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ABSTRACT
Recently presented usage control (UCON) has been considered as
the next generation access control model with distinguishing prop-
erties of decision continuity and attribute mutability. A usage con-
trol decision is determined by combining authorizations, obliga-
tions, and conditions, presented as UCONABC core models by
Park and Sandhu. Based on these core aspects, we develop a first-
order logic specification of UCON with Lamport’s temporal logic
of actions (TLA). The building blocks of this model include: (1) a
sequence of states expressed by attributes of subjects, objects, and
the system, (2) state predicates on subject and object attributes, (3)
pre-defined authorization actions performed by the security system
and subjects, (4) obligation actions, and (5) condition predicates on
system attributes. For a UCON model we define a set of temporal
logic formulas that hold as usage control policies. We show the
flexibility and expressive capability of this logic model by specify-
ing the new features and core models of UCON.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection—Unauthorized access

General Terms
Security

Keywords
access control, usage control, security policy, logic specification

1. INTRODUCTION
Traditional access control models such as lattice-based access

control (LBAC) [1, 20] and role-based access control (RBAC) [21]
primarily consider static authorization decisions based on subjects’
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permissions on target objects. On the other side, policy-based au-
thorization management systems have been recently proposed and
developed by researchers [5, 10, 13, 14]. In such systems there
is a centralized reference monitor (or distributed reference monitor
with centralized administration) that checks each user’s permission
when he/she requests access. A permission is granted to a subject
according to the security policies at the time of the access request.
Once a subject is granted a permission, he/she can access the object
as many times as he/she likes.

The development in information technology, especially in elec-
tronic commerce applications, requires additional features for ac-
cess control. In recent information systems, usage of a digital ob-
ject can be not only time-independent like read and write, but also
temporal and time-consuming, such as payment-based online read-
ing, metered by reading time or chapters, or a downloadable music
file that can only be played 10 times. So a subject’s permission may
decrease, expire, or be revoked along with the usage of the object.

Recently proposed usage control (UCON) is a new access con-
trol model that extends traditional access control models in multiple
aspects. In UCON, an access may be an instantaneous action, but
may also be a process lasting for some duration with several related
and sequent actions. An access decision can be made before or dur-
ing the access process, or both. Actions during an access period
possibly result in changes to subject or object attributes. A usage
decision in UCON is made by policies of authorizations, obliga-
tions, and conditions (also referred as UCONABC core models).
Authorization decisions are determined by policies using attributes
of the subject, object, and right. Obligations are actions that are
required to be performed before or during the access process. Con-
ditions are environment restrictions that are required to be valid
before access or during access. An extreme example of UCON is
the traditional access control models, in which the authorization
decision is made instantly when an access request is generated, and
there is no further check after that. More generally, usage control
is a comprehensive model to represent the underlying mechanism
of existing access control models and policies, as well as the access
control in DRM, trust management, and other modern information
systems.

The distinguishing properties of UCON beyond traditional ac-
cess control models are continuity of access decision and mutabil-
ity of subject attributes and object attributes. In UCON, authoriza-
tion decisions are not only checked and made before the access, but
may be repeatedly checked during the access and may revoke the
access if some policies are not satisfied, according to the changes of
the subject or object attributes, or environmental conditions. Mu-
tability is a new concept introduced by UCON, but its features can
be found in traditional access control models and policies. For ex-
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ample, in a Chinese Wall policy, if a subject accesses an object in
a conflict-of-interest set, then he/she cannot access any other con-
flicting objects in the future. That means, the potential object list
that the subject can access (we can consider this a subject attribute)
has been changed as a side-effect of his/her previous access. This
change, consequently, will restrict the next access of this subject.
History-based access control policies can be expressed by UCON
with this feature of attribute mutability. Also, mutability is useful
to specify dynamic constraints in access systems, such as separa-
tion of duty (SOD) policies, cardinality constraints, etc. Another
prospective area is consumable access. Consumable access is be-
coming an important aspect in many applications, especially in dig-
ital right management (DRM). For example in a pay-per-use DRM
application with fixed credit of a subject, the available access time
decreases with ongoing access.

Continuity and mutability in UCON introduce interactive and
concurrent concepts into access control. An access results in the
update of subject or object attributes as side-effects. These changes,
on the other hand, will result in the change of other ongoing or fu-
ture accesses by the same subject, or to the same object, or some
access that is implicitly related. That means, an access may change
not only its own state, but also the state of other accesses.

Park and Sandhu [18, 19] presented the conceptual model of
UCON, which consists of several core sub-models including autho-
rization, obligations, and conditions. To illustrate the fundamental
principle of UCON and its powerful and flexible expressive capa-
bility, we present in this paper a logic specification with Lamport’s
temporal logic of actions (TLA) [15]. The basic components of
this logic model are predicates between subject, object, and sys-
tem attributes, as well as some predefined actions during the access
period by the system or by subjects. A usage control policy is a
logic formula built from these components. We regard obligations
as actions separate from the authorization actions. The conditions
of UCON are specified by predicates on the system attributes.

The rest of this paper is organized as follows. Section 2 shows
a motivating example of usage control, especially the new features
of continuity and mutuality. Section 3 gives a brief introduction
of UCON, and the core authorization sub-models. Section 4 in-
troduces TLA briefly. Section 5 presents the details of our logic
model. Section 6 presents the specification of the core authoriza-
tion models with our logic model. Section 7 introduces the specifi-
cation of obligations and conditions. Some related work in access
control with temporal aspects is reviewed in Section 8. Finally, we
summarize this paper and present some ongoing and future work in
Section 9.

