
A Usage-based Authorization Framework
for Collaborative Computing Systems

Xinwen Zhang
George Mason University

Fairfax, Virginia, USA
xzhang6@gmu.edu

Masayuki Nakae
NEC Corporation

Kawasaki, Kanagawa, Japan
m-nakae@bp.jp.nec.com

Michael J. Covington
Intel Corporation

Hillsboro, Oregon, USA
michael.j.covington@intel.com

Ravi Sandhu
George Mason University
and TriCipher Inc., USA

sandhu@gmu.edu

ABSTRACT
Collaborative systems such as Grids provide efficient and scalable
access to distributed computing capabilities and enable seamless
resource sharing between users and platforms. This heterogeneous
distribution of resources and the various modes of collaborations
that exist between users, virtual organizations, and resource providers
require scalable, flexible, and fine-grained access control to pro-
tect both individual and shared computing resources. In this paper
we propose a usage control (UCON) based authorization frame-
work for collaborative applications. In our framework, usage con-
trol policies are defined using subject and object attributes, along
with system attributes as conditions. General attributes include not
only persistent attributes such as role and group memberships, but
also mutable usage attributes of subjects and objects. Conditions
in UCON can be used to support context-based authorizations in
ad-hoc collaborations. As a proof-of-concept we implement a pro-
totype system based on our proposed architecture and conduct ex-
perimental studies to demonstrate the feasibility and performance
of our approach.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection—Unauthorized access

General Terms
Security

Keywords
authorization, access control, usage control, UCON, collaborative
computing, security architecture

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’06, June 7–9, 2006, Lake Tahoe, California, USA.
Copyright 2006 ACM 1-59593-354-9/06/0006 ...$5.00.

1. INTRODUCTION AND MOTIVATION
Collaborative systems are becoming a popular means of provid-

ing efficient and scalable access to distributed computing capabili-
ties. This is particularly true for applications with significant pro-
cessing demands or large storage requirements. In collaborative
systems, a set of nodes or organizations share their computing re-
sources, such as compute cycles, storage space, or online services,
to establish virtual organizations (VOs) aimed at achieving a partic-
ular task. These specific tasks often include large-scale distributed
computing or scientific research projects [12] and may be serviced
by VOs comprised of heterogeneous computing platforms. In such
collaborative systems, authorization management is a fundamental
problem as resource owners must 1) prevent unauthorized access;
2) monitor the legal use of their resources; and 3) ensure that all
users abide by the agreements of the VO to which the resource has
been allocated.

In collaborative systems such as Grids [11], general entities in-
clude resource users, a set of resource providers (RPs), and virtual
organizations (VOs), as indicated in Figure 1. A VO is responsi-
ble for managing resources and providing some services to end-
users. RPs provide the system-level resources that are managed by
the VO; RPs are responsible for respecting the pre-defined access
control policies (e.g., through service level agreements) that spec-
ify how resources are to be used within the VO. Finally, Resource
users are provided access privileges to resources within a virtual or-
ganization. The authorization management of a collaborative sys-
tem involves security relationships between all of these entities to
protect the resources in a VO and ensure their availability through
access control mechanisms [9].

Current authorization solutions for collaborative systems focus
on centralized policy management with privilege credentials. In
many Grid systems for example, administrators of the VO issue
credentials to users that determine the resources and permissions a
user can hold. That is, the permissions of a user are pre-assigned
and the authorization only checks the validity of the credentials.

With dynamic user participation and resource-consuming requests,
these access control solutions are neither flexible nor fine-grained.
As a simple example, a user’s available usage quota for a partic-
ular resource could change dynamically according to his status;
pre-assigned permissions specified in credentials cannot capture the
real-time properties of a user submitting a task to an RP. Also, cur-
rent approaches do not consider the usage status of a shared object
in authorization (e.g., the usage context or constraints of resource

180

User

Resource Provider Resource Provider Resource Provider

Resource Users

Resource Providers (RPs)

User User User User User

Virtual Organization (VO)

Shared Data

Services

Shared Data

Services

Shared Data

Services

Figure 1: An example virtual organization (VO)

objects). For example, a scientific instrument can be shared within
a research VO but critical functions may only be used by a single or-
ganization or group at any time. Attributes can be defined to specify
that remote users are allowed to use the instrument by submitting
corresponding attributes, such as role name (e.g., PI in the research
project), while the administrator of the instrument can determine
the permission that a user can have at the moment of access, thus
ensuring, in real-time, that other accesses are not in conflict with
the request. Section 3.5 gives additional examples of dynamic ac-
cess control policies for collaborative systems. For these purposes,
authorizations based on general and real-time attribute values of
subjects and objects are required.

In addition, ad-hoc and pervasive collaborations bring new chal-
lenges for authorization management. In ad-hoc collaboration, where
no pre-existing VO management infrastructure is in place, subject
authentication is not available and authorization decisions are, in-
stead, dependent on contextual information [8], such as the location
and time of the access request. Existing approaches lack flexibility
to support context-based authorizations in collaborative systems.

