time it is quite common.

The central contribution of this paper is introduction
and motivation of the idea that there are useful situa-
tions where usage and activation hierarchies should not
be identical. As we will argue an activation hierarchy
that, extends the usage hierarchy is useful when there
are roles in dynamic mutual exclusion, The same user
can belong to such roles but cannot activate them si-
multaneously. We were led to this idea by exploring
the relationship bet,ween RBAC and traditional lattice-
based access control or LBAC (also known as manda-
tory access control). Our analysis also reveals a close
connection bet,ween RBAC and LBAC which has not,
been previously recognized in the literature.

The rest of the paper is organized as follows. Sec-
tions 2 and 3 respectively review R.BAC and LBAC
models. Section 4 discusses how R.BAC with read and
write permissions can be simulated in LBAC. Section 5
discusses the converse const,ruction and shows how the
separation of act,ivation and usage hierarchies is useful
in this context. Section 6 argues t,hat, this separation
is useful whenever we have roles in dynamic mutual
exclusion (such as in LBAC, for example). Section 7
formally defines the intuitivcl concepts discussed so far
and explores the relationship of act,iva.tion hierarchies

33

to AND-OR, roles [Gui95, Gui97]. Section 8 concludes
the paper.

2 The RBAC96 Model

This section gives a brief review of the RBAC96 model
introduced by Sandhu et al [SCFY96, San97]. Figure 1
illustrates the most general model in this family. For
simplicity we use the term RBAC96 to refer to the fam-
ily of models as well as its most general member.

The top half of figure 1 shows (regular) roles and
permissions that regulate access to data and resources.
Intuitively, a user is a human being or an autonomous
agent, a role is a job function or job title within the
organization with some associated semantics regarding
the authority and responsibility conferred on a mem-
ber of the role, and a permission is an approval of a
particular mode of access to one or more objects in the
system or some privilege to carry out specified actions.
The bottom half shows administrative roles and permis-
sions. These are not used in this paper and are included
only for sake of completeness.

Roles are organized in a partial order or hierarchy, so
that if II: > y then role x inherits the permissions of role
y, but not vice versa. In such cases, we say x is senior to
y. By obvious extension we write x 2 y to mean x > y
or x = y. Each session relates one user to possibly many
roles. The idea is that a user establishes a session (e.g.,
by signing on to the system) and activates some subset
of roles that he or she is a member of.

Like most other RBAC models, RBAC96 has a sin-
gle hierarchy for usage of permissions (via permission
inheritance) and for role activation (in sessions). When
a senior role is activated the permissions of all junior
roles can be used in that session. At the same time a
user assigned to a senior role may activate sessions in
which only some of the junior roles are activated.

The use of a single hierarchy for both permission-
usage and role-activation purposes is used by almost all
existing RBAC models that support role-activation.’
As we will see in this paper there are good reasons to
separate these two aspects of role hierarchies. For con-
sistency we will require that the role activation hierar-
chy is a superset of the permission usage hierarchy.

As a motivating example, consider a situation where
there are two roles Cashier and Manager in a retail
store. The Manager role can override and correct errors
which the Cashier role is not able to do. A Manager
can also serve as a Cashier, but both roles cannot be
invoked by a single user at, the same time. From the
activation viewpoint we would like the Manager role

1 We will return to the treatment of this issue in existing RBAC
models in section 6.

*-property subject s can write object o
variation only if

liberal *-property X(s) L X(o)
trusted liberal *-property X,(s) 5 X(o)
strict *-property X(s) = X(0)
trusted strict *-property 1 Ll(s) L X(o) 5 k(s)

Table 1: Variations of *-property in LBAC

to be senior to t,he Cashier role, so that a user who
is a Manager does not need to be explicitly enrolled in
the Cashier role. From the permission-usage viewpoint,
the dynamic separation of duty between Cashier and
Manager precludes Manager being senior to Cashier. If
activation and usage hierarchies are identical, we have
an impasse (as noted by Kuhn [Kuh97]). Separating
these two hierarchies allows us to resolve this impasse
gracefully.

3 LBAC Models

We were led to the idea of separating these two hier-
archies while exploring the relationship between LBAC
and RBAC. In this section we identify some commonly
recognized variations of LBAC. LBAC is concerned
with enforcing one directional information flow in a lat-
tice of security labels [San931 (possibly with exceptions
allowed for trusted subjects). LBAC is also known as
mandatory access control or MAC. Each subject and
object carries a label which we denote by the symbol X.
The security labels form a lattice structure with a par-
tially ordered dominance relation 2 and a least upper
bound operator. For read access we have the familiar
simple security rule: subject s can read object o only if
X(5-j L X(o).

Simple security for read access is required in all vari-
ations of LBAC. For write access there are several vari-

ations of the k-property as shown in table 1. The
liberal k-property comes from the original formulation
of the Bell-LaPadula model [BL75]. In many systems
the strict +-property is stipulated to prevent integrity
or covert channel problems due to writing up. The
trusted liberal +-property was defined by Bell [Be187].
In this case each subject has two labels, X, and X, with
X, 5 X, so that, simple-security is applied relative to
X, and liberal *-property to X,. We similarly define
the trusted strict k-property as shown. The relation-
ship to the strict k-property is easier to see by writing
it as X(s) = X(o) = X(s), and then comparing with the
trusted strict *-property. Both the strict and trusted
strict +-properties adhere to the principle that a subject

34

\
ADMINISTRATIVE

ASS

USER

IGNMENT ARH

ADMINISTRATIVE

ROLE

HIERARCHY

ADMINISTRATIVE

- PERMISSION

ASSIGNMENT

l U, a set of users
R and AR, disjoint sets of (regular) roles and administrative roles
P and AP, disjoint sets of (regular) permissions and administrative permissions
S, a set of sessions

l UA 5 U x R, user to role assignment relation
AUA C U x AR, user to administrative role assignment relation

l PA E P x R, permission to role assignment relation
APA C AP x AR, permission to administrative role assignment relation

l RH 2 R x R, partially ordered role hierarchy
ARH & AR x AR, partially ordered administrative role hierarchy
(both hierarchies are written as > in infix notation)

l user : S + U, maps each session to a single user (which does not change)

roles : S + 2nuAR maps each session si to a set of roles and administrative roles roles(si) C {r 1 (3’ >
r)[(user(si), r') E UA U AUA]} (which can change with time)

session s, has the permissions U,,,,~,,(,~~{p 1 (3” L: r)[(p,r”) E PA U APA]}

l there is a collection of constraints stipulating which values of the various components enumerated above are
allowed or forbidden.

Figure 1: Summary of the RBAC96 Model

35

s

A
MI M2

v

J

Figure 2: A R.ole Hierarchy

cannot write what it cannot read.
Like traditional R.BAC hierarchies, LBAC also cou-

ples label-activation and I,errnission-usage in a single
lattice. A user cleared t,o a high sensit,ivity in the lat-
t,icc can activate subjects with lesser sensitivity. Thus
a Top-Secret user can activate an IJrlclassified subject.
The read permission is inherited upwards in the secu-
rit,y lattice. For the liberal *-property the write per-
mission is inherited downwards, whereas for the strict
*-property there is no inheritance of write.

4 Simulating Read-Write RBAC in
LBAC

WC now consider how R.BAC can be simulated in
LBAC.’ In general, RBAC allows for abstract permis-
sions such as credit and debit, operations on an account.
Both operations require read and write access to the
account, balance. Since LBAC only considers read arid
write operations, it, is ur1able to distinguish these. In
such cases R.BAC cannot, bc reduced to LBAC. So we
limit our sc:op~~ to RBAC wit,11 read and writ,e operations
only.

Consider tl1e R.BAC hierarchy show11 in figure 2. S is
t,he seniormost, role and inherit,s permissions (both read
and write) from Ml, M2 and .J. In particular S can read
arid write whatever ,J cm, and then some more. Ml and
M2 inherit, from <J, while .J being juniormost does not

‘Understanding t,he r-elationship between different models is a
futldamental activity of computer science. It has theoretical sig-
nificance because such results show the underlying unity between
models that at first, t,hought appear to be quite different. It has
pract,ical utility hecause syskms which implement one model can
then also be used t.0 support other models. Computer science
has numerous cxamplvs of such results particularly in the area of
aut,omata and formal Ixrlguagrs. Lkvelopment of such results in
t.ho access cont.rol arena c:au br similarly brneficial.

inherit permissions from any other role. A user who is
a member of S can create a session in which, say, only
J is activated. As discussed earlier t,his hierarchy serves
both purposes of usage and activation.

Suppose we try to simulate t,his R.BAC hierarchy in
LBAC.” Neither the liberal nor strict, *-properties give
us the RBAC behavior. Inherit,ance of read permissions
is the same in all these cases, but inheritance of write is
very different. In R.BAC there is no difference between
read and write inheritance. In LBAC with liberal *-
property write inheritance is exactly opposite to read
inheritance, so .J inherits the write power of Ml, M2
and S while S inherits nothing. In LBAC with strict
*-property t,hcre is no write inheritance.

It turns out there is actually a simple construction
for solving this problem. Let us use the given R.BAC
hierarchy of figure 2 as a lattice with trusted strict *-
property with following assignment, of read and write
litbt?lS.

role X,. X,,,
S S J

-I--

Ml Ml .J
M2 M2 .J
.J J .J

Tl1is results in exactly the same read and write in-
heritance as the original R.BAC hierarchy. The con-
struction obviously generalizes to arbitrary read-write
RBAC hierarchies.”

This is an interesting fact, that indicat,es a strong
connection between RBAC ant1 the trusted strict +
property down to system low. We can consider read-
write RBAC to be an extreme variation of strict LBAC
with trusted write-down to system low. In hindsight,
this correspondence can be t,raced to the different, moti-
vations for R.BAC and LBAC. R.BAC has been largely
driven by consideration of authority t,o users, whereas
LBAC is much more concerned with Trojan Horses.

5 Simulating LBAC in RBAC

The simulation of LBAC in R.BAC has been considered
previously by Nyanchama and @born [NO961 and by
Sandhu [Sa1196]. The Nyancharna-Osbron construction

“Ry suitable construction of lattices and modifications to
LBAC rules, it, is possible to accommodate many read-write con-
figurations that at first, sight, do not. seem t,o be compatible with
LBAC information flow [BryD7, Fo192, SanW]. Some of these
construct,ions are intended to handle very general sit.uations and
can result in fairly complex lattices. Our ot),jcctive here is find
an “intuit.ive” and “llatriral” consi.ruction. If we naively use the
Rl3AC hierarchy as a latt,ice we get, completely different read
write propert,ies.

40f course, if the IWAC llic,rarclly is not a lattice the LBAC
hierarchy will also bv a partial order which is not. a lattice.

36

H HR LW

Mv2 Mlv2R Mlu2W

L LR HW

(a) A lattice (b) Dual role simulation in RBAC

Figure 3: Simulating a lattice using dual read and write roles

HW HW

I / \ / \ / T \
HR

/
/ HR ‘\ , \

M1n~w M’fi;w
MlR M2R MlR ‘v’ M2R

LR LR

(a) Private Write Roles (b) Separate Activation Hierarchy

Figure 4: Simulating strict k-property

37

does not make use of role hierarchies. Sandhu’s con-
structions show how different LBAC variations, such as
in table 1, can be simulated using role hierarchies in
RBAC96. Sandhu’s construction is shown in figure 3
for the liberal k-property. The original lattice is shown
on the left. For each lattice label we need two corre-
sponding read and write roles as shown on the right
with both read and write going up in the role hierar-
chy. The suffixes R and W respectively identify read
and write roles. Appropriate constraints are required
to ensure that only matched read and write roles are
activated in a session. Similar constructions for other
variations of LBAC are also given in [San96]. For the
strict *-property there is no write hierarchy and the
write roles are all incomparable.

In this section we explore the possibility of simpler
constructions relating LBAC to RBAC. As we have ob-
served there is a strong connection between RBAC and
LBAC with trusted strict *-property. In fact if we are
given a lattice with trusted strict k-property we can en-
force the identical controls using the lattice as a role
hierarchy.

This raises the question of what happens if we have
the strict *-property (with no trusted write-down).
Consider the lattice of figure 3(a). We can attempt to
simulate it using the role hierarchy of figure 4(a). We
have separate read and write roles. Each write role is
senior to its read role, but only reads are inherited up-
wards in the hierarchy. Such roles, which have no ances-
tors, are called private roles [SCFY96]. Constraints are
imposed so that users can only be assigned to the write
roles (for instance, by requiring the maximum cardinal-
ity of read roles to 1Je zero), and only write roles can
be activated. Also only one write role can be activated
at a time. The role hierarchy of figure 4(a) achieves
the effect, of strict k-property with respect to permis-
sion usage, but not with respect to role activation. A
user assigned to MlW can activate the role MlW and
will inherit the write permissions of MlW and the read
permissions of MlR and LR in that session. However,
that user is not automatically authorized to activate
LW in another session.

This leads us to suggest that permission-usage and
activation hierarchies should be separated. In fig-
ure 4(b) we show the activation hierarchy in dashed
lines coexisting with the usage hierarchy in solid lines.
With this separation a user assigned to MlW can in-
voke a session with role LW. Similarly, a user assigned
to HW can invoke any one of the junior write roles in
a session.

6 Dynamic Separation of Duties

In the previous section we have seen how to simulate
LBAC with the strict +-property in RBAC using pri-
vate roles and an enhanced activation hierarchy which
extends the permission inheritance hierarchy. We now
interpret this construction in terms of dynamic separa-
tion of duty. One of the constraints used in the con-
struction was that only one write role can be activated
in any session, although in different sessions a user may
invoke different write roles. Such a requirement is often
called dynamic separation of duties or run-time separa-
tion of duties [FCK95, FB97, Kuh97, SZ97].

In general a separate activation hierarchy is useful in
dealing with roles that are in dynamic separation of du-
ties. If the roles are not in dynamic separation of duty,
we can allow senior roles to inherit from them. With
reference to figure 4(b) an activation hierarchy allows
users assigned to HW to invoke any one of HW, MlW,
M2W or LW with dynamic separation. Suppose the
dynamic separation was not required. In that case we
could convert the dashed lines to solid ones and sim-
ply have a single hierarchy as traditionally done. The
net effect would be to have LBAC with trusted strict
k-property down to system low.

This separation of activation and usage hierarchies
also allows us to resolve an impasse that was noted by
Kuhn [Kuh97]. Kuhn observes that it is not possible
to have a role A which is senior in the inheritance hi-
erarchy to two or more roles, say B and C, that are
in dynamic separation of duty. Dynamic separation of
duties is different from static separation only if there
are some users who are able to activate B and C (in
different sessions). There is no means to assign these
users to a common senior role A because activation of
A violates dynamic separation of duty with respect to
B and C.’ Thus the common users must be explicitly
made members of B and C. This goes against the basic
motivation of RBAC to reduce administrative complex-
ity. By bringing in a distinct activation hierarchy that
extends the inheritance hierarchy we can successfully
resolve this impasse.

This leads us to assert the following principle.

An activation hierarchy can extend beyond
the permission-inheritance hierarchy to roles
that are stipulated to have dynamic separation
of duty.

5We could constrain A so that it cannot be activated, but this
is not a general solution.

38

7 Formal Definitions and Relation to
AND-OR Roles

The formal definitions for RBAC96 were summarized
earlier in figure 1. We formally define the activation hi-
erarchy, written >, to be an extension of the inheritance
hierarchy, written 2, as follows.

Definition 1 The activation hierarchy k is a partial
order on the set of roles R and on the set of administra-
tive roles AR, which extends the inheritance hierarchy
_> (so that 2 is a subset of k). We write xcy to mean
that xky and xzy. 0

In terms of RBAC96 we need to modify the following
requirement concerning the roles activated in a session.

roles : S -+ 2RU”R maps each session si to a set
of roles and administrative roles roles(si) s {r (
(3’ > r)[(user(si),r’) E UAU AUA]} (which can
change with time)

Since role activation is governed by the activation hier-
archy, this requirement is recast in terms of k as follows.

roles : S -+ 2RU”R maps each session si to a set
of roles and administrative roles roles(si) c {r 1
(3 ? r)[(user(si), r’) E UA u AUA]} (which can
change with time)

Note that the following requirement regarding permis-
sion inheritance in a session remains unchanged.

session si has the permissions UrEroles(si){p 1

(3” 5 r)[(p, T”) E PA u APA]}

With these changes the modified model, which we
call ERBAC96 (extended RBAC96), has an activation
hierarchy that extends the inheritance hierarchy.

With reference to figure 4(b) the dashed lines indicate
the E relation, that is roles which are related by the ac-
tivation hierarchy but not by the inheritance hierarchy.
Since the four write roles are in dynamic mutual exclu-
sion we stipulated the constraint that only one of these
can be activated in a session. Following the general
approach of RBAC96 we do not make this constraint
part of our basic model but leave it to be introduced
explicitly as needed.

In figure 4(b) the roles related by E are maximal roles
with respect to the inheritance hierarchy (that is, they
have no seniors with respect to 2). Figure 5(a) shows
a different situation where B is not a maximal role. A
user who is a member of role A can activate various
combinations of roles in a single session as follows: A,
AD, AE, ADE, BD, BE, BDE, D, E, and DE.6 Fig-
ure 5(b) shows a situation where roles A and C inherit

‘jIf D and E are stipulated to be in dynamic mutual exclusion
the combinations having both of them will not be allowed.

(4

Figure 5: Activation hierarchies

(b)

permissions from D and E, but B does not. At the same
time members of B do have ability to activate D or E.
This is an acceptable situation in ERBAC96.7

Relationship to AND-OR Roles

Guiri [Gui95, Gui97] has proposed an activation hier-
archy based on AND and OR roles. In context of fig-
ure 5(a), A is an AND role consisting of AND(B,C).
OR roles in Guiri’s model are really exclusive-OR roles
because exactly one of them can be activated. Let us
interpret B as an OR role consisting of OR(D,E). This
means that if B is activated one of D or E must be
activated.* In this case if A is activated, one of D or E
must also be activated.

Guiri’s AND-OR model is easily simulated in ER-
BAC96. AND roles correspond to the inheritance hier-
archy and OR roles to the activation hierarchy, with the
requirement that if a role is activated all OR roles ju-
nior to it in the activation hierarchy must have exactly
one alternative activated. Guiri’s model can thus be
interpreted as a special case of ERBAC96 with an acti-
vation hierarchy that extends the inheritance hierarchy

in a particularly constrained manner.

8 Conclusion

In this paper we have shown that it is useful to have
a separate role activation hierarchy which extends the
permission-usage hierarchy. In most R.BAC models
there is a single hierarchy that serves both purposes.

7However, if D and E are stipulated to be in dynamic mutual
exclusion they cannot have common seniors in the inheritance
hierarchy and this situation will be prohibitSed.

8Guiri’s model also includes null roles, so OR(D,E,null) means
that at most one of D or E can be activated but. activation is not
mandatory.

39

Distinguishing the t,wo hierarchies is useful when roles
in dynamic separation of dut,ies need to have common
seniors in the activation hierarchy, but cannot have
common seniors in the permission-usage hierarchy. Sep-
arate hierarchies are therefore called for in models that
support dynamic sepa.ration of duties.

While exploring these issues we have observed a close
connection between LBAC and RBAC. We can think
of read-write RBAC as LBAC with trusted strict *-
property down to syst,em low. Conversely we can view
LBAC with strict k-property as a form of read-write
R.BAC with dynamic separat,ion of duties with respect
to write roles.

[B&7]

[BL75]

[Bry97]

[FB97]

[FCK95]

[Fo192]

[Gui95]

References

D.E. Bell. Secure computer systems: A net-
work interpretation. In Proceedings of 3rd
Annual Cofmputer Security Application Con-
ference, pages 32-39, 1987.

D.E. Bell and L.J. LaPadula. Secure com-
puter systems: Unified exposition and Mul-
tics interpretation. Technical Report ESD-
TR.-75-306, The Mitre Corporation, Bed-
ford, MA, March 1975.

Cyrian Bryce. Security engineering of
lattice-based policies. In Proceedings of
10th IEEE Computer Security Foundations
Workshop, pages 195-207, Rockport, Mass.,
.June 1997.

David Ferraiolo and John Barkley. Speci-
fying and managing role-based access con-
trol within a corporate intranet. In Proceed-
ings of 2nd ACM Workshop on Role-Based
Access Control, [‘ages 77-82. ACM, Fairfax,
VA, November 6-7 1997.

David Ferraioio, Janet Cugini, and Richard
Kuhn. Role-based access control (RBAC):
Features and mot,ivations. In Proceedings of
11 th Annual Computer Security Application
Conference, pages 241-48, New Orleans, LA,
December 11-15 1995.

Simon Foley. Aggregation and separation as
non-interference properties. The Journul Of
Computer Security, 1(2):159-~188, 1992.

Luigi Guiri. A new model for role-based ac-
cess control. In Proceedings of 11th Annual
Computer Security Application Conference,
pages 249-255, New Orleans, LA, December
11-15 1995.

[Gui97]

[Kuh97]

[NO961

[San931

[San961

[San971

[SCFY96]

[SZ97]

Luigi Guiri. Role-based access control: A
natural approach. III Proceedings of the 1st
ACM Workshop on Role-Based Access Con-
trol. ACM, 1997.

D. Richard Kuhn. Mutual exclusion of roles
as a means of implementing separation of
duty in role-based access control systems. In
Proceedings of 2nd ACM Workshop on Role-
Based Acces.s Control, pages 23-30. ACM,
Fairfax, VA, November 6-7 1997.

Matunda Nyanchama and Sylvia Osborn.
Modeling mandatory access control in role-
based security systems. In Database Security
VIII: Status and Prospects. Chapman-Hall,
1996.

Ravi S. Sandhu. Lattice-based access con-
trol models. IEEE Computer, 26(11):9-19,
November 1993.

Ravi S. Sandhu. Role hierarchies and con-
straints for lattice-based access controls. In
Elisa Bertino, editor, Proc. Fourth European
Symposium on Research in Computer Se-
curity. Springer-Verlag, Rome, Italy, 1996.
Published as Lecture Notes i,n Computer Sci-

ence, Computer Security- ESORICS96.

Ravi Sandhu. Rationale for the RBAC96
family of access control models. In Pro-
ceedings of the 1st ACM Workshop on Role-
Based Access Control. ACM, 1997.

Ravi S. Sandhu, Edward J. Coyne, Hal L.
Feinstein, and Charles E. Youman. Role-
based access control models. IEEE Com-
puter, 29(2):38%47, February 1996.

R.. Simon and M. Zurko. Separation of duty
in role-based environments. In Proceedings
of 10th IEEE Computer Security Founda-
tions Workshop, pages 183-194, Rockport,
Mass., June 1997.

40