2. MOTIVATING EXAMPLE
In this section we present an example motivating the new fea-

tures of UCON. Traditional access control models and policies have
difficulties, or lack the flexibility to specify policies in these scenar-
ios. This example is originally from pervious papers [18, 19], but
we describe the problem and policies in more detail.
Example 1 Suppose in a DRM application with limited number
of simultaneous usages, an object o can only be accessed and used
by 10 users at a time. Each new access request is allowed. We
assume that there is only one access generated from a single user.
If the number of users accessing the object is 10, then one existing
user’s ongoing access is revoked when a new request is generated.
There are different policies to determine which user’s ongoing ac-
cess must be stopped as follows.

(a) Revocation by start time: the longest usage will be revoked.

(b) Revocation by idle time: the usage with the longest idle time

(c) Revocation by total usage time: the user with the longest
accumulating usage time will be revoked.

For these three different policies, we need to define different tem-
poral attributes for subjects and objects. Specifically:

(a) There are two object attributes: the number of total ongoing
accesses and a list of accessing subjects. For each subject,
we define the starting time as an attribute. Each time a new
access request is generated, the set of accessing subjects is
updated by adding the requesting subject. In UCON termi-
nology, this is a pre-update. If the total accessing number
is already 10, then the ongoing subject with the earliest start
time is revoked, and the new access is permitted. When an
access is ended by a subject or revoked by the system, the to-
tal accessing number is updated by subtracting one, and the
subject is removed from the accessing list. This is a post-
update.

(b) Objects have the same attributes as in (a). Each subject has
two attributes: the state of the subject with a value of busy
or idle, and continuous idle time in a single usage process.
In order to monitor the idle time, the system has to check
the status and update the idle time during the entire ongo-
ing access by means of ongoing-update. Similar to (a), there
are pre-update, revoking access, and post-update actions, in
which the revoking action is performed to the longest idle
access.

(c) Here again objects have the same attributes as in (a). Each
subject has an attribute of accumulating usage time to record
the total usage time of this subject on this object over the
subject and object life. Similar to (a) and (b), there are pre-
update, revoking access, and post-update. In addition, there
is a post-update of subject attribute after the usage (either
ended by a subject or revoked by the system) to add the time
of this usage with historically accumulating usage time.

In this example, an access is like a process that interacts with other
related processes which are accessing or trying to access the same
object concurrently. An access decision is no longer a single func-
tion of (subject, object, right), but may depend on access(es) from
other subjects, and may change the status of other accesses.

There are many other examples to motivate UCON model that
cannot be expressed by traditional access control models. We will
explore some of these later in this paper as we describe the logical
language.

3. USAGE CONTROL
In this section we briefly review the general ideas of UCON and

the core authorization models. The details of these models can be
found in [18, 19].

As depicted in Fig. 1, a usage control system has six components:
subject and attributes, object and attributes, rights, authorizations,
obligations, and conditions1. The authorization, obligations and
conditions are components of usage control decisions. An autho-
rization rule permits or denies access of a subject to an object with
a specific right based on subject and object attributes. Obligations
are activities that are performed by subjects or by the system. Con-
ditions are system environment restrictions, not related to subject
or object attributes. The most important properties that distinguish
1Note that this diagram is slightly different from that in [18, 19].
Here we place the usage decisions at the center, whereas in [18, 19]
the rights are in the center.will be revoked.
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Figure 1: Usage control model

UCON from traditional access control models and trust manage-
ment are the continuity of usage decisions and the mutability of
attributes. Fig. 2 shows a complete usage process consisting of
three phases along time series: before usage, ongoing usage, and
after usage. To enforce control decisions, we distinguish two dif-
ferent types: pre-decision and ongoing-decision. In the after-usage
phase, we don’t enforce any decision since there is no access con-
trol after a subject finishes his/her usage on an object2.

For mutability, there are three kinds of updates along the three
phases: pre-update, ongoing-update, and post-update. All these
updates are performed and monitored by the security system. An
update of subject or object attributes may result in a system ac-
tion, not only on this usage, but also on other accesses related to
the same subject or object. The actions on the current usage may
generate cascading updates or other actions, while actions on other
usages act as external events that would cause a change of those us-
ages, such as access revocation. Based on the relationship between

Before Usage After

Continuity of
Decisions

pre-decision ongoing-decision

pre-update ongoing-update post-update

Mutability of
Attributes

Figure 2: Continuity and mutability properties of UCON

authorization decisions and attribute mutability, Park and Sandhu
[18, 19] defined seven core models summarized below.

• preA0: A usage control decision is determined by autho-
rization rules before access, and there is no attribute update
before, during, or after usage.

2There can be obligations and conditions (post-obligation and post-
conditions) defined in this phase. UCON is a session-based access
control model, since it controls the current access request and on-
going access. The obligations and conditions after an access are
regarded as long-term obligations and conditions, which are not in-
cluded in UCON, but in an administrative model. In this paper we
only focus on the core aspects of UCON, while an administrative
model will be developed in the future.

• preA1: A usage control decision is determined by authoriza-
tion rules before access, and one or more subject or object
attributes are updated before usage.

• preA3: A usage control decision is determined by autho-
rization rule before access, and one or more subject or object
attributes are updated after usage.

• onA0: Usage control is checked and the decision is deter-
mined by authorization rules during access, and there is no
attribute update before, during, or after usage.

• onA1: Usage control is checked and the decision is deter-
mined by authorization rules during access, and one or more
subject or object attributes are updated before usage.

• onA2: Usage control is checked and the decision is deter-
mined by authorization rules during access, and one or more
subject or object attributes are updated during usage.

• onA3: Usage control is checked and the decision is deter-
mined by authorization rules during access, and one or more
subject or object attributes are updated after usage.

Note that in the case of authorization before access and update dur-
ing usage, since the update of attributes will not trigger any autho-
rization check during usage, it has the same effect as update after
usage (preA3)3. So this case is not included in UCON. For models
which enforce authorization rules during usage, ongoing-checking
captures not only the attribute changes from other related usage
processes, but also the attribute changes because of this local usage
process (onA2).

These core authorization models as well as the obligations and
conditions provide flexible and expressive capability for UCON.
This makes UCON a very comprehensive access control model not
only for traditional access control systems, but for more recently
developed information systems. We will discuss obligations and
conditions in Section 7.

4. TEMPORAL LOGIC OF ACTIONS
Extended from temporal logic [17] by introducing boolean val-

ued actions, TLA [15] is a powerful tool to specify systems and
their properties, especially for interactive and concurrent systems.
In this section we first give a brief introduction of basic terms and
the syntax of temporal formula. Then we will introduce some ad-
ditional temporal operators and their semantics to be used in our
logic language.

4.1 Building Blocks
Variables, values, and states are basic concepts in TLA. Values

are data items, such as numbers 1, -5, string “abc”, sets like the set
N of natural numbers, etc. Note that booleans true and false are
not considered as values in TLA. A variable has a name like x and
y, and can be assigned a value. Normally we assume there is an
infinite set of variables. A constant is a variable that is assigned
a fixed value. A state is characterized by assignments of a value
s(x) to each variable x. The semantic meaning of s(x) is denoted
as s[[x]]. Generally in TLA, a semantics is given by assigning a
semantic meaning [[F ]] to each syntactic object F .

A function is a nonboolean expression built from variables and
constants, such as x2 + y − 3. The semantic meaning [[f ]] of a
function f is a mapping from states to values. For example, [[x2 +
y − 3]] is the mapping that assigns to the state s the value s[[x]]2 +

3This assumes no “interference” with other ongoing accesses.
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s[[y]] − 3, where s[[x]] and s[[y]] denote the values that s assigns to
x and y. Generally:

s[[f ]] ≡ f(∀‘v’: s[[v]]/v)

where f(∀‘v’: s[[v]]/v) is the value by substituting s[[v]] for v. Se-
mantically, a variable is also a function that assigns the value s[[x]]
to the state s.

A predicate is a boolean expression built from variables and con-
stants, such as x = y+1. The semantic meaning [[P ]] of a predicate
P is a mapping from states to booleans. A state s satisfies a predi-
cate P iff s[[P ]], the value of [[P ]] in s, equals true.

An action is a boolean-valued expression formed from variables,
primed variables, and constants, such as x′ = y+1 and x′−1 /∈ y′.
Semantically, an action represents a relation between old states and
new states, where unprimed variables refer to the old state and the
primed variables refer to the new state. Formally, an action A is
a function assigning a boolean s[[A]]t to a pair of states (s, t). For
example, x′ = y+1 equals to the boolean value of t[[x]] = s[[y]]+1.
We say that (s, t) is an A step if s[[A]]t equals true. Generally:

s[[A]]t ≡ A(∀‘v’: s[[v]]/v, t[[v]]/v′)

Since a predicate P is a boolean expression built from variables
and constants, in TLA it is regarded as an special action without
primed variables. A pair (s, t) is a P step iff s[[P ]] is true.

For any action A, Enabled A is a predicate that is true for a
state s iff it is possible to take an A step starting in s. Semantically:

s[[Enabled A]] ≡ ∃t ∈ St : s[[A]]t

where St is the set of states.
For example, for action A: y = x′2 + 1,

Enabled A ≡ ∃c : y = c2 + 1

4.2 Temporal Formulas and Semantics
The basic temporal operator is � (always). The semantics of a

temporal action is defined using the concept of behavior. A behav-
ior σ in TLA is an infinite sequence of states < s0, s1, s2, ... > (a
finite set of states can be regarded as infinite with identical states).
With this idea, the semantics of an atomic formula with actions is
defined as:

< s0, s1, s2, ... > [[A]] ≡ s0[[A]]s1

< s0, s1, s2, ... > [[�A]] ≡ ∀n ≥ 0 : sn[[A]]sn+1

The same semantics can be defined for predicates since a predicate
is a special form of action.

In TLA, a formula is built from predicates and actions with log-
ical connectors and temporal operators. Recursively, a temporal
formula is defined by the following grammar in BNF:

< formula >:≡< predicate > | < action >
|¬ < formula > | < formula > ∧ < formula >
| < formula > ∨ < formula > | < formula >→<
formula > |� < formula > |

A formula is an assertion about a behavior. The semantic value
σ[[F ]] of a formula F is a boolean value on a behavior σ. Formally:

< s0, s1, s2, ... > [[F ]] ≡ s0[[F ]]s1

< s0, s1, s2, ... > [[�F ]] ≡
∀n ≥ 0 :< sn, sn+1, sn+2, ... > [[F ]]

4.3 Extension of TLA
Originally there is only the “always” (�) operator introduced in

TLA. Some other future operators are defined using this, such as
“eventually” (♦) and “infinitely often” (�♦). The relationship be-
tween the “always” and the “eventually” operators can be expressed
as:

♦F ≡ ¬�¬F

Based on the semantics of temporal actions and formulas, we can
define other temporal operators and semantics similarly.

4.3.1 The “Next” and “Until” Temporal Operator
For a behavior < s0, s1, s2, ... >, the semantics of the Next op-

erator (©)is defined as:

< s0, s1, s2, ... > [[©F ]] ≡ s1[[F ]]s2

Until (U) is a binary operator. A formula FUG is true if F is
always true until G is true along the sequence of states. Semanti-
cally:

< s0, s1, s2, ... > [[FUG]] ≡
∃i ≥ 0 :

(
si[[G]]si+1 ∧ (0 ≤ j ≤ i → sj [[F ]]sj+1)

)

Note that the semantics of FUG has no requirement on G for sj

and F for si and its following states, which is different from the
“until” in the English language.

There is an equivalence between these temporal operators:

♦F ≡ (F ∨ ¬F )UF

4.3.2 Past Temporal Operators
TLA only defines future temporal operators like � and ♦. From

traditional temporal logic there are past temporal operators to spec-
ify the properties during the past time compared to the current time
point. For a behavior < s0, s1, s2, ... > in TLA, if we consider s0

as the state at the current time point, then s1, s2, ... are states of the
future on the time series. We use the state sequence ..., s−2, s−1

for states during the past time along this time series. Therefore, a
behavior is a state sequence:

< ..., s−2, s−1, s0, s1, s2, ... >

Based on this, we can define past temporal operators similar to the
future ones: � (Has-always-been), � (Once), � (Previous), S (
Since). Semantically:

< ..., s−2, s−1, s0, s1, s2, ... > [[�F ]] ≡
∀n < 0 : sn[[F ]]sn+1

< ..., s−2, s−1, s0, s1, s2, ... > [[�F ]] ≡
∃n < 0 : sn[[F ]]sn+1

< ..., s−2, s−1, s0, s1, s2, ... > [[�F ]] ≡ s−1[[F ]]s0

< ..., s−2, s−1, s0, s1, s2, ... > [[FSG]] ≡
∃i < 0 :

(
si[[G]]si+1 ∧ (i < j < 0 → sj [[F ]]sj+1)

)

Similar to the future operators, there are some equivalences be-
tween these past operators. For example,

�F ≡ ¬�¬F
�F ≡ FS(F ∨ ¬F )

5. LOGICAL MODEL FOR
AUTHORIZATION IN UCON

In this section we propose a logical approach for UCON. First we
present some building blocks of the logic model, then we specify
the core models in UCON with our logic model.
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5.1 Attributes and States
As in TLA, a state is an assignment of values to variables. In

UCON, there are three different kinds of variables: subject at-
tributes, object attributes, and system attributes.

UCON is an attribute-based access control model. The autho-
rization policies are determined by subjects attributes, objects at-
tributes, and rights4. A subject or object attribute is a variable of a
specific datatype, which includes a set of possible values and op-
erators to manipulate them. A state of a subject or an object is an
assignment of values to attribute(s). The datatype of an attribute
depends on what kind of attribute it is, such as group membership,
role, security clearance, credit amount, etc.

System attributes are variables that are not related to a subject or
an object directly, such as system clock, location, etc. We define a
special system state to specify the status of a single access process
(s, o, r). Specifically, the function state(s, o, r) is a mapping from
{(s, o, r)} to {initial, requesting, denied, accessing, revoked,
end}. The semantics of the initial state is that the access (s, o, r)
has not been generated, while requesting means the access has
been generated and is waiting for the system’s decision; denied
means that the system has denied the access request according to
the authorization policies before usage; accessing means that the
system has permitted the access and the subject has been accessing
the object immediately after that. An access will go to revoked
state when its ongoing-access is revoked by the system, or it will
go to an end state when a subject finishes the usage. We believe
that this set of values is minimal and complete to specify the states
during a usage process.

The attributes of subjects, objects, and the system, as well as the
constants comprise the basic terms of our logical model in UCON.

5.2 Predicates
A predicate is a boolean expression built from variables and con-

stants, including subject attributes, object attributes, and system at-
tributes. According to different forms of the attributes, we define
four types of predicates in UCON:

• Unary predicate of a subject or object attribute: p(sa) or
p(oa).
e.g.: Alice.credit ≥ $100.00
file1.clearance = ‘supersecure′

• Binary predicate between a subject attribute and an object at-
tribute: p(sa, oa).
e.g.: dominate(Alice.cleareance, file1.classification),
dominate(Alice.credit, ebook.value).

• Binary predicate in(a1, a2) between attributes, where the a2

is a set of possible values of a1.
e.g.: in(Alice.ID, file1.acl), where ID is a subject iden-
tification, file1.acl is a set of subject IDs as file1’s access
control list.

• Ternary predicate permit(s, o, r), which is true if a subject
s can access an object o with r. This predicate is the result
of an authorization decision by the system.

5.3 Actions
As we have mentioned, there are three types of variables in UCON:

subject attributes, object attributes, and system attributes. We de-
fine different actions to change the states of these variables.

4Right attributes were not explored in the original UCON model,
and we also do not consider it in this paper

requesting accesing end

denied revocked

denyaccess
and

preupdate

revokeaccess
and

postupdate

preupdate
and

permitaccess

endaccess
and

postupdate

onupdate

initial
state

tryaccess

Figure 3: State transition with actions in a usage process

There are three actions defined in UCON that change the state
of a subject or object: preupdate, onupdate, and postupdate.
These actions are performed by the security system before, dur-
ing, or after the access process. If the system performs the action
successfully, the attribute value must be changed to a new value,
and the action is true5, otherwise, it is false. Note that in our
specification we do not consider the time delay of an action. We
assume that an action is always performed instantly. In a real im-
plementation there is mechanism to monitor the process and audit
the update, so that the system can recover if any failure happens.

For system states, we define a series of actions that change the
status of an access (s, o, r). As mentioned before, there are six dif-
ferent possible values of state(s, o, r) during a process life cycle.
The transition from a state to another state is an action, as shown in
Fig. 3.

Fig. 4 shows the actions that are performed by the system and by
a subject during a usage. These actions are briefly explained below.

Before Usage After

Subject Actions

tryaccess

revokeaccess postupdate

System Actions

endaccess

preupdate onupdate*
permitaccess

or
denyaccess

Figure 4: Subject and system actions

1. tryaccess(s, o, r): generates a new access request (s, o, r),
performed by a subject.

2. permitaccess(s, o, r): grants an access request of (s, o, r),
performed by the system.

3. denyaccess(s, o, r): rejects an access request of (s, o, r),
performed by the system.

4. revokeaccess(s, o, r): revokes an ongoing access (s, o, r),
performed by the system.

5Semantically, the action is a transition step from the original state
with old value to new state with updated value. Here we simply say
the action is true.
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5. endaccess(s, o, r): ends an access (s, o, r), performed by a
subject.

6. preupdate(attribute): updates a subject or object attribute
before access, performed by the system.

7. onupdate(attribute): updates a subject or object attribute
during usage phase, performed by the system. The star sym-
bol indicates that this action may be performed repeatedly by
the system to continuously update an attribute.

8. postupdate(attribute): updates a subject or object attribute
after access, performed by the system.

Note that Fig. 3 only shows state transitions of the system attribute
state(s, o, r) in one usage session. It does not show subject/object
attributes or other system attributes. Formally, a state in a usage
process includes the states of subject attributes, object attributes,
and system attributes.

5.4 Logical Formulas
A logic formula is built from state predicates and actions with

logic connectors and temporal operators.

DEFINITION 1. A logical formula in UCON is defined by the
following grammar in BNF:

ø ::= a|p(t1, ..., tn)|(¬ø)|(ø∧ø)|(ø → ø)|∀x : ø|∃x :
ø|�ø|♦ø| © ø|øUø|�ø|�ø| � ø|øSø|

where a is an action, p is a predicate of arity n, t1, ..., tn are terms,
and x is a variable.

5.5 Logical Model of UCON

DEFINITION 2. An logic authorization model of UCON is a
triple:M = (S,P,A), where

• S is a sequence of states of subject, object, and the system
attributes,

• P is a finite set of state predicates on subject and/or object
attributes,

• A is a finite set of state actions.

If a model M with a state s satisfies a formula ø, we write M, s �
ø. Semantically,

1. M, s0 � p iff s0[[p]], where p ∈ P .

2. M, s0 � a iff s0[[a]]s1, where a ∈ A, and s1 is next state of
s in S.

3. M, s0 � ¬ø iff M, s0 � ø.

4. M, s0 � ø1 ∧ ø2 iff M, s0 � ø1 and M, s0 � ø2.

5. M, s0 � ø1 → ø2 iff M, s0 � ø1 or M, s0 � ø2.

6. M, s0 � ∀x : ø iff for all a, M, s0 � ø(x/a).

7. M, s0 � ∃x : ø iff for some a, M, s0 � ø(x/a).

8. M, s0 � �ø iff ∀n ≥ 0 : M, sn � ø.

9. M, s0 � ♦ø iff ∃n ≥ 0 : M, sn � ø.

10. M, s0 � ©ø iff M, s1 � ø.

11. M, s0 � ø1Uø2 iff ∃i ≥ 0 : M, si � ø2 ∧ (0 ≤ j < i →
M, sj � ø1)

12. M, s0 � �ø iff ∀n < 0 : M, sn � ø.

13. M, s0 � �ø iff ∃n < 0 : M, sn � ø.

14. M, s0 � �ø iff M, s−1 � ø.

15. M, s0 � ø1Sø2 iff ∃i < 0 : M, si � ø2 ∧ (i < j ≤ 0 →
M, sj � ø1)

6. SPECIFICATION OF UCON POLICIES
In this section we specify the core authorization models in UCON

with the temporal logic introduced before. In an authorization model,
usage control policies are specified in logic formulas, which have
to be satisfied by the logic model. In these logic formulas, actions
are predefined, and predicates are built from subject and object at-
tributes.

6.1 The Model preA0

As presented in [18, 19], most traditional access control models
can be expressed in preA0 model, in which an authorization de-
cision is determined by the system before the access happens, and
there is no update for subject or object attributes. The usage control
policies have the following form:

p1 ∧ ... ∧ pi → permit(s, o, r)
tryaccess(s, o, r) ∧ permit(s, o, r) →
©(

permitaccess(s, o, r)
)

where p1, ..., pi are state predicates. The permit predicate states
that s can access o with r. The permitaccess action grants the per-
mission to s and starts the access. Since there is no update between
the access request and grant action, permitaccess will happen in
the “next” state of tryaccess.
Example 2 BLP model:
subject attribute: clearance
object attribute: classfication

dominate(s.clearance, o.classfication) →
permit(s, o, read)
tryaccess(s, o, read) ∧ permit(s, o, read) →
©(

permitaccess(s, o, read)
)

dominate(o.classfication, s.clearance) →
permit(s, o, write)
tryaccess(s, o, write) ∧ permit(s, o, write) →
©(

permitaccess(s, o, write)
)

where dominate is a binary predicate of subject attribute and ob-
ject attribute.
Example 3 Discretionary access control (DAC) model with access
control list (ACL):
subject attribute: ID
object attribute: acl = {(ID, r)}, where ID is a subject identifi-
cation attribute, r is an access method with which this subject can
access this object.

in((s.ID, r), o.acl) → permit(s, o, r)
tryaccess(s, o, r) ∧ permit(s, o, r) →
©(

permitaccess(s, o, r)
)

6.2 The Model preA1

In preA1, authorization rules are checked before the access, and
there are one or more update actions before the system grants per-
mission to a subject. The usage control policies are:
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p1 ∧ ... ∧ pi → permit(s, o, r)
permitaccess(s, o, r) → �

(
tryaccess(s, o, r)∧

permit(s, o, r) ∧ ♦(preupdate(attribute))
)

where attribute is either a subject or an object attribute. The
first rule is the same as before. The second rule says that when a
permitaccess happens, an access request must have happened be-
fore, the permit predicate had been true, and there was a preupdate
action happened after that. In this formula, the permit predicate
is only required to be true before the action preupdate. Note that
we assume the time series is bounded during a life cycle of an ac-
cess period. The “Once” operator does not refer to any past actions
before tryaccess. The same assumption is also made for future
temporal operators.
Example 4 DRM pay-per-use application:
subject: Alice, with attribute credit
object: ebook1, with attribute value
right: read

dominate(Alice.credit, ebook1.value) →
permit(Alice, ebook1, read)
permitaccess(Alice, ebook1, read) →
�

(
tryaccess(Alice, ebook1, read)∧

♦(preupdate(Alice.credit))
)∧

permit(Alice, ebook1, read)
preupdate : Alice.credit′ = Alice.credit−ebook1.value

The first rule specifies that whenever Alice’s credit is more than
the value of ebook1, she can read it. The second rules says that the
granting of permission to Alice implies an update of her credit. The
preupdate results in a new value of Alice’s credit by subtracting
ebook1’s value from the original credit.

6.3 The Model preA3

In preA3, authorization rules are checked before the access, and
there are one or more update actions after the usage process. The
usage control policies are:

p1 ∧ ... ∧ pi → permit(s, o, r)
permitaccess(s, o, r) →
�(tryaccess(s, o, r)) ∧ permit(s, o, r)
endaccess(s, o, r) → ♦(postupdate(attribute))

The first two rules are the same as before, except that the update ac-
tion does not appear in the second rules. The third rules says that a
postupdate action will be performed by the system after an access
is ended by a subject. Since authorization rules are not enforced
after granting access, there is no access revoke in this model.
Example 5 DRM membership-based application:
subject: Alice, with attributes of ID and total expense
object: book1, with attributes of title and readingCost
subject: readingGroup, with attribute readerList = {ID1, ID2, ...}
and bookList = {book1.title, book2.title, ...}
right:read

in(Alice, readingGroup.readerList)∧
in(book1.title, readingGroup.bookList) →
permit(Alice, book1, read)
permitaccess(Alice, book1, read) →
�(tryaccess(Alice, book1, read))∧
permit(Alice, book1, read)
endaccess(Alice, book1, read) →
♦(postupdate(Alice.expense))
postupdate : Alice.expense′ = Alice.expense +
ebook1.readingCost

In this example, the authorization policy states that if both Alice
and book1 belong to readingGroup, she can read the book. Al-
ice’s expense is updated by adding the cost of this book after the
access.

6.4 The Model onA0

In pre-authorization models, there is no security check after a
system grants a permission. In onA0, authorization policies are en-
forced during the access period. The usage control policy is given
below:

permitaccess(s, o, r) → �
(¬(p1 ∧ ... ∧ pi)∧

(state(s, o, r) = accessing) → revokeaccess(s, o, r)
)

In the onA0 model, authorization predicates have to be satisfied
during the access period, otherwise the access will be revoked by
the system immediately. The formula says that, after the action
permitaccess, the formula
¬(p1 ∧ ... ∧ pi) ∧ (state(s, o, r) = accessing) →
revokeaccess(s, o, r)

must be always true: that is, either the authorization predicates
p1, ..., pi are true when the subject is accessing the object, or the
access will be revoked in the next step.

Since we are talking about the core aspects of UCON, in ongoing-
authorization models we do not include the pre-authorization rules.
In practice, real applications may be expressed by more than one
core model.
Example 6 In an organization, a user Bob (with role employee)
has a temporary position to conduct a short-term project with a cer-
tificate of temp cert. When Bob is accessing some sensitive infor-
mation, his digital certificate (temp cert) for this project is being
checked repeatedly. If his certificate is in the Certification Revoca-
tion List (CRL) of the organization, his temporary role membership
is revoked and he cannot access any object any more. The control
rule for the access is:

permitaccess(Bob, o, r) → �
(¬((Bob.role = employee)

∧(Bob.temp cert ∈ RCL)) ∧ (state(Bob, o, r) =
accessing) → revokeaccess(Bob, o, r)

)

6.5 The Model onA1

In onA1, there are one or more update actions before a subject
starts to access an object. The control rules are:

permitaccess(s, o, r) → �
(
tryaccess(s, o, r)∧

♦(preupdate(attribute))
)

permitaccess(s, o, r) → �
(¬(p1∧...∧pi)∧(state(s, o, r) =

accessing) → revokeaccess(s, o, r)
)

As we have mentioned, there is no authorization check before a
subject starts to access an object. So in the first rule, the permitaccess
action implies only an update action before it.

6.6 The Model onA2

In onA2, there are one or more update action(s) during a usage
period. The control policies are:

permitaccess(s, o, r) → �
(¬(p1∧...∧pi)∧(state(s, o, r) =

accessing) → revokeaccess(s, o, r)
)

endaccess(s, o, r) ∨ revokeaccess(s, o, r) →
�

(
permitaccess(s, o, r)∧♦(onupdate(attribute))

)

In the second rule, we only specify that there is an update action.
In many applications there are cases where an update is always
required in every state of the ongoing access. We will illustrate this
with an example later.
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6.7 The Model onA3

In onA3, there must be update action(s) after a usage process.
The control policies are:

permitaccess(s, o, r) → �
(¬(p1∧...∧pi)∧(state(s, o, r) =

accessing) → revokeaccess(s, o, r)
)

If an access is ended by subject:
endaccess(s, o, r) → ♦(postupdate(attribute))
If an access is revoked by system:
revokeaccess(s, o, r) → ♦(postupdate(attribute))

In many applications, the update after an access is ended by a sub-
ject is different from the one after an access is revoked by the sys-
tem. Here we simply use the same action name of postupdate, but
they may change the attribute to different values, or change differ-
ent attributes.
Example 7 Consider the usage control policies in Example 1, in
which one object attribute is a set of accessing subjects accessingS =
{s|s is accessing o}. For different policies we define different sub-
ject attributes.

a . Revocation by the earliest start time:
We define the starting time (startT ime) as a subject at-
tribute. The authorization rules are:

(1) true → permit(s, o, r)
(2) permitaccess(s, o, r) →
�(preupdate(o.accessingS)), where preupdate :
o.accessingS′ = o.accessingS + {s}
(3) tryaccess(x, o, r) ∧ (x /∈ o.accessingS) ∧
(|o.accessingS| = 10)∧ (s ∈ o.accessingS)∧
(s.startT ime = MinstartT ime(o.accessingS)) →
revokeaccess(s, o, r)
(4) endaccess(s, o, r)∨revokeaccess(s, o, r) →
♦(postUpdate(o.accessingS), where postUpdate :
o.accessingS′ = o.accessingS − {s}

|o.accessingS| is a function returning the number of access-
ing subjects, and MinstartT ime(o.accessingS) is a func-
tion returning the earliest start time from accessingS. The
first rule says that a new access request is always permitted.
The second rule specifies that whenever a subject tries to ac-
cess the object, there must be a pre-update of accessingS
before the subject starts to access. The third rule says that
when the total number of accessing user is 10, and a new re-
quest is generated, the subject with earliest start time will be
revoked. The fourth rule specifies a post-update needed when
the access is ended or revoked (the updates are the same in
this example).

b . Revocation by the longest idle time:
We define two subject attributes: the status of the usage (status
with value of busy or idle) and continuous idle time in a sin-
gle usage period (idleT ime). The control rules are:

(1) true → permit(s, o, r)
(2) permitaccess(s, o, r) →
�(preupdate(o.accessingS)), where preupdate :
o.accessingS′ = o.accessingS + {s}
(3) tryaccess(x, o, r) ∧ (x /∈ o.accessingS) ∧
(|o.accessingS| = 10)∧ (s ∈ o.accessingS)∧
(s.idleT ime = MaxidleT ime(o.accessingS)) →
revokeaccess(s, o, r)
(4) �

(
(s.state = idle) → onupdate(s.idleT ime)

)

(5) endaccess(s, o, r)∨revokeaccess(s, o, r) →

♦(postupdate(o.accessingS)), where postupdate :
o.accessingS′ = o.accessingS − {s}

The MaxidleT ime(o.accessingS) is a function returning
the largest idleT ime in accessingS. Rules (1), (2), and
(5) are the same as before. In rule (3), the revocation is de-
termined by the s.idleT ime. Rule (4) specifies the muta-
bility of the subject attribute by saying that there must be a
continuous update of s.idleT ime performed by the system
whenever the state of a subject is idle.

c . Revocation by the longest total usage time:
We define the accumulating usage time (usageT ime) as a
subject attribute. The control rules are:

(1) true → permit(s, o, r)
(2) permitaccess(s, o, r) →
�(preupdate(o.accessingS)), where preupdate :
o.accessingS′ = o.accessingS + {s}
(3) tryaccess(x, o, r) ∧ (x /∈ o.accessingS) ∧
(|o.accessingS| = 10)∧ (s ∈ o.accessingS)∧
(s.usageT ime = MaxusageTime(o.accessingS)) →
revokeaccess(s, o, r)
(4) endaccess(s, o, r)∨revokeaccess(s, o, r) →
♦(postupdate(usageT ime)∧
♦(postupdate(accesingS)), where postupdate :
o.accessingS′ = o.accessingS − {s}

The MaxusageTime(o.accessingS) is a function returning
the largest usageT ime in accessingS. Rules (1), (2), and
(3) are the same as those in b, while rule (3) specifies that
the revocation is determined by the total usage time of the
subject. Rule (4) says that after each usage, there must be an
update on usageT ime.

7. OBLIGATIONS AND CONDITIONS
Obligations and conditions are two other important components

in usage decision of UCON besides authorizations. In this section
we discuss the logical approach to these two aspects.

7.1 Obligations
There are different views and philosophies on obligations from

the literature. Bettini et al. [6, 7] presented a policy management
system on provisions and obligations, where a provision is an ac-
tion to be performed before, while an obligation is an action that
will be performed in the future. Chomicki and Lobo [9] investi-
gated the conflicts and constraints of historical actions in policies.
They used past linear-time temporal connectors to express action
constraints, such as two actions cannot happen at the same time or
in certain sequence. In these papers, obligations are regarded as
actions to be performed by the system or a subject. In our model
we adopt the same view on obligation in UCON policies. In Fig. 1
we show that obligations form a component of usage decision to
control access requests or ongoing usage. Obligations that have
to be performed after an access, since they only affect the future
usage process, are considered as global obligations [18, 19]. For
example, an action of a user clicking an agreement button before
playing a music file is regarded as an obligation, while the payment
action of monthly billing is a global obligation, because this action
doesn’t affect the current usage access. In UCON we need an ad-
ministration model to capture the global obligations. In this paper
we only focus on the session-based usage control model, in which
only obligations before and during the usage process are consid-
ered. The global obligations will be described in future work on
administrative models.
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Because of the continuity of usage decision, there are two types
of obligations in UCON: pre-obligation and ongoing-obligations:

1. preB: obligations that must have been performed before a
subject starts to access an object.

2. onB: obligations that must be performed during a usage pro-
cess.

DEFINITION 3. An obligation action is described by ab(s, o, r,
sb, ob, rb, para1, ..., parai, ...) where ab is the obligation name,
(s, o, r) is a particular usage process requiring the obligation, sb,
ob, rb are obligation subject, object and right, para1, ..., parai are
optional parameters that may be needed to specify the action, such
as time, amount, etc.

sb, ob, rb may be the same as that in (s, o, r), or different, depend-
ing on particular applications. For example, downloading a music
file may need the same subject’s obligation of clicking a privacy
button, while a child’s watching an online movie may need the par-
ent’s agreement.

DEFINITION 4. A logical model of UCON with authorizations
and obligations is a 4-tuple: M = (S,P,AA,AB), where S is
a sequence of states, P is a finite set of predicates, AA is a finite
set of authorization actions (same as the A in the authorization
model), AB is a finite set of obligation actions.

Example 8 In an online electronic marketing system, only a reg-
istered user can browse all the products. Before placing orders, a
customer has to open a terms account, which requires financial in-
formation. To place an order, a customer has to click a button to
agree to the order policies. The “click” action is an obligation. A
role of registered will be assigned to a customer after the registra-
tion. We define an action click agreement, which is an obligation
for each order. The control policy is:
(s.role = registered) → permit(s, o, order)
permit(s, o.order)∧
�

(
click agreement(s, o, order, s, agree statement, click)

)

→ permitaccess(s, o, order)

7.2 Conditions
Conditions are environmental restrictions that have to be valid

before or during a usage process. Normally, this environmental
information is not directly related to a subject and an object, and
thus is not considered as subject or object attributes, but system
attributes. Similar to obligations in UCON, we only focus on pre-
conditions and ongoing-conditions. Since post-conditions do not
affect the current usage request, we will consider this in an admin-
istrative model in future work.

In Section 5 we mentioned that there may be some system at-
tributes besides state(s, o, r). A condition is a state predicate built
from one or more system attributes. For example, a subject can
only get a permission when the system clock is in daytime, or in a
particular period during daytime.

DEFINITION 5. A logical model of UCON with authorizations,
obligations, and conditions is a 5-tuple:
M = (S,PA,PC ,AA,AB), where S, AA, and AB are the same
as before, PA is a finite set of authorization predicates (the P be-
fore), and PC is a finite set of condition predicates.

Example 9 Suppose that a day-shift user (dayshifter) can only
access an object during daytime, and a night-shift user (nightshifter)
can only access the object during nighttime. We define the system
time current time as an attribute. Note that this is an environment
status, not an attribute of any subject or object. The usage control
policies are:

(s.role = dayshifter) ∧ (8am ≤ currentT ≤
5pm) → permitaccess(s, o, r)
(s.role = nightshifter) ∧ ¬(8am ≤ currentT ≤
5pm) → permitaccess(s, o, r)

8. RELATED WORK
Bertino et al. [2, 3, 4] introduced a temporal authorization model

for database management systems. In their model, a subject has
permissions on an object during some time intervals, or a subject’s
permission is temporally dependent on an authorization rule. For
example, a subject can access a file only for one week. Our au-
thorization model is different from this. We consider the temporal
characteristics in a single usage period with mutable attributes of
subject and object before, during and after access, that is, the tem-
poral properties are the results of mutability of subject and object
attributes, which change due to the side-effects of accesses and us-
ages. In contrast Bertino et al.’s model focuses on the validity of au-
thorization policies with time period, and the temporal property of
a policy is not related to an access action, but dependent on system
administration policies. Gal et al. [11] proposed a temporal data
authorization model (TDAM) for access control to temporal data.
This work is orthogonal to our approach, since we focus on the
temporal authorization and usage process, while TDAM focused
on the temporal attributes of data. For formal specifications with
temporal logic in security policies, Siewe et al. [22] applied inter-
val temporal logic to express and compose access control polices,
and Hansen and Sharp [12] introduced an approach for the analysis
of security protocols using interval logic. The main difference in
our approach is that we use TLA in our logic specification, and we
focus on the atomic actions and temporal properties during a sin-
gle usage process, while their approaches focus on a higher level of
system policies or security protocols.

Bettini et al. [6, 7] presented concepts of provisions and obliga-
tion in policy management. In their papers, provisions are condi-
tions or actions performed by a subject before the authorization de-
cision, while obligations are conditions or actions performed after
an access. In our model, we distinguish conditions and obligations.
All the actions that a subject has to perform before usage are re-
garded as obligations, while for future actions, we consider them as
the obligations for future usage requests or long-term obligations.
Chomicki and Lobo [9] investigated the conflicts and constraints of
historical actions in policies. In their paper, actions are application
activities, and constraints are expressed with linear-time temporal
connectors. In our paper we define obligations as actions required
by an access, and represent the logic approach with TLA.

9. CONCLUSIONS AND FUTURE WORK
We have developed a logic specification of UCON with tempo-

ral logic of actions. A logic model is presented with a sequence of
states including subject, object, and the system. The authorization
predicates are built from the subject and object attributes, while ac-
tions are the state transitions of subjects, objects, and the system.
Temporal formulas are built from authorization predicates and ac-
tions, which hold in a model as usage control policies. We also
discussed our logic approach to obligations and conditions. An
obligation is an action that has to be performed before or during an
access, while a condition is a predicate with system attributes. The
powerful specification capability and flexibility of TLA strengthens
UCON with precise modelling and specification of security poli-
cies.

There are several ongoing and future directions for this work.
Specifically, we will continue the work on the following aspects:
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1. Enrich the model of UCON. The original UCON is a high-
level model, and only core concepts are presented. We are
going to enrich the model with more details, such as the right
attributes, as well as mutual constraints, like dynamic sepa-
ration of duty and history based constraints.

2. A UCON system needs an administrative model, which man-
ages the attributes, administration policies, etc. UCON is
attribute-based, which requires synchronized attribute acqui-
sition and management. Also, post-obligations and condi-
tions are in the scope of the administrative model. If a sub-
ject does not satisfy any obligation after an access, a security
administrator needs to take some compensatory actions ac-
cording to the administrator policies.

3. Safety is an important and basic problem in access control
systems. In UCON, the safety problem is to determine if
a subject can get a particular permission to an object with
his/her current attributes, as well as any future updates of
these attributes by performing some accesses.

4. As mentioned in Section 1, concurrency is a unique feature
in UCON, which has been seldom investigated in access con-
trol. In an open system, an update action of an attribute will
result in the authorization decision change in another access,
which is happening concurrently, or is going to happen in the
future. We will apply some tools such as TLA+ [16] to spec-
ify access control in such open and concurrent environments.
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