In this paper we propose a generalized authorization framework
for collaborative systems following the objective-model-architecture-
mechanism (OM-AM) approach [18]. In accordance with dynamic
authorization requirements in collaborative systems, we present an
access control model based on UCON [15, 25]. By leveraging
flexible policy specification and attribute mutability of UCON, our
model not only supports VO-level authorization policies, but also
usage constraints defined by each RP. We propose a security ar-
chitecture for Grids and other general collaborative computing sys-
tems that leverages a centralized attribute repository in each VO
and a usage monitor in each RP for attribute management. Finally,
we implement a prototype system to show the feasibility and per-
formance of our framework. The effectiveness of usage control is
demonstrated with access control policies based on subject and ob-
ject attributes, which are specified with extensible access control
markup language (XACML) [14]. The performance of the system
is studied with the dynamic properties of decision processes.

The remainder of this paper is organized as follows: Section 2
provides an overview of our proposed framework. Section 3 presents
the usage control model and various policies that can be specified
in collaborative systems using this model. Section 4 describes the
proposed architecture. Section 5 illustrates an implemented proto-
type according to our framework and presents some experimental
results. Section 6 presents some related work in Grid-like and other
general collaborative computing systems. Section 7 summarizes
this paper and discusses ongoing and future work.

2. SYSTEM FRAMEWORK OVERVIEW
We develop our authorization framework by following the OM-

AM methodology [18]. In this four-layer approach, the objective
and model layers articulate what the security objectives and trade-
offs are, while the architecture and mechanism layers address how
to meet these requirements. The distinction between security ob-
jectives (policies) and mechanisms has been long recognized. OM-
AM seeks to bridge the gap between the what (policies) and how
(mechanisms) by introducing two additional layers of models and
architectures.

The basic requirement of the authorization problem in collabo-
rative systems is to control accesses to shared resources by users.
Furthermore, with the heterogeneous computing environments in
these systems, the control should be scalable, dynamic, and fine-
grained. Previous work emphasized authorizations based on user
identity or group membership, while the usage properties of the
shared resources - such as the status of shared objects and the dy-
namic parameters of subjects in a VO - were not considered. Also,
context-based authorizations are not well supported in existing ap-
proaches, such as in ad-hoc collaborations without well-established
authentication infrastructures.

Based on these requirements, usage control (UCON) [15, 25]
is used in the model layer of our framework, as it is an attribute-
based access control model and comprehensively considers autho-
rizations and conditions in access control decisions. In UCON, au-
thorizations are predicates defined on subject and object attributes,
while conditions are environmental restrictions represented by sys-
tem attributes, such as time, location, load, etc. UCON uses the
real-time values of subject and object attributes for authorization
decisions in a session-based manner. Authorizations and condi-
tions are enforced not only when a subject generates an access re-
quest, but also during the whole ongoing stage of the usage ses-
sion, which is referred to as decision continuity. As the side-effects
of the usage, subject and object attributes can be updated; this is
referred to as attribute mutability in UCON. Previous work have
shown that decision continuity and attribute mutability can provide
flexible, fine-grained, and dynamic access control [15, 25].

From the point of view of architecture, a typical authorization
system includes a policy decision point (PDP) and a policy enforce-
ment point (PEP). Some authorities may exist, such as identity and
attribute authorities, either inside a VO, or externally. Existing so-
lutions in authorization management can be divided into two types
of architectures: pull mode and push mode [13, 14]. Figure 2 in-
dicates the conceptual data-flow of these two modes. In the push
approach, each subject presents his related information (e.g., iden-
tity and attribute certificates) to the PDP and the decision is sent
to the PEP; while in the pull approach, a PEP collects the related
information of a subject and queries the PDP for policy decision.
Considering the temporal and dynamic attributes of subjects and
objects, pure push or pull based architecture is neither efficient nor
scalable for collaborative systems. For example, if a subject at-
tribute is mutable, then an access request or an ongoing access may
update the attribute, which affects other ongoing accesses. In a pure
push-based architecture, this requires that the subject continuously
obtain the latest attribute value and report it to the PDP. While in a
pure pull-based architecture—since the PEP should keep querying
the PDP with new attribute values—extra communication overhead
between them is introduced.

In the architecture layer of our framework, both PDP and PEP
are located on the RP side. For an access, the PDP collects the
subject and object attributes, as well as system attributes provided
by supporting services in the VO, and makes the control decision,
which is enforced by the PEP. For attribute acquisition, immutable

181

User
Workstation

Identity
Certificate

Identity
Authority

Policy
Enforcement

Point

Attribute
Certificate

(Role)
Attribute
Authority

(Location)
Attribute
Authority

Attribute
Certificate

Request Request

User
Workstation

Identity
Certificate

Identity
Authority

Policy
Decision

Point

Certificate Chain

Attribute
Certificate

(Role)
Attribute
Authority

(Location)
Attribute
Authority

RequestRequest

Attribute
Certificate

(i) Push mode (ii) Pull mode

Policy
Enforcement

Point

Control
Decision

Policy
Decision

Point

Control
Decision

Query

Figure 2: Push and pull modes of authorization architecture

(persistent) subject attributes (e.g., role and group membership) are
pushed to the PDP by the requesting subject. Mutable subject at-
tributes are pulled by the PDP from the VO’s centralized attribute
repository, and mutable object attributes are pulled by the PDP
from the local RP’s usage monitor, which records the temporal and
dynamic properties of the object. This hybrid approach with push
and pull mode for attribute acquisition and management improves
the efficiency and scalability of our framework.

The updates of mutable subject attributes are performed by the
PDP and reported to the centralized repository, and the updates of
mutable object attributes are captured by the local usage monitor.
As the conditions of UCON are built on system attributes, which
can be changed and reported in a VO, condition checks are similar
to the mutable subject attributes, which are stored in the centralized
attribute repository and pulled by the PDP. Any update of subject or
object attributes and any change of system conditions trigger the re-
evaluation of the policy by the PDP according to the ongoing usage
session, and revoke or update attributes if necessary. This approach
seamlessly supports decision continuity and attribute mutability of
UCON within concurrent usage sessions.

In the mechanism layer, implementation techniques in several
aspects are considered in our framework, such as policy specifi-
cations, subject and attribute authentications, trusted update of at-
tributes, and secure communications between computing compo-
nents in the system. The mechanisms of a security system need to
not only achieve the security objectives, but also meet the perfor-
mance requirements of different usage and collaborative scenarios.
As a proof-of-concept we implement a prototype system based on
our proposed framework. Section 5 shows the details of the tech-
niques that are used in our prototype and provides performance re-
sults.

3. USAGE CONTROL FOR
COLLABORATIVE SYSTEMS

Generally in a collaborative system, an RP has the ultimate con-
trol of its shared resources. At the same time, as a member of a VO,
an RP should respect the VO’s community policies (e.g., to allow
the accesses of shared resources and services to authorized subjects
and provide the expected quality of services). For ad-hoc group
collaborations, some policies should be specified by the group ad-
ministrator or owner and followed by each participant for a partic-
ular task. For example, in a temporal collaborative application, an
object shared by its owner can only be accessed by devices in the
same room as the owner. An access control model should provide
a comprehensive and systematic view of the security requirements
in a collaborative system and should be configurable to support in-
dividual policies.

We use UCON as the access control model in our framework
due to its strong expressive power and policy specification flexibil-
ity. Starting with a brief introduction of the concept of UCON, in
this section we present a UCON model for collaborative systems
by leveraging the features of decision continuity and attribute mu-
tability. We then discuss various policies in collaborative systems
that can be specified with this model.

3.1 Overview
In a usage control (UCON) system [15, 25], each entity (sub-

ject or object) is represented using a set of attributes, depending on
application and security requirements. A system state is specified
by attribute-value assignments for each entity in the system. Predi-
cates can be defined based on attributes as variables and constants.
In each system state, a predicate is evaluated by using the values of
the attributes in the state.

Besides subject and object attributes, UCON considers obliga-
tions and conditions in access control decisions. Obligations are

182

actions that have to be performed by a subject before or during a us-
age. Conditions are system restrictions under which a usage can be
allowed (e.g., system status and environmental information). Con-
ditions are represented as predicates built on some system or en-
vironmental attributes [25]. The UCON model used in this paper
only has authorizations and conditions, which are specified by sub-
ject/object attributes and system attributes. We leave the inclusion
of obligations for future work.

The most important properties that distinguish UCON from tra-
ditional access control models are the continuity of usage decisions
and the mutability of subject and object attributes. In UCON, con-
trol decision components (authorizations, obligations, and condi-
tions) are not only evaluated before an access, but also during the
usage process of an access. If any of them does not hold during
the usage process, the ongoing access is revoked by the system.
That is, an access control in UCON is not a one-time check and
enforcement, but a continuous process. Mutability means that for
a usage process, subject and/or object attributes can be updated as
the side-effect results of granting of the access and processing of
the usage. Attribute updates can be performed before, during, or
after a usage process. Due to the existence of concurrent accesses
in a system, attribute updates may invoke cascading authorization
checks (e.g., an attribute change in a usage involving a particu-
lar subject and object may affect another concurrent usage of the
same subject or another subject’s access to the same object). Be-
sides subject and object attribute updates, decision continuity also
captures the changes of system attributes, such as system time and
load, although how system attributes change are not defined in the
core models of UCON.

3.2 UCON Model for Collaborations
In collaborative systems, an object is a sensitive shared resource

or a service in a VO such that particular actions (rights) can be
performed by a subject. A subject is a user that can generate access
requests to objects provided by a VO. Administrators in the VO and
RPs are also subjects that can define or change security policies. In
this paper we focus on the control of general resources where the
subjects are resource consumers, while the administrative aspect of
the system is not considered.

Subject attributes include role or security clearance in a VO, or
a group membership within a VO. Additionally, specific attributes
can be defined depending on the requirements of a particular appli-
cation, such as the quota of a subject for some resources in a VO,
conflict of interest groups, etc. For example, when an application
has a shared resource that can only be used by a single group at a
time, a subject attribute specifying the conflict groups should be de-
fined. Object attributes can include general object properties such
as type, ownership, etc., but also, application specific attributes can
be defined by system administrator or designer, such as usage sta-
tus, inclusive/exclusive accesses, etc. Previous work has shown the
expressive power of UCON to specify various access control mod-
els and policies with different attributes [15, 25].

As discussed in [16], attributes that are updated according to
UCON policies are mutable or system-controlled, while attributes
managed by administrator are persistent or administrator-controlled
and generally do not change as a result of accesses. For example, a
subject’s role name generally is assigned by the security officer of
an organization according to a user’s job functionality, and does not
change because of an access requested by the subject. In general,
only the security officer can update the role name of a subject for
organizational purposes, e.g., because of the change of the user’s
job functionality.

As conditions are environmental restrictions, system attributes

are introduced. Specifically, a condition is a predicate built on sys-
tem attributes to specify the restriction that has to be satisfied be-
fore or during a usage process. Although system attributes are not
updated in a UCON policy, they change due to the changes of the
system environment. For example, the system attribute location
changes when an accessing device moves out of a room, and this
change, according to a policy, may affect the result of a subsequent
or an ongoing access.

3.3 UCON Policies and Scheme
With authorizations based on subject and object attributes and

conditions based on system attributes, a UCON policy can be de-
fined as the following shows.

DEFINITION 1. A policy maps a usage permission of (s, o, r) to
a tuple (Ppre, Pon, UPpre, UPon, UPpost), where Ppre and Pon

are sets of attribute predicates that need to be satisfied before and
during a usage process, respectively; UPpre, UPon and UPpost

are sets of update actions that are performed on the attributes of s
and o before, during, and after the usage process, respectively.

In this definition, s and o are parameters of the policy, r is a
generic right, Ppre and Pon are conjunctions of predicates built on
s’s and/or o’s attributes or the system attributes, which are called
pre-decision components and ongoing decision components, re-
spectively. A predicate takes one or more attribute values and con-
stants, and returns boolean values. For a particular policy, the
pre-decision components and ongoing decision components may
or may not be the same. If any predicate in Ppre is not satisfied
when the access request is generated, a usage cannot be granted;
after granting, if any predicate in Pon is not satisfied during a us-
age process, the ongoing access is revoked by the system. Note
that a disjunctive form of predicates is not needed explicitly since
we can have one policy for each disjunctive component. UPpre,
UPon, and UPpost are pre, ongoing, and post update actions on
subject and/or object attributes. An update action returns a new
value to a specific attribute, which can be a constant, a function of
its old value, or a function of other attributes’ values. An update in
UPon can be a one-time action, a continuous action, a periodical
action, or an action under particular conditions. For example, an
update of usage time during access is a continuous action, while an
update of idle time is a conditional action only when a subject is
idle during access. There are two types of post update actions in a
policy, one for updates after a subject ends an ongoing access (with
endaccess action), the other for updates after an ongoing access is
revoked by the system (with revokeaccess action), e.g., because of
a subject/object attribute or a system condition changes that make
any predicate in Pon invalid. In a single policy these two types of
update actions may or may not be the same. Formal semantics and
policy specification of UCON are described in [25].

In a high-level view, a UCON policy evaluates a set of predi-
cates built on subject and/or object attributes and system attributes
and grants or continuously allows a permission if all of them are
satisfied. As the side-effect of granting access, some attribute val-
ues may be updated. In UCON, a policy only specifies the attribute
updates of the accessing subject and target object, but not system
attributes (which are updated automatically by the system).

A set of attributes, predicates, and policies make up the autho-
rization scheme of a system.

DEFINITION 2. A UCON authorization and condition scheme
is a 5-tuple (ATTa, ATTc, R, P, C), where ATTa is a fixed set of
subject and object attribute names, ATTc is a fixed set of system
attribute names, R is a fixed set of generic rights, P is a fixed set
of predicates built on ATTa and ATTc, and C is a set of policies.

183

In a UCON scheme, if an attribute appears in UPpre, UPon,
or UPpost of any policy, it is mutable; otherwise, it is immutable
or persistent. As the architecture proposed in this paper supports
condition checks, system attributes are considered as mutable in
our framework.

Note that all policies in a UCON scheme are defined for positive
permissions (to enable permissions). For an access request, if there
is no policy to enable the permission according to the predicates,
the access is denied by default.

3.4 Continuity and Mutability
Both the concepts of decision continuity and attribute mutability

are based on a continuous ongoing accessing process. A usage ses-
sion is defined as an accessing process initiated by a subject s to an
object o with a generic right r, according to a UCON policy. Note
that in a UCON scheme, there may be more than one policy regard-
ing a single permission (s, o, r), each of which can have different
attribute predicates and update actions. A usage session refers to
a specific usage process with (s, o, r) that follows a particular pol-
icy, where the attribute predicates are evaluated based on s, o, and
the system conditions, and updates are performed on s and/or o’s
attributes.

Continuous security check in a single session is invoked by two
different types of attribute mutability: the updates of subject or ob-
ject attributes which are specified by the policies in a scheme, and
the updates of system attributes which are the changes of environ-
mental or contextual information. As defined in a UCON policy,
subject and object attributes can be updated before, during and af-
ter a usage session. Also, concurrent usage sessions with regarding
to the same subject or object can affect each other, as the attributes
are shared variables between usage sessions. That is, an update
in one usage session may enable or revoke another usage session.
On the other hand, although how system attributes change is not
specified in UCON policies, any change that causes the condition
predicates to become invalid should be reflected during the usage
session (e.g., the system should revoke the ongoing access).

3.5 UCON Policies for
Collaborative Computing

With the properties of decision continuity and attribute mutabil-
ity, flexible policies can be defined, as conceptually and formally
studied in previous work [15, 16, 25], such as role-based access
control (RBAC), dynamic separation of duty, Chinese Wall, and
policies with low or high watermark properties. Particularly for
collaborative computing systems, we summarize different types of
policies that can be specified with different attributes and predicates
in UCON as follows.

• Consumable Resource Management Subject attributes can
be defined to specify dynamic resource management poli-
cies. For example, a policy defines that a subject can only
have a fixed amount of storage totally in a VO. An attribute
can be used to record its current used or available amount.
Whenever a subject generates an access request to an RP, the
RP uses this attribute value to determine if the request can
be approved. During the usage session, the RP should up-
date this attribute with the storage that the subject has used
in this session. Also, any change of this attribute in concur-
rent usage sessions should invoke the re-checking by the RP.
Similar mechanism can be used to control the usage of other
resources such as CPU cycles, network bandwidth, etc.

• Credit or Reputation Management A subject’s access may
generate credits or reputation points, which in turn can en-

able other permissions in a VO. Similar to above, subject
attributes can be defined to capture these aspects.

• Status of Shared Objects and Collaborative Tasks In a co-
operative environment, when a subject is doing write opera-
tions on an object, other collaborative subjects cannot write
or modify it to preserve the integrity. Also, a subject’s partic-
ular operation on a collaborative task may require that some
necessary pre-operations have been performed by other sub-
jects. Attributes can be defined to monitor the shared object
or task’ status and used to determine the just-in-time permis-
sions of a subject.

• Exclusive/inclusive Collaborations Mutable attributes can
be used to enforce exclusive or inclusive rights for shared
objects and resources. Exclusive attributes are used to re-
solve conflict of interests while inclusive attributes can be
used to resolve consolidated interests. In collaborative sys-
tems, an operation or task may require concurrent involve-
ment from multiple subjects with particular attributes, while
exclude other subjects.

• Constraints of Collaborations Constraints can be defined
for fine-grained and flexible collaborations with subject/object
attributes or system attributes. For example, an RP’s resource
can be accessible to a subject only during a particular period.
As another example, the access permission of a subject can
be temporally delegated to another subject by the collabora-
tive relationship between them.

All these policies can be defined with the conceptual or formal
model proposed in previous work [15, 25]. Detailed policy specifi-
cations are out of the scope of this paper.

4. ARCHITECTURE
This section first introduces the overall architecture of our frame-

work, followed with the features to support attribute mutability and
decision continuity. The goal of our architecture is to support the
general UCON model introduced in the previous section.

4.1 Overview
Figure 3 shows the architecture overview of our framework in the

context of Grid Security Infrastructure (GSI) [10]. Typically, the ar-
chitecture includes three main components within a VO: user plat-
forms, individual resource providers (RPs), and an attribute repos-
itory (AR). AR is a centralized service to store and push mutable
subject and system attributes in a VO. Object attributes are stored
in a usage monitor (UM) on each RP side. For simplicity identity
and external attribute authorities are not included here.

A usage session is initialized by a subject (e.g., a resource con-
sumer) and works as follows. First the subject generates an access
request from its platform, and the request is submitted to an RP with
the client-side proxy [23] (step 1). Persistent subject attributes are
pushed by the requesting subject to the policy decision point (PDP)
in the RP side (step 2). After receiving the request, the PDP con-
tacts the AR and retrieves the mutable attributes of the requesting
subject (step 3 and 4) and the object attributes from the UM (step
5). The access control decision according to VO policies is issued
by the PDP after collecting all related information (subject and ob-
ject attributes and system attributes) and evaluations of policies.
The decision is forwarded to the PEP and enforced in the execution
environment of the task (step 6).

As the side effects of making a usage decision, attribute updates
are preformed by the PDP according to corresponding policy. New

184

subject attribute values are sent back to AR (step 7), and the object
attributes are updated to the UM (step 8). As a result, updated
attributes can be shared between different usage sessions, and the
PDP always checks the AR and UM for latest attribute values when
a new access request is generated.

Gate
Keeper

PDP

Execution
Environment

1. Service
Requests

with persistent
attributes

Service
requests

Access rights

2. Persistent attributes

Resource Provider
(RP)

PEP

6. Privileges

User Platform

Proxy

Job
Manager

Job
Dispatch

VO Policies

Platform-specific
Knowledge

(ex. grid-mapfile)

Client
AP

Sensors

Attribute Repository
(AR)

Usage
Monitor
(UM)

Process
Information

5. Object
Attributes

Persistent
Attributes

Directory
Service

Mutable
Attributes

9. Subject or System
Attribute Changes

3. Mutable
Attribute
Request

4. Mutable
Attributes

7. Updated
Attributes
(Subject)

8. Updated
Attributes
(Object)

Figure 3: Usage-based authorization architecture

In a collaborative system, a subject can initiate multiple usage
sessions to different RPs or to a single RP with different objects.
Also, a shared resource can be accessed by multiple subjects. By
centralized mutable subject attributes, our architecture supports con-
current usage sessions from a single user. At the same time, object
attributes are monitored by the UM and captured by the PDP when
new usage requests are generated. Therefore our architecture can
support concurrent usage sessions to a single object.

4.2 Attribute Acquisition and Management
As UCON is attribute based, a critical requirement to correctly

enforce access control policies in a UCON system is to get just-
in-time attribute values. One of the novelties of our architecture is
that it supports different modes for attribute acquisition and man-
agement with regarding to different types of attributes.

Push Mode for Persistent Attributes For the persistent attributes
of a subject, since there are no policies in a UCON scheme that up-
date their values, they are pushed by the subject to the PDP of the
RP to which it submits an access request. As these attribute values
do not change during the usage session, they are only pushed and
evaluated once. Typical persistent subject attributes include those
provided by external authorities, such as identity or attribute cer-
tificates issued from other organizations. Also, attribute certificates
issued by internal authorities are also persistent attributes, such as a
subject’s role or group in a VO, since they are not updated as results
of any usages. An object also can have persistent attributes, which
are maintained by its RP and checked by the PDP when an access
is generated to it.

Note that as aforementioned, persistent attributes can be updated
by system administrators or security officers for organizational pur-
poses. There should be parallel update and management mecha-
nisms for these attributes. For example, a simple option may re-
quire that a subject’s persistent attributes can be updated only if the
subject is not accessing any object. In this paper we focus on the
core aspects of UCON, and the administrative updates of persistent
attributes are not considered here.

Pull Mode for Mutable Attributes When a subject generates an
access, mutable subject attribute values are pulled by the PDP from
the centralized AR. For mutable object attributes, they are provided
by the UM of the RP.

Update Propagation for Mutable Attributes Because of at-
tribute mutability, an ongoing usage session needs to repeatedly
check the attribute values and evaluate the policy. As mutable sub-
ject attributes are maintained in a centralized AR, when an update
happens, e.g., an update from another usage session, the new at-
tribute value is propagated by the AR to the PDP. Similarly, muta-
ble object attributes can be propagated by the local usage monitor
to the PDP. As update propagation is related to ongoing decision
checking, the details are described in next subsection.

4.3 Mutability and Continuity

4.3.1 Updates of Attributes
As described in Section 4.1, in a usage session, pre-updates are

results of the approval of the access request performed by the PDP,
according to a particular usage policy. That is, pre-updates are trig-
gered by an access request based on a policy. During a usage ses-
sion, ongoing and post updates are triggered by some events, either
from the subject or from the system.

Ongoing Updates Ongoing attribute updates are invoked by
some events in a system, such as time events and events that change
system status. For example, for a subject’s time slice which is re-
peatedly decreased in a usage session, the update is invoked by the
time event of the system. For another example, a subject’s attribute
update about the usage status (e.g., from busy to idle) is invoked
by a system event that monitors the status. This kind of event can
be monitored by the UM and reported to the PDP. Once the PDP
receives an event, the attribute values of the object and subject are
retrieved and evaluated and corresponding policies are re-checked
by the PDP if necessary (e.g., to allow an ongoing usage to continue
or revoke it). For simplicity the event trigger and transmission are
not indicated in Figure 3.

Post-updates Post updates can be triggered by two types of
events: a subject’s action to end an usage session, and the revoca-
tion of an ongoing usage session by the system [25]. For the first
type, the UM reposts an endaccess event to the PDP after a sub-
ject ends the usage. The PDP performs the updates according to the
policy and reports new attribute values to AR and UM, respectively.
For the second case, as the revocation of an ongoing access is the
result of the decision continuity (described shortly) enforced by the
PDP, the post-updates are performed by the PDP and reported to
the AR and UM, respectively.

System Attribute Changes Besides the PDP-performed attribute
updates for subjects and objects, system attributes are changed by
external events. For example, as the mobility of a portable device
accessing an object, the sensor of the device or connection service
provider reports its location information to the attribute repository
whenever the device is moving (step 9 in Figure 3). In this paper we
assume that event detection and reporting mechanisms for system
attribute changes are provided by the functional components of a
system, which are not explicitly included in our architecture.

185

4.3.2 Continuous Enforcement of Policies
During a usage session in UCON, a policy is checked and the

decision is enforced repeatedly if there are ongoing decision com-
ponents in this policy. Since a decision component is built with an
attribute predicate, ongoing checks, in practice, are triggered by at-
tribute changes during a usage session (e.g., the updates of mutable
subject and object attributes and the changes of system attributes,
as discussed above).

Due to the existence of concurrent usage sessions in a collab-
orative system, attribute values have to be synchronized between
different RPs and an update event in one RP has to be propagated
to other RPs. In our architecture, centralized AR acts as a bridge to
forward real-time attribute values to RPs. Specifically, when a PDP
of an RP (say RP1) contacts the AR for a usage request (step 3
in Figure 3), the AR logs this request with related attribute names.
Upon receiving a newly updated attribute (e.g., from RP2 or a sys-
tem attribute change event), the AR issues an updated attribute cer-
tificate with the new value to RP1, which can re-evaluate the policy
of the ongoing usage session with the new attribute value. When
the predicates of the policy are still satisfied, the ongoing access is
allowed to continue; otherwise, a revocation event is generated by
the PDP and the decision is enforced by the PEP. For the change
of an object attribute, since it is monitored by the UM, the ongoing
decision check can be locally implemented.

4.4 Other Related Issues

4.4.1 Authenticity of Attribute Values
The authenticity of a subject’s attributes depends on three as-

pects: the authentication of the subject, the binding between a sub-
ject’s identity and its attributes, and the integrity of the attribute
values. In general the identity of a subject is a certificate, such as
a public-key certificate. Also, persistent attributes and their values
are certificates or credentials, signed by some authorities. Since in
general an identity authority is different from attribute authorities,
a mechanism is needed to bind identity certificates and attribute
certificates.

For mutable subject attributes, the AR of a VO is the authority
to ensure their authenticity and integrity. This implies that the at-
tribute certificates issued by the AR should be trusted by individual
RPs. As managed inside an RP, the authenticity and integrity of
mutable object attributes can be easily achieved, e.g., by existing
trust infrastructure in the same organization.

4.4.2 Concurrency Control for Updates of Mutable
Attributes

With concurrent usage sessions in a system, mutable attributes
can be updated in multiple sessions simultaneously, therefore con-
currency control should be considered to maintain the integrity of
their values. Specifically, when a mutable subject attribute is going
to be updated in a session, it cannot be pulled by other sessions un-
til the update operation be finished. Similar problem exists in the
updates of mutable object attributes between concurrent sessions.
As traditional mechanisms can be used in our architecture, such as
two-phase locking protocol, the details of concurrency control are
not included in this paper.

5. PROTOTYPE IMPLEMENTATION AND
EXPERIMENTAL STUDY

To show the feasibility and performance of our framework, we
implement a web-based prototype system, which enables a group
of software developers to share and collaboratively develop appli-

cation code from different user sites (locations). This section first
introduces the overview of the prototype architecture, then demon-
strates two implemented UCON policies with our prototype, and
finally presents some performance results.

5.1 Prototype Overview
The RP in our prototype provides a platform for developers from

different corporations to develop applications collaboratively. The
core building block of the RP is a concurrent revision control sys-
tem called Subversion [5], which is integrated with Apache Web-
DAV module (mod dav) [2]. The prototype architecture is similar
to the general architecture proposed in previous section. Specifi-
cally, the AR is a directory service built with OpenLDAP 2.0.27 [3].
OpenSSL 0.9.6b [4] is used to build mutual authentication and se-
cure communication channels between AR, user platforms, and
RPs. The “sensor” program in the user platform simulates a com-
ponent to detect the platform’s location information as the subject’s
attribute and update its value to the AR.

Subversion has an ACL-based access control mechanism, which
controls what data user is able to download and/or upload to a
resource provider. Since the access control is performed with-
out referring to any attribute changes, it is hard to enforce gen-
eral usage control policies such as those discussed in Section 3.5.
In our prototype, we implement an Apache authorization module
(mod authz ucon) as an interface from Apache to the PDP mod-
ule. For every access request to the Subversion, mod authz ucon
forwards it to the PDP module, and approves the request if the PDP
module allows it.

The RP is built on a Linux-2.4.18 box which has Pentium IV 1
GHz CPU and 1 GB memory, and uses Apache 2.0.54 with mod ssl
and mod dav, and Subversion 1.2.3. The mod authz ucon is
written in C (with the gcc-4.0.1 optimization level -O2), and the
other components (PDP and UM) are in Java 1.4.2. These modules
are connected with a local loopback network interface (lo). The
UM uses DB4Object [1] as an object-oriented database to store the
object attributes that the UM has captured. The user platform used
in the prototype system is built on a Windows XP machine which
has Pentium M 1 GHz CPU and 768 MB memory. The sensor is
written in Java 1.4.2 which simulates to monitor the user-location
information and sends changes to the AR.

The following subsections describe individual implementation
issues.

5.1.1 Policy Specification
Our prototype uses the extensible access control markup lan-

guage (XACML) [14] to specify UCON policies. XACML is an
open-standard format to specify access control policies, and ex-
pected to be widely used with the properties of interoperability and
extensibility. Using the Sun’s XACML library [6], the PDP module
interprets XACML policies and makes access decisions.

A UCON policy can be described in XACML format as the fol-
lowing shows:

<Policy PolicyId="(policy-name)"
PolicyCombinationAlg="rule-combining-algorithm:permit-overrides">

<Target>
<Subjects>(predicates over subject attributes)</Subjects>
<Resources>(predicates over pure-object attributes)</Resources>
<Actions>(predicates over access rights such as read and write)</Actions>

</Target>
<Rule effect="permit"/> (Specification that this policy is positive)
<Obligations>(Specification of attribute-update actions)</Obligations>

</Policy>

where the predicates in the UCON policy are described in <Subjects>
and <Resources> elements, the rights are in <Actions> el-
ement, and the update actions are defined in <Obligations>

186

element 1. Note that an XACML policy only specifies attribute re-
quirements before an access and possible updates after an access
(Ppre and UPpost defined in Section 3.3). In our prototype, sub-
ject attribute changes during a usage session are implemented with
the sensor program in the user platform. Also, the ongoing check
Pon in a UCON policy is achieved by individual checks accord-
ing to an XACML policy, triggered by corresponding attribute up-
date events or system condition changes. For example, to capture
the ongoing check based on a user’s location during a session, the
sensor program generates an event to update the subject attribute
corresponding to the movement of the user platform, which in turn
triggers the policy re-evaluation by the PDP.

5.1.2 Usage Monitor
In our prototype, the UM captures an object-attribute change

such as the creator’s identity from Subversion. The identity (X.509
distinguished name) of a user is presented in the user’s certificate,
e.g., CN=Alice, OU=VO1. Since the identity includes a VO
name (VO1) to which the user belongs, the PDP module can iden-
tify VO1 as the object’s assignment, and enforce a VO1-dependent
policy to the object. This means that an RP can host several VOs
without any interference between them.

5.1.3 Attribute Update Propagation
Whenever a user’s platform location changes occurring in an in-

dividual platform, the updated value has to be propagated to other
related platforms, as described in Section 4.2 and 4.3. To ensure the
attribute value’s authenticity and integrity, the AR, UM and PDP
perform mutual authentication with SSL v3 to build a secure chan-
nel for every communication. By using VO-based X.509 certifi-
cates in the authentication protocol, the communication is restricted
to a particular VO. In this way, we can build the trusted path for the
attributes to be propagated securely.

5.2 Enforce UCON Policies
In order to demonstrate the feasibility of usage control with the

prototype, we consider two scenarios with location-based and task-
based access control policies, respectively. As a use case, consider
two collaborative software development projects: one between Al-
ice and Bob from different corporations (Corp. A and B, respec-
tively), and one between Alice and Chris (from Corp. C). The
project between Alice and Bob is performed in VO1, and the other
in VO2. Also, Corp. B and C are assumed to have a conflict of
interest to each other.

5.2.1 Location-based Access Control
Although Internet-based collaborative systems enable develop-

ers to work together remotely, face-to-face meetings are still re-
quired so as to define and confirm application specifications in
depth. This requirement is satisfied with mobile technologies such
as laptop and hand-held computers with wireless network capabil-
ity. Such technologies, however, pose a security threat regarding
confidentiality of the application code. Now suppose that Alice
visits Chris (in Corp. C) for the VO2 project. In this context, Alice
should not be able to refer to the VO1-related data in Corp. C, even
though Alice is also a valid member of VO1, since VO1-related
data might include sensitive information of Corp. B.

A UCON policy is defined according to this requirement with
XACML format, which restricts the user’s location to Corp. A or
B to access any objects in VO1. In our prototype, Alice’s location
change is detected by the sensor equipped on Alice’s platform ,
1Note that the concept of obligation in XACML does not mean the
same as that in UCONABC model.

and reported to the VO1’s AR. With this policy, the PDP module
accepts a request for the VO1 data when Alice is in Corp. A ,
otherwise rejects it.

5.2.2 Task-based Access Control
In collaborative software development, work-flow management

is crucial to preserve the integrity of the whole development pro-
cess. For example, when Alice is testing a software module, Bob
has to suspend his modification to it. In our prototype, a task’s
progress is kept as an object attribute InUse. By default, the
InUse attribute takes the value FOