
PEI Models for Scalable, Usable and
High-Assurance Information Sharing

Ram Krishnan
George Mason University

Fairfax, VA, USA
rkrishna@gmu.edu

Ravi Sandhu
George Mason University and

TriCipher Inc.
Fairfax, VA, USA

sandhu@gmu.edu

Kumar Ranganathan
Intel System Research Center

Bangalore, India
kumar.ranganathan@intel.com

ABSTRACT
Secure Information Sharing (SIS) or “share but protect” is
a challenging and elusive problem both because of its broad
scope and complexity ranging right from conception (objec-
tive and policy) to culmination (implementation). In this
paper, we consider how to solve SIS challenges with three
main and conflicting objectives: scalability, usability and
high-assurance. In the context of SIS, high-assurance re-
quires strong controls on the client. It is widely accepted
that such controls cannot be entirely software-based. In
this regard, we consider solutions based on commercially
emerging hardware-rooted Trusted Computing Technology.
For SIS, we argue super-distribution (“protect once and ac-
cess wherever authorized”) and off-line access are necessary
to achieve scalability and usability. As we will see, al-
though a Trusted Platform Module [1] (TPM) provides a
range of powerful functionalities, it does not enable true
super-distribution in any obvious manner. We therefore
limit super-distribution to occur within a group. A group
is an abstract set of TPM-enabled machines. For simplic-
ity, we assume all content that are distributed to be read-
only. Drilling down, we propose concrete Policy, Enforce-
ment and Implementation (PEI) models for SIS within a
group (group-based SIS or g-SIS). In the policy layer, we
develop a framework for specifying subject and object group
membership. In the enforcement layer, we explore ways
to approximate instant and preemptive revocation of group
members to support off-line access. We use the UCON [9]
model to formally specify the policy and enforcement mod-
els. In the implementation layer, we outline protocols using
Trusted Computing Technology [1] that would realize our
policy model and thereby our objectives. We also demon-
strate the value of this layered approach by showing how our
enforcement and implementation models can easily accom-
modate enhancements in the policy model.

1. INTRODUCTION
Sharing information (objects) while protecting it is one of
the earliest problems to be recognized in computer secu-

rity, and yet remains a challenging problem to solve. Al-
though SIS sounds like an oxymoron, its application scenar-
ios are endless ranging from revenue centric retail Digital
Rights Management (DRM) and sensitivity centric intellec-
tual property to national security centric secret property.
Classic access control models are either inherently weak or
don’t even address this problem domain. The Discretionary
Access Control model or DAC (like the access matrix) as
discussed in [5, 7, 2, 8] is fundamentally limited in that they
control access only to original objects but not to copies. If
objects could be read, one can read and create a copy of this
object. Objects are protected up to the point when read ac-
cess is granted to a subject. From then on, the owner has no
control on his object. Mandatory Access Control models or
MAC (like Bell-Lapadula) as discussed in [3, 4, 11] address
information flow but are too rigid for fine-grained access con-
trol and falling back to DAC for fine-grained access control
as the Orange Book suggests [2] is pointless.

In this paper, we consider how to solve the Secure Infor-
mation Sharing (SIS) problem with three main and con-
flicting objectives: scalability, usability and high-assurance.
In the context of SIS, high-assurance requires strong con-
trols on the client. It is widely accepted that such controls
cannot be entirely software-based. In this regard, we con-
sider solutions based on commercially emerging hardware-
rooted Trusted Computing Technology. For SIS, we argue
super-distribution (“protect once and access wherever au-
thorized”) and off-line access are necessary to achieve scal-
ability and usability. As we will see, although a Trusted
Platform Module [1] (TPM) provides a range of powerful
functionalities, it does not enable true super-distribution in
any obvious manner. We therefore limit super-distribution
to occur within a group. A group is an abstract set of TPM-
enabled machines. For simplicity, we assume all content that
are distributed to be read-only.

In this paper, we use the recently proposed UCON model [9]
to formally specify the policy and enforcement frameworks
for the secure information sharing problem. As discussed
earlier, our conflicting objectives forces us to consider super-
distribution within a group. We define group to be a set of
entities that share a common property. This definition of
a group is abstract and powerful enough to accommodate
a wide range of real world scenarios. For instance, a group
could be tightly-knit that is task oriented (E.g.: project
groups) or loosely-knit with similar interests (E.g.: discus-
sion forums) or an ecosystem (E.g.: a network of competi-

Security and system goals
(objectives/polices)

Policy Models

Enforcement Models

Implementation Models

Trusted Computing Technology
(mechanisms/implementation)

Necessarily
informal

Formal/
quasi-formal

System block
diagrams,

Protocol flows

Pseudo-
code

Actual
code

Horizontal
view

Looks at
individual
layer

Vertical
view
looks
across
layers

Figure 1: The PEI Models Framework.

tors, suppliers and customers working towards a common
goal that benefits everyone). On the other hand, contextual
properties like location, proximity, etc. could also form an
ad-hoc group.

We explore policy, enforcement and implementation mod-
els for the group-based secure information sharing problem.
To help separate and answer what we want to solve from
the how we want to solve, many frameworks have been pro-
posed in the past including the policy-mechanism separation
principle, OM-AM framework [12], etc. We use the more re-
cent PEI framework [14] that suggests additional separation
between enforcement and implementation models which we
believe is absolutely necessary to address a complex problem
such as SIS.

The remainder of this paper is organized as follows. In sec-
tion 2 we give a brief overview of the PEI framework, the
UCON model and Trusted Computing Technology. In sec-
tion 3, we specify a policy framework for the g-SIS problem
and differentiate it from policies applicable to related prob-
lem domains. We provide motivating use-cases that require
such a rich policy framework. In section 4, we formally spec-
ify policies for g-SIS using the UCON model, under the ide-
alized assumption that instant and preemptive revocation
can take place. In section 5, we identify two enforcement
models to accommodate the policy requirements. These en-
forcement models necessarily have concrete approximations
to the idealized instant and preemptive revocation assump-
tions of the policy model. We identify trade-offs and develop
a usable model to reconcile these trade-offs. Again, we for-
mally specify the usable model using UCON and demon-
strate that a model as rich and powerful as UCON is re-
quired to model the secure information sharing problem. In
section 6, we argue that we need the hardware rooted trust
of trusted computing technology to solve this problem at
the mechanism level with high-assurance. We outline proto-
cols for our enforcement model. We conclude the paper in
section 7.

2. BACKGROUND
We give a brief overview of the PEI framework, UCON
model and Trusted Computing Technology. The overviews

Rights
(R)

Authoriz
ations
(A)

Obliga
tions
(B)

Condi
tions
(C)

Subjects
(S) Usage

Decisions

Subject Attributes (SA)

Objects
(O)

Object Attributes (OA)

Figure 2: UCON Components.

are necessarily short and we direct interested readers to the
references for further details.

2.1 PEI Framework
Many approaches have been proposed in the past to help
solve security problems including the traditional approach
of separating policy from mechanism, OM-AM [12], etc. We
use the more recent PEI framework [14] (Figure 1) to an-
alyze our g-SIS problem and synthesize suitable solutions.
At the highest level of the framework, we specify the over-
all goals or objectives of the security system. At this level
the discussion and analysis is necessarily informal. In the
Policy Models (P) level, we formally specify our objectives
using an appropriate model. Many models exist including
the traditional DAC and MAC, RBAC96 [13], and the more
recent UCON. In the Enforcement Model (E) level, we spec-
ify system architecture to address the “how” question. In
the Implementation Model (I) level, we propose concrete
protocol flows and address specific issues left open in the
Enforcement layer.The final layer makes system dependant
decisions like technologies to use and produces actual code.

It is important to understand that in PEI the relationship
between adjacent layers is many to many. A policy model
could have multiple enforcement models and vice versa. Sim-
ilarly, an enforcement model could have multiple implemen-
tation models and vice versa. Thus a horizontal view helps
to explore various means to realize the objectives at a par-
ticular layer, and the vertical view helps to provide a specific
solution.

2.2 UCON model
The UCON model [9] for usage control is a new foundation of
access control which combines traditional authorization with
obligations and conditions. It also provides mutability of
attributes and continuity of decisions. Figures 2 and 3 give
the high level overview of UCON. Usage decisions are based
on subject and object attributes, authorizations, obligations
and conditions. Authorizations are predicates based on sub-
ject and/or object attributes, such as role name, security
classification or clearance, credit amount, etc. Obligations
are actions that a subject needs to perform in order to al-
low access. For example, a subject should agree to a license

before-usage ongoing-usage after-usage

pre-update ongoing-update

pre-decision ongoing-decision

Continuity of
Decisions

post-update

Mutability of
Attributes

Figure 3: Continuity & Mutability Properties of
UCON.

agreement before accessing an object. Conditions are used
to capture system states and dependencies that are not de-
pendent on subject and object attributes but rather on the
state of the system. For example, a subject will be granted
access to an object if the server’s load is less than a threshold
value. Access decisions are not only made at initial request
but can also be continued throughout access time. Thus we
could have pre, on-going and post access decisions, obliga-
tions and conditions. The presence of ongoing decisions is
called the continuity of UCON. Another important property
of UCON is attribute mutability. Mutability means that one
or more subject or object attribute values can be updated as
the results of an access. Along with the three phases, there
are three kinds of updates: pre-updates, ongoing updates,
and post-updates.

2.3 Trusted Computing
Trusted Computing Technology is an industry standard pro-
posed by the Trusted Computing Group (TCG) [1]. It is
widely accepted that software only mechanisms cannot pro-
vide high assurance. This motivated TCG to provide a root
of trust at the hardware level through the Trusted Platform
Module (TPM). The technology has evolved to a great de-
gree now and we only provide a very brief overview here.
The TPM mainly offers three novel features: Trusted Stor-
age for keys, Trusted Capabilities and Platform Configura-
tion Registers (PCR’s). Trusted Storage for keys is provided
by encrypting user’s keys with chain of keys. The root key
at the top of the chain is stored within the TPM and is
not accessible outside the TPM. Trusted Capabilities are
capabilities exposed by the TPM that are guaranteed to be
trustworthy. Users cannot modify the behavior of these ca-
pabilities. PCRs are hardware registers in the TPM that
are used to store integrity metrics (hash values) of software
(e.g.: boot chain). Trusted Capabilities and PCRs provide
some powerful functionalities. For example, Seal is a capa-
bility that encrypts and binds some data to a specific PCR
value. This data can be accessed (Un-Sealed) by authorized
entities only when PCR value at unseal time matches with
the specified PCR value at seal time. Using this feature,
one can make sure that a data blob such as a key would be
available to authorized entities only when the platform (e.g.:
every piece of software involved in the boot cycle up to the
kernel) is in a trustworthy state (which is implied by the
PCR value). There are many capabilities and features pro-
vided by TPM and abundant materials have been published
by the TCG.

3. POLICY FRAMEWORK
From here on we use the word object to refer to information
of any form (e.g. documents, voice data, etc.) that belongs
to the group and inter-changeably use the words object and
document. We use the word user to refer to any entity
(machine, human, programs, etc.). We use the word member
to refer to a user who is enrolled into a group. Before we
delve into formally specifying the policies, we clearly state
the objectives.

3.1 Objectives
We specify the following objectives for the g-SIS problem
studied in this paper.

1. The objects are read-only. In the example of docu-
ments, we assume that documents can only be read
and cannot be modified. If modified, the new doc-
ument will not belong to the group unless explicitly
added as a ‘new’ object again.

2. Objects are obtained via super-distribution. Super-
distribution means that the contents of a protected
(and therefore encrypted) object can be accessed any-
where by an authorized user. It implies that there is
no difference between the encryption for one user ver-
sus another. In other words the encryption is done in a
universal manner for all users rather than customized
for each individual user.

3. We want to impose policies on these objects and hence
need client side access control.

4. We want to enable off-line access. That is, the member
need not be connected to a server while accessing the
object.

5. We assume an admin who owns the group. The admin
can add and remove members from the group. We do
not care how an admin is appointed. The admin may
or may not be a member of the group.

We now digress briefly to compare g-SIS with a related prob-
lem –broadcast/multicast encryption. Member management
in g-SIS scenario sharply differs from Secure Internet Multi-
cast. In multicast, as users join and leave a group, remaining
members go through a re-key process thereby refreshing the
group key [10]. However, for secure information sharing,
such a requirement is extremely un-friendly because mem-
bers need not be always connected to a server to access the
objects. Thus, continuing our list of objectives, we have the
following.

6. When a user joins or leaves the group, remaining mem-
bers should not be affected. In other words, join and
leave operations should be completely oblivious to other
members.

7. Objective 6 requires that current members should not
be forced to be online and go through a re-key process.1

1Members should not be asked to re-key or contact a server
to get a new key. Note that re-keying is not an efficient solu-
tion in SIS as the member needs to keep track of which docu-

Join Leave

Re-Join

Initial State:
Never been
a member

State I

Past member

State III

Currently a
member

State II, IV

Figure 4: Various states of a subject in a group.

8. In secure multicast, we only worry about forward and
backward secrecy [10]. Forward-secrecy means that if
a user leaves a group, he should not be able to read
group data that are created in the future. Backward-
secrecy means that when a new user joins a group, he
should not be able to read data created in the past.
However, SIS is not limited to forward and backward
secrecy of information. Flexible membership policies
are to be enforced. When a new user joins the group,
whether he can access any group documents created
prior to his membership is policy-dependant. Any
group document created after he joins the group are
accessible. When a member leaves the group, whether
he can continue to access all documents that he pos-
sesses is policy-dependant. However, he cannot access
any documents exchanged in the future.

9. We use Trusted Computing Technology for high-assurance
of protection of information and enforcement of poli-
cies within a group.

3.2 Member States
Figure 4 shows various states of a member in a group. We
identify 4 states. In the initial state (state I), the user has
never been a member of the group. In state II, he is a
current member of the group. In state III, he left the group
and is a past member. Note that a past member in state
III can reach state II again by re-joining the group (state
IV). Having classified the membership scope, we can define
access policies for each state.

In State I, the access policy is straight-forward: the user has
no access to any group documents.

In State II (current member), access could be allowed only
to current documents or both current and past documents
(documents that were created before a member joined a
group). For each of these two access policy in state II, we
can have rate-limited access (number of accesses allowed per
unit time) or usage-limited access. These usage restrictions

ment was encrypted with which key. As users join and leave
a group, the remaining members will need to go through a
re-key process resulting in encrypting documents with differ-
ent keys along the time line. One cannot discard the old key
(as done in multicast) as disseminated documents encrypted
with the old key continue to persist.

can be either used for refreshing membership status or for
access throttling purposes.

In State III, many kinds of policies could be applied: 1.
A past member may lose access to all documents. 2. A
past member may access any document created during his
membership time period. 3. A past member may be allowed
access to the documents he accessed during his membership
(the ones local to his machine). On multiple join and leave,
accesses could accumulate. 4. A past member can only
access the documents he accessed during his membership
(the ones local to his machine). But on multiple join and
leave, access is allowed only to documents acquired during
his latest membership.

For State IV (member rejoin), access polices for members
could get complicated. For example, when a member first
left the group, he might have been denied access to all (both
past and current) documents (policy state III. 1). But when
he re-joins, if one allows access to all past documents (policy
state II.2), in a sense it contradicts with the policy during
his initial membership. These kinds of issues could get com-
plicated over multiple re-join operations and needs to be
stated with extra-care. To keep it simple, we suggest hav-
ing two re-join policies to choose from: no rejoin allowed or
when a past member re-joins he will join the group as a new
member.

3.3 Motivating Use-cases
We discuss a few interesting use-cases for the rich set of
access policies that we have identified so far. While there
are a multitude of scenarios that can be imagined, it is not
our goal to capture each of those. Rather we provide a few
use-cases to justify some of the policies discussed earlier.
For simplicity, we assume that no re-join is allowed in the
following discussion. We consider 4 cases and corresponding
use cases for each of these below.

Case 1. Suppose current members (in state II) can access
only current documents and past members (in state III) lose
access to all documents. We have the following use case.

Memory-less Collaboration: Many universities and corpora-
tions allow access to their content and share as long as one
is within their network. Once the user leaves the network,
the user loses access to the content.

Case 2. Suppose current members (in State I) can access
only current documents and past members (in State III)
can access documents created during his membership period.
We have the following use case.

Collaborative Computing: A financial institution could re-
cruit a software-consulting firm to provide software solu-
tions. This forms a short-lived group. The incoming group
members (from the software firm) cannot access any older
documents. When they finish the project and leave the
group, they can continue to have access to the documents
exchanged during their membership in order to add to their
profile. This is dependant on financial institution’s policy.

Case 3. Suppose current members can access current docu-
ments and also the documents created before their member-

ship period and past members lose access to all documents.
We have the following use cases.

Employee management: An employee joining a company can
access all the current documents. When an employee quits,
he loses access to all the sensitive documents he had access
to.

Government projects/contracts: DoD contracts have a multi-
tiered structure. A member of a contracting company may
be authorized to access certain set of documents only for the
duration of the project –once the project is over, the con-
tractor’s right to use the document is automatically voided.

Supply Chain: In a supply chain situation, there are lots
of partners and lots of suppliers who will send quotes for a
given proposal. They need to have access to the proposal
and related content. But once the quote/response is submit-
ted, their membership context for that particular or group
of proposals ceases and they shouldn’t have access to any of
the older content that they had access to.

Case 4. Suppose current members can access current docu-
ments and also the documents created before their member-
ship period and also past members can continue to access
documents created before his leave time. We have the fol-
lowing use cases.

Intra/Inter corporate discussion groups: Documents (pro-
gram code, emails, reports, etc.) are exchanged amongst
group members formed within a company (or between com-
panies). When a new member joins a discussion group, he
should be able to access all the earlier discussions and can
continue to access them even after leaving the group (E.g.
Email). However this is mostly dependant on the kind of
documents exchanged and the company’s policy.

Collaborative product development: In the case of several
automobile models, there are product twins –models from
the same company that resemble each other, except for the
division’s brand name and price tag. It’s less expensive for
auto manufacturers to produce parts in bulk and share them
than to build separate components for their various brand
names. Ford and Mercury, for example, are under the same
corporate umbrella, and their Taurus and Sable four-doors
are among the company’s twins. In such instances, there
could be either a loose collaboration (e.g. shared design
team, parts ordering/manufacturing but different factories)
or a tight collaboration (e.g. joint manufacturing of two
different models). In either case, the members from different
parties join hands and share documents actively. They will
need access to both old documents and current documents.
Even after the collaboration period, they will need access to
the old documents for further refinement and production.

3.4 Object States
Symmetric to states that a member goes through, we have
a notion of membership of objects or documents. Figure 5
shows various states of a document in a group. We now
identify policies for document membership.

For state I, members have no access to documents that are
not part of the group. For state II (current document), cur-

Add Remove

Re-add

Initial State:
Never been
a group doc

State I

Past group
doc

State III

Currently a
group doc

State II, IV

Figure 5: Various states of an object in a group.

rent documents can be accessed by current members. For
State III (past document) we have the following possibili-
ties: 1. No one can access past document. 2. Any member
can access. 3. Any one including non-members can access.
For State IV (readded documents), there are several pos-
sibilities: 1. Documents cannot be re-added. 2. When a
document is re-added, it will be treated as a new document
in the group. 3. When a document is re-added, it will
treated as an old document (its history will be preserved).

It is clear that specifying membership policies for mem-
bers and documents could get complicated. But we believe
we have motivated the reader to appreciate the richness of
the policy framework for the g-SIS problem, and therefore
the necessity for a flexible enforcement and implementation
framework to accommodate these variations and switch be-
tween them as necessary.

4. IDEAL POLICIES
In the earlier section, we provided an overview of the policy
framework for group membership. The policies identified
there define the characteristic of a group and we call them
as group-level policies or meta-policies. In order to formally
state these policies, we arbitrarily pick the following meta-
policy from each state of the member and specify them under
the UCON model:

For members, we choose the group-level policy: During mem-
bership, members cannot access documents created before
join time and can only access current documents. After leav-
ing the group, members can continue to access documents
created during his membership. Members cannot re-join.

For group documents, we choose the group-level policy: Doc-
uments currently in group can be accessed by current group
members only. Past documents cannot be accessed by any
member. Documents cannot be re-added into the group.

For clarity, in this paper we only consider single group mem-
bership. In addition to meta-policies, we have some key
policies to consider. Ideally, we would want the following
policies for g-SIS:

1. A Team Representative (TR, the group admin) adds
and removes member and documents into/from the
group.

2. Instant and preemptive revocation of a member from
a group by the TR takes effect. That is if the mem-
ber is removed from the group he immediately moves
into state III (instant revocation) and the policy with
respect to documents currently being accessed by this
member are immediately and preemptively adjusted
into the state III policy (preemptive revocation).2

3. Instant and preemptive revocation of a document from
a group by the TR takes effect, similar to the instant
and preemptive revocation of a member from a group
above.

4.1 UCON model conventions and notations
We specify a few conventions that are used throughout this
model.

1. The Subjects and Objects in our system have the same
meaning as that in the HRU model [6]. Briefly, Sub-
jects (S) have an entry in both the row and column in
the access matrix and Objects (O) have only a column
entry. Thus, S ∩O = φ.

2. The UCON attribute functions (discussed later) are
either partial or total. In a partial function, attributes
may not be defined for every subject and/or object in
the system. In a total function, attributes are defined
for every subject and/or object in the system.

3. NULL is a special value indicating ‘undefined’ and it
is not a part of the domain of any UCON attribute.

4. Every subject and object in the system belongs to a
certain type which is assumed to be pre-defined.

4.2 UCON Attributes
In this section, we define the UCON attributes that are used
throughout the model. TS is the set of all time-stamps. N
is a set of all integers.

ty : S ∪O → {doc, member, TR} This is an attribute func-
tion that maps the subjects and objects to one of the
following types:

doc group document type

member a regular group member

TR the Team Representative (group admin) of the
group

CC the Control Center (discussed later)

This is a total function and is immutable for both sub-
ject and objects.

memberJoin : S → TS ∪ {NULL} This is a partial func-
tion that denotes the time at which the subject (mem-
ber) joined the group according to the TR.

memberLeave : S → TS ∪ {NULL} This is a partial func-
tion that denotes the time at which the subject (mem-
ber) left the group according to the TR.

2In practice immediate and preemptive revocation is not
feasible, hence some approximation will be necessary. In
applying the PEI framework we choose to defer considera-
tion of this approximation to the enforcement model.

docAdd : O → TS ∪ {NULL} This is a partial function that
denotes the time at which the object (document) was
added to the group according to the TR.

docRemove : O → TS ∪ {NULL} This is a partial function
that denotes the time at which the object (document)
was removed from the group according to the TR.

authorization : S ∪O → {true, false} ∪ {NULL} is a par-
tial function that denotes whether the subject/object
is authorized to be a group member as per the TR.

4.3 UCON Specification for Ideal Policies
4.3.1 Document read by a member
In this operation, the subject is the member and object is
the document.

Att(S) ⊇ {memberJoin, memberLeave, ty}
Att(O) ⊇ {docAdd, docRemove, ty}

allowed(S, O, read) ⇒
typeCheck(S, O) ∧membershipStatusCheck(S, O) ∧
memberGroupPolicyCheck(S, O)∧ docGroupPolicyCheck(O)

where,
typeCheck(S, O) : ty(S) = member ∧ ty(O) = doc

membershipStatusCheck(S, O) :
memberJoin(s) 6= NULL ∧ docAdd(O) 6= NULL

memberGroupPolicyCheck(S, O) :
(memberLeave(S) = NULL∧ docAdd(O) ≥ memberJoin(S))
∨ (memberLeave(S) 6= NULL ∧
memberJoin(S) ≤ docAdd(O) ≤ memberLeave(S))

docGroupPolicyCheck(O) : (docRemove(O) = NULL)

stopped(S, O, R) ⇐
(docRemove(O) 6= NULL)∨ (memberLeave(S) 6= NULL∧
docAdd(O) ≥ memberLeave(S))

Note that the allowed predicate specifies the predicates nec-
essary for a subject to access an object with respect to the
meta-policy specified at the beginning of section 4. It also
checks if the members and documents are current. The
stopped predicate specifies the instant and preemptive revo-
cation requirement. These are given in the style of UCON
as defined in [9]. Immediate and preemptive revocation re-
quires the ongoing authorization capability of UCON also
called continuity.

4.3.2 Enrolling a member into a group
This is a subject to subject operation between the TR (S1)
and the joining Member (S2). It is the TR’s discretion to
allow new members to join the group.

Att(S) ⊇ {ty, authorization, memberJoin, memberLeave}

Here S1 and S2 are both subjects:

allowed(S1, S2, join) ⇒
typeCheck(S1, S2) ∧ newMemberCheck(S2)

where,
typeCheck(S1, S2) : ty(S1) = TR ∧ ty(S2) = member

newMemberCheck(S2) :
¬authorization(S2) = NULL∧authorization(S2) = NULL

preUpdate(authorization) : authorization′(S2) = true
preUpdate(memberJoin) :
memberJoin′(S2) = TS1, where TS1 ∈ TS
preUpdate(memberLeave) : memberLeave′(S2) = NULL

In this operation the effect of enrollment is immediate and
the pre-update capability of UCON is used to capture the
change in membership state.

4.3.3 Removing a member from a group
This is a subject to subject operation between the TR (S1)
and the Member (S2).

Att(S) ⊇ {ty, authorization, memberLeave}

Here S1 and S2 are both subjects.

allowed(S1, S2, leave) ⇒
typeCheck(S1, S2) ∧ currentMemberCheck(S2)

where,
typeCheck(S1, S2) : ty(S1) = TR ∧ ty(S2) = member

currentMemberCheck(S2) : authorization(S2)

preUpdate(authorization) : authorization(S2) = false
preUpdate(memberLeave) :
memberLeave′(S2) = TS2, where TS2 ∈ TS

This operation is the converse operation to 4.3.2. The fol-
lowing two operations are similar operations with respect to
adding and removing documents and also make use of the
mutable attribute capability of UCON.

4.3.4 Adding a document into the group
Here subject is the member and object is the document.
Any current member can add a document to the group.3

Att(S) ⊇ {ty, authorization, memberJoin, memberLeave}
Att(O) ⊇ {ty, docAdd, docRemove}

allowed(S, O, add) ⇒
typeCheck(S) ∧membershipCheck(S) ∧ newDocCheck(O)

where,
typeCheck(S) : ty(S) = member

3Note that modeling adding and removing documents from
a group could be more complex than what is shown here.
In particular, we have plain-text document and protected
document that is added to the group. These two documents
are of different types and make the document type mutable.
This opens up many issues. For instance, how to prevent the
same plain-text document taking multiple forms of protected
document? This has implications on document remove. For
now, we abstract away from this issue and others in order
to focus on our main theme.

membershipCheck(S) : authorization(S)

newDocCheck(O) :
docAdd(O) = NULL ∧ docRemove(O) = NULL

preUpdate(docAdd) : docAdd′(O) = TS3, where TS3 ∈ TS
preUpdate(docRemove) : docRemove′(O) = NULL

4.3.5 Removing a document from the group
Only a TR can remove a document from the group. Here
subject is the TR and object is the document.

Att(S) ⊇ {ty}
Att(O) ⊇ {ty, docAdd, docRemove}

allowed(S, O, remove) ⇒
typeCheck(S, O) ∧ currentDocCheck(O)

where,
typeCheck(S, O) : ty(S) = TR ∧ ty(O) = doc

currentDocCheck(O) :
docAdd(O) 6= NULL ∧ docRemove(O) = NULL

preUpdate(docRemove) :
docRemove′(O) = TS4, where TS4 ∈ TS

5. ENFORCEMENT MODELS
In this section, we discuss enforcement models for the spec-
ified policy framework. We propose an Ideal Enforcement
Model that attempts to precisely cover our ideal policy model.
We argue that in practical scenarios even the most ideal
enforcement model is only an approximation of our poli-
cies. We therefore propose Approximate Enforcement Mod-
els. We formally specify an approximate enforcement model
using UCON and demonstrate that the UCON model could
be used to formally specify both Policy and Enforcement
models.

5.1 UCON Ideal Enforcement Model
Recall that our Ideal Policy Model had an important re-
quirement: instant and preemptive revocation of members
and documents from a group. Instant revocation means
that members and documents should be immediately re-
moved from the group the moment the TR decides to can-
cel their membership. Preemptive revocation means that
should membership status of either the member or the doc-
ument change during access, access should be stopped. An
Ideal Enforcement Model would then be a client-server model.
A member should be permitted to access documents only af-
ter verifying membership with a server. However, even such
a model of “refresh on every access” may not be totally
ideal. Any distributed system has an inherent latency and
membership verification made at the time of read request
may not be valid at the time of actual read by the member.
Thus even in an ideal enforcement model the membership
validity is approximated to a window of latency time. More-
over, this enforcement model would directly contradict one
of our main objectives: off-line access. Hence in order to
realize our objectives, we discuss ways to approximate our
ideal policy.

.

Team Representatives (TR)Joining Member (JM) Current Members (M)

Control Center (CC)

1

2

3

45

67

Figure 6: Enforcement Architecture.

5.2 Approximate Enforcement Models
Figure 6 shows our enforcement architecture. In order to
facilitate various operations, we introduce a Control Cen-
ter (CC). The CC acts as a single point of contact for both
members and the TR. The TR would update membership
status of both members and documents at the CC. The CC
would then make access decisions based on current mem-
bership. Note that a group could have multiple TRs and we
assume that members, TRs and the CC are configured for a
group.

Steps 1 and 2 are member join operations. In step 1, the
TR authorizes the Joining Member (JM) to join the group.
In step 2, the CC officially enrolls the JM into the group
by verifying the TR’s authorization. In step 3, a member
receives approval from the TR to add a document into the
group. Step 4 and step 5 differentiates ideal and approxi-
mate enforcement models. In an ideal enforcement model,
step 4 and 5 will become a single step of verifying member-
ship with the CC before a document is read by the member.
We can approximate this step based on usage count or time.
A usage count based approximation would allow the mem-
ber to access documents a specific number of times without
having to contact the CC, thus enabling off-line access with
limited usage count. A time based approximation would al-
low the member to access documents for a specific period
of time without having to contact the CC, to provide off-
line access with a time limit. Thus in approximate models,
step 4 involves off-line document read by a member and step
5 would involve refreshing group membership if either the
usage count or time expires. The window provided by the
usage count or time is a degree of approximation of current-
ness of group membership. Steps 6 and 7 involve removal of
members and documents from the group by the TR.

A time based approximate enforcement model would require
an off-line trusted source of time. We are not aware of any
TPMs that provide such a feature. This forces us to elect the
usage-count based model as our approximate enforcement
model. In the following section, we formally specify this
model in UCON.

Password based, machine based and credential based en-
forcements models were proposed in a previous work [14].
However, we will show later that this architecture accom-
modates all of these models.

Our architecture is different from Microsoft WindowsTM 4

Rights Management Services (RMS) in that our motiva-
tion here is document access without “pre-planning”. Pre-
planning is planning in advance which documents one would
need to access off-line in the future and “checking-out” those
documents by obtaining licenses to access them from a server.
Further, in RMS when a client receives a document from
some channel, it needs to contact the server and obtain a
use license to open the document. Our architecture incor-
porates the notion of group level policies which not only
controls access during membership but also after members
leave the group. Our implementation models as discussed
in section 6 uses trusted computing based mechanisms to
provide strong client-side policy enforcement.

5.3 UCON Specification for Approximate En-
forcement Model

In this section we formally specify an approximate enforce-
ment model for membership renewal based on usage count.
The idea is that members will be allowed to access docu-
ments for a number of times restricted by an usage count.
Once the usage count limit is reached, members need to re-
new their membership with the CC. The CC would then up-
date the usage count if the membership is still valid. Clearly,
there are two sets of attributes in this case. There are reg-
ular attributes that are maintained by the members. These
attributes may not always reflect the current accurate val-
ues (because members refresh attributes only after the usage
count is down to zero and thereby have a possible lag with
respect to the correct value). Then we also have the Author-
itative attributes counterpart that are up to date and main-
tained by the CC. During a refresh cycle, the CC would
update the regular attributes maintained by the members
with the authoritative attributes maintained by the CC. We
define additional attributes below.

authoritativeMemberJoin : S → TS ∪ {NULL} This is a
partial function that denotes the time at which the
subject (member) joined the group according to the
TR.

authoritativeMemberLeave : S → TS ∪ {NULL} This is a
partial function that denotes the time at which the
subject (member) left the group according to the TR.

authoritativeDocAdd : O → TS ∪ {NULL} This is a par-
tial function that denotes the time at which the object
(document) was approved to be added into the group
according to the TR.

authoritativeDocRemove : O → TS ∪ {NULL} This is a par-
tial function that denotes the time at which the object
(document) was removed from the group according to
the TR.

usageCount : S → N where N is a natural number. This
attribute is a partial function that denotes the num-

4Microsoft Windows is a registered trademark of Microsoft
Corporation in the United States of America and/or in other
countries. Other product names mentioned in this article
may be trademarks or registered trademarks of their respec-
tive companies and are the sole property of their respective
manufacturers.

ber of times a member can access documents without
refreshing his membership status.

safeUsageCount : S → N where N is a natural number.
This attribute is a partial function that denotes the
threshold value below which a member may oppor-
tunistically refresh his usageCount.

docRenewed : S → {true, false} is a partial function that
denotes whether the subject has renewed the attributes
of all the documents in the subject’s machine.

Also we use UCON pre and on-going conditions to mandate
internet connectivity during operations as follows:

getPreCON(S, O, R) = {(connectivity = true)}
getOnCON(S, O, R) = {(connectivity = true)}

connectivity is the status of internet connectivity to the
CC/TR. This requires the use of UCON conditions in this
model.

5.3.1 Document read by a member
Here subject is the member and object is the document.

OBS = CC
OBO = S, O
OB = renew

Att(S) ⊇ {ty, memberJoin, memberLeave,
usageCount, safeUsageCount}
Att(O) ⊇ {ty, docAdd}

If usageCount(S) ≤ 0,
getPreOBL(S, O, R) = (CC, S, renew) ∧ (CC, O, renew)
otherwise,
getPreOBL(S, O, R) = φ

allowed(S, O, R) ⇒
preFulfilled(getPreOBL(S, O, R))∧usageCount(S) > 0∧
typeCheck(S, O) ∧membershipCheck(S, O) ∧
memberPolicyCheck(S, O) ∧ docPolicyCheck(O)

where,
typeCheck(S, O) : ty(S) = member ∧ ty(O) = doc
membershipCheck(S, O) :
memberJoin(S) 6= NULL ∧ docAdd(O) 6= NULL
memberPolicyCheck(S, O) :
(memberLeave(S) = NULL∧docAdd(O) ≥ memberJoin(S))∨
(memberLeave(S) 6= NULL ∧
memberJoin(S) ≤ docAdd(O) ≤ memberLeave(S))
docPolicyCheck(O) : docRemove(O) = NULL

preUpdate(usageCount) :
usageCount′(S) = usageCount(S)− 1

Comparing with the corresponding operation in section 4.3.1
for ideal policy, there are some similarities. However, we also
observe many differences. We have new obligation require-
ment. Before a read can be allowed, the member is obligated
to renew his attributes if his usage count has reached zero.
The preUpdate predicate decreases the usage count every
time the member opens a document. Once the usage count

reaches zero, a refresh will be forced to continue document
access. Also, the stopped predicate is not required anymore
since we do not have preemptive revocation here.

5.3.2 Usage Count renewal
This is a subject to subject operation between the CC and
the member.

Att(S) ⊇ {ty, memberJoin, memberLeave,
usageCount, safeUsageCount, authoritativeMemberJoin,
authoritativeMemberLeave, docRenewed}

allowed(S1, S2, refresh) ⇒
preConChecked(getPreCON(S1, S2, refresh)) ∧
typeCheck(S1, S2)∧membershipCheck(S2)∧usageCheck(S2)

where,
typeCheck(S1, S2) : ty(S1) = CC ∧ ty(S2) = member
membershipCheck(S2) :
memberJoin(S2) 6= NULL ∧memberLeave(S2) = NULL
usageCheck(S2) :
usageCount(S2) < safeUsageCount(S2)∧docRenewed(S2)

stopped(S1, S2, refresh) ⇐
¬onConChecked(getonCON(S1, S2, refresh)

preUpdate(usageCount) :
usageCount′(S2) = N1, whereN1 ∈ N
preUpdate(memberLeave) :
memberLeave′(S2) = authoritativeMemberLeave(S2)
preUpdate(memberJoin) :
memberJoin′(S2) = authoritativeMemberJoin(S2)
preUpdate(docRenewed) : docRenewed′(S2) = false

This is a new operation (as compared to the policy model)
that facilitates renewal of member’s attributes including us-
age count. When the usage count reaches zero, the member
will be forced to obtain updated membership attributes from
the CC. The CC updates the member’s attributes with its
authoritative attributes. If the the TR had instructed the
CC to remove a member, corresponding attributes will be
updated during this step. Note that we have a new UCON
condition: preConChecked is the condition that there is a
connectivity to CC during this operation. If the condition
fails, the updates will be stopped. Note that this operation
will succeed only if docRenewed is true and this forces mem-
bers to renew the membership status of all the documents
(in the following step) they possess.

5.3.3 Document membership renewal
Here we update the membership status of all the documents
in the system. The TR could remove a document from the
group and inform the CC. When the members come for re-
newal, this operation forces all documents on member’s ma-
chine to be renewed as part of the usage count renewal in the
previous operation. Again, this is new operation compared
to the policy model. Here the subject is the Member and
objects are the documents in the member’s system. Note
that preConChecked checks whether connectivity to CC is
available during this operation.

Att(S) ⊇ {ty, docRenewed}
Att(O) ⊇ {ty, docAdd, docRemove, authoritativeDocRemove}

allowed(S, Oi, refresh) ⇒
preConChecked(getPreCON(S, Oi, refresh)) ∧
typeCheck(S, Oi)

where,
typeCheck(S, Oi) :
ty(S) = CC ∧ ty(Oi) = doc,
for i=1 to Z, where Z is the total number of documents the
subject has.

stopped(S, Oi, refresh) ⇐
¬onConChecked(getOnCON(S, Oi, refresh)

preUpdate(docRemove) :
docRemove(Oi) = authoritativeDocRemove(Oi)
∀authoritativeDocRemove(Oi) 6= NULL,
where i=1 to Z, Z is the total number of documents the
subject has.
preUpdate(docRenewed) : docRenewed(O) = true

Exactly how this document renewal is efficiently done is an
implementation issue and we abstract away from such ques-
tions at the enforcement layer.

5.3.4 Enrolling a member into a group
Compared to the corresponding operation in section 4.3.2 in
the ideal policy model, observe that member join is now a
two step process. In step 1, the TR authorizes the joining
member to join the group. In step 2, the CC officially enrolls
the joining member into the group.

Step 1 : This is a subject to subject operation between TR
and the joining member. In the policy model, we did not
have a CC and the TR was responsible for setting the join
and leave time-stamps (TS). With our two step join architec-
ture, we move this operation of setting time-stamps to the
CC. The TR authorizes join and the CC officially enrolls the
member by setting the time-stamps.

Att(S) ⊇ {ty, authorization}

allowed(S1, S2, join) ⇒
preConChecked(getPreCON(S1, S2, join)) ∧
typeCheck(S1, S2) ∧ authorizationCheck(S2)

where,
typeCheck(S1, S2) : ty(S1) = TR ∧ ty(S2) = member
authorizationCheck(S2) : authorization(S2) = NULL

stopped(S1, S2, join) ⇐
¬onConChecked(getOnCON(S1, S2, join))

preUpdate(authorization) : authorization′(S2) = true

Step 2 : This is a subject to subject operation between the
CC and the joining member. Here preConChecked is the
condition that there is connectivity to the CC.

Att(S) ⊇ {ty, authorization, usageCount, safeUsageCount,
authoritativeUsageCount, authoritativeSafeUsageCount,
memberJoin, memberLeave,
authoritativeMemberLeave, authoritativeMemberJoin}

allowed(S1, S2, add) ⇒
preConChecked(getPreCON(S1, S2, add)) ∧
typeCheck(S1, S2) ∧ authorizationCheck(S2)

where,
typeCheck(S1, S2) : ty(S1) = CC ∧ ty(S2) = member
authorizationCheck(S2) :
authorization(S2) = true ∧
authoritativeMemberJoin(S2) 6= NULL

stopped(S1, S2, add) ⇐
¬onConChecked(getOnCON(S1, S2, add))

preUpdate(authoritativeMemberJoin) :
authoritativeMemberJoin′(S2) = TS1, whereTS1 ∈ TS
preUpdate(memberJoin) :
memberJoin′(S2) = authoritativememberJoin(S2)
preUpdate(authoritativeMemberLeave) :
authoritativeMemberLeave′(S2) = NULL
preUpdate(memberLeave) :
memberLeave′(S2) = authoritativeMemberLeave(S2)
preUpdate(authoritativeUsageCount) :
authoritativeUsageCount′(S2) = N1, whereN1 ∈ N
preUpdate(usageCount) :
usageCount′(S2) = authoritativeUsageCount(S2)
preUpdate(authoritativeSafeUsageCount(S2)) :
authoritativeSafeUsageCount′(S2) = N2, whereN2 ∈ N
preUpdate(safeUsageCount) :
safeUsageCount′(S2) = authoritativeSafeUsageCount(S2)

5.3.5 Removing a member from the group
This is a two step process that happens between the TR and
the CC and is different from the corresponding operation in
section 4.3.3 of the policy model. In step 1, the TR removes
the authorization of the member at the CC. In step 2, the
CC updates the member’s authoritative attributes. These
attributes will be pushed into the member’s system when
the member comes to the CC for renewal.

Step 1 : This is a subject to subject operation between the
TR and the member. The member attributes here actu-
ally represents the member’s attributes on the CC. Here
preConChecked means that there is connectivity to the CC.

Att(S) ⊇ {ty, authorization, authoritativeUsageCount,
authoritativeSafeUsageCount, memberJoin, memberLeave}

allowed(S1, S2, remove) ⇒
preConChecked(getPreCON(S1, S2, remove)) ∧
typeCheck(S1, S2) ∧ authorizationCheck(S2)

where,
typeCheck(S1, S2) : (ty(S1) = TR ∧ ty(S2) = member)
authorizationCheck(S2) : authorization(S2)

stopped(S1, S2, remove) ⇐
¬onConChecked(getOnCON(S1, S2, remove))

preUpdate(authorization(S2)) : authorization′(S2) = false

Step 2 : This is a subject to subject operation between the
CC and the member. The member attributes here represents
the member’s attributes on the CC.

Att(S) ⊇ {authorization, authoritativeUsageCount,
authoritativeSafeUsageCount, memberJoin, memberLeave
authoritativeMemberJoin, authoritativeMemberLeave}

allowed(S1, S2, remove) ⇒
typeCheck(S1, S2) ∧ authorizationCheck(S2)

where,
typeCheck(S1, S2) : ty(S1) = CC ∧ ty(S2) = member
authorizationCheck(S2) :
¬authorization(S2) ∧
authoritativeMemberJoin(S2) 6= NULL ∧
authoritativeMemberLeave(S2) = NULL)

preUpdate(authoritativeMemberLeave) :
authoritativeMemberLeave′(S2) = TS2, whereTS2 ∈ TS
preUpdate(authoritativeUsageCount) :
authoritativeUsageCount′(S2) = 0
preUpdate(authoritativeSafeUsageCount) :
authoritativeSafeUsageCount′(S2) = 0

This operation is the converse operation to 5.3.4. The fol-
lowing two operations are similar operations with respect to
adding and removing documents and also make use of the
mutable attribute capability of UCON.

5.3.6 Adding a document to the group
Here the subject is the member and object is the document.
preConChecked is the condition that there is connectivity
to CC. For brevity, we do not consider the TR approval for
document addition (note that this is a policy level decision).
The allowed predicate makes sure that only current mem-
bers can add documents to the group.

Att(S) ⊇ {ty, memberJoin, memberLeave}
Att(O) ⊇ {ty, docAdd, docRemove}

allowed(S, O, add) ⇒
preConChecked(getPreCON(S, O, add) ∧
typeCheck(S, O) ∧membershipCheck(S, O)

where,
typeCheck(S, O) : ty(S) = member ∧ ty(O) = doc
membershipCheck(S, O) :
memberJoin(S) 6= NULL ∧
memberLeave(S) = NULL ∧ docAdd(O) = NULL)

stopped(S, O, add) ⇐
¬onConChecked(getOnCON(S, O, add))

preUpdate(docAdd) : docAdd′(O) = TS3, whereTS3 ∈ TS
preUpdate(docRemove) : docRemove′(O) = NULL

5.3.7 Removing a document from the group
Here subject is the TR and object is the document.
preConChecked is the condition that there is connectivity
to CC. The allowed predicate makes sure that only the TR
can remove a document.

Att(S) ⊇ {memberJoin}
Att(O) ⊇ {docAdd, authoritativeDocRemove}

allowed(S, O, remove) ⇒
preConChecked(getPreCON(S, O, remove)) ∧
typeCheck(S, O) ∧membershipCheck(O)

where,
typeCheck(S, O) : ty(S) = TR ∧ ty(O) = doc)
membershipCheck(O) :
docAdd(O) 6= NULL∧authoritativeDocRemove(O) = NULL

stopped(S, O, remove) ⇐
¬onConChecked(getOnCON(S, O, remove))

preUpdate(authoritativeDocRemove) :
authoritativeDocRemove′(O) = TS4, whereTS4 ∈ TS

6. IMPLEMENTATION MODELS
In this section, we give a brief overview of our implemen-
tation model based on Trusted Computing Technology [1].
As mentioned earlier, we need trust at the hardware level as
provided by the TPM for the high-assurance requirements
of the SIS problem. The implementation model involves
a Trusted Reference Monitor [15] (TRM) module on every
group member’s machine. The TRM is a trust-worthy refer-
ence monitor that enforces group policies on the client. We
also have a Trusted Viewer (TV) module that is used for
viewing documents on member’s machines. For our discus-
sion we assume that the TRM and TV are somehow provi-
sioned on the member’s machines in a trust-worthy manner.
We can use the mechanisms provided by the TPM [1] to
protect the integrity of the TRM and the TV. It is beyond
the scope of this paper to go over the protocols for each of
the steps in figure 6. We only outline the protocol with
main steps here.

In step 1, the Team Representative (TR) provides a signed
credential to the Joining Member (JM) and authorizes join-
ing the group. In step 2, the JM uses this credential to en-
roll into the group by contacting the Control Center (CC).
The CC verifies the credential and installs a ticket on the
JM in such a manner that only the TRM can access this
ticket. This is achieved using TPM functionalities like seal,
unseal, integrity measurements, etc. as mentioned in section
2. The format of this ticket would be: signCC{{meta −
policy||K||refreshMonotonicCount||TSJoin||TSLeave||
DRL}}. The meta-policy specifies the group level policies
that needs to be enforced. K is the group key. The re-
fresh frequency is defined by refreshMonotonicCount. It
is the number of times the group key can be used before
a membership status refresh is forced. Monotonic Counter
is a hardware counter provided by the TPM. We use this
counter (or a virtual monotonic counter) to keep track of
refresh counts and prevent replay of older tickets. Note that
only the TRM should be authorized to update this counter.
TSJoin is the time-stamp of member join time as seen by
the CC and TSLeave is the time-stamp of leave. DRL
is the Document Revocation List that lists the documents
that have been removed from the group. This whole ticket
is signed by the CC and installed in such a fashion that only
the TRM can access it.

The TRM would only let the TV open a document. Docu-
ments are always stored on the disk in protected form and is
of the format: signTR{doc||K{docKey}||hash(doc)||TSAdd}.

doc represents the encrypted version of the document. The
document is encrypted with a docKey, the document key.
The docKey is encrypted with the group key K. TSAdd is
the time-stamp of the time at which the document was ap-
proved to added into the group by the TR. hash(doc) is the
hash value of the document. The TR’s signature (signTR)
shows the approval of the TR for this document to be added
to the group.

In the following subsection we discuss how the TRM en-
forces policies for document read based on the ticket and
the document format we discussed.

6.1 Enforcing Document Read
The TV requests the TRM to open the document. The
TRM initially verifies if the TV is not tampered using the
integrity measurement mechanisms of the TPM. Then the
TRM would unseal the ticket. This step would succeed only
if the TRM is in the same integral state as it was when
the ticket was sealed (this could be guaranteed by TPM
mechanisms). First the TRM would check the hardware
monotonic counter (or the virtual monotonic counter) with
the refreshMonotonicCount and make sure it has not ex-
pired. Next it would check that the document (hash(doc)) is
not part of the DRL. Next the TRM checks that the meta-
policy permits opening the document based on TSAdd of the
document and the TSJoin and TSLeave of the member (as
discussed in the section 5.3.1). If these steps succeed, the
TRM would decrypt the document for the TV using K and
the docKey. Note that if the refreshMonotonicCount has
expired, the ticket is no more valid and the member is forced
to obtain a new ticket from the CC. The new ticket would
contain updated counter value and updated time-stamps if
the membership status has changed.

7. CONCLUSIONS AND FUTURE WORK
In this paper we investigated the Secure Information Shar-
ing problem with three main objectives: scalability, usabil-
ity and high-assurance. For scalability we proposed super-
distribution within a group, for usability we proposed off-line
access and for high-assurance we proposed trusted comput-
ing based mechanisms. We identified a rich policy frame-
work for the information sharing space and formalized this
framework using the UCON model. We also demonstrated
that a model as rich as UCON (with the full machinery of
authorization, obligations and conditions) is required for the
SIS problem. We explored enforcement architectures and
formally stated a usage count based approximate enforce-
ment architecture. We outlined the steps for implementa-
tion models using Trusted Computing Technology.

Our approach to solving this problem using the PEI frame-
work has many advantages. The enforcement and implemen-
tation models can be easily enhanced to accommodate inter-
esting scenarios. For example, documents could be password
protected by simply adding the password hash to the docu-
ment and modifying the TRM to enforce password protec-
tion. Further passwords could be added on a per-document
basis or on the whole group basis. For enforcing a password
throughout the group, the password hash could be added
to the ticket. The group level policies could be modified to
member-level policies by constructing tickets with a differ-
ent meta-policy for different members. These could be gen-

eralized to a credential based enforcement model where the
required credential would be mentioned as part of the ticket.
The TRM would then mandate such credentials from group
members. Credentials could be role certificate, attribute
certificate, etc.

A range of future work is underway. First a prototype
needs to be built as a proof-of-concept for the group-based
SIS problem. We have started investigating components
required to build such a prototype. We need to explore
generality of the policy framework to application scenar-
ios other than document sharing. Restricting information
flow across groups needs to be investigated. Support for
document querying to obtain specific sections of documents
instead of the whole document has many interesting usage
scenarios. To support a true secure collaboration, document
write should is an important requirement and hence should
be studied.

8. REFERENCES
[1] Tcg specification architecture overview.

http://www.trustedcomputinggroup.org.

[2] Dod trusted computer systems eval. criteria. Dec 1985.

[3] D. Bell and L. LaPadula. Secure computer systems:
Unified exposition and multics interpretation.
Technical Report, The Mitre Corp., March 1975.

[4] D. Denning. A lattice model of secure information
flow. Comm. of the ACM, pages 236–243, 1976.

[5] G. Graham and P. Denning. Protection principles and
practice. AFIPS Joint Computer Conference, 1972.

[6] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman.
Protection in operating systems. Comm. of the ACM,
pages 461–471, August 1976.

[7] B. Lampson. Protection. In fifth Princeton Symposium
on Information Science and Systems, 40:437443, 1971.

[8] S. Osborn, R. Sandhu, and Q. Munawer. Configuring
rbac to enforce mandatory and discretionary access
control policies. ACM TISSEC, 3(2), May 2000.

[9] J. Park and R. Sandhu. The ucon abc usage control
model. ACM Transactions on Information and System
Security, 7(1):128–174, Feburary 2004.

[10] S. Rafaeli and D. Hutchison. A survey of key
management for secure group communication. ACM
Computing Surveys, pages 309–329, September 2003.

[11] R. Sandhu. Lattice-based access control models. IEEE
Computer, 26(11):9–19, November 1993.

[12] R. Sandhu. Engineering authority and trust in
cyberspace: the om-am and rbac way. Proc. of the
fifth ACM workshop on RBAC, pages 111–119, 2000.

[13] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based access control models. IEEE Computer,
29(2):38–47, Feburary 1996.

[14] R. Sandhu, K. Ranganathan, and X. Zhang. Secure
information sharing enabled by trusted computing and
pei models. Proc. of ASIACCS 2006, pages 2–12, 2006.

[15] R. Sandhu and X. Zhang. Peer-to-peer access control
architecture using trusted computing technology.
Proceedings of the 10th ACM symposium on Access
control models and technologies, pages 147–158, 2005.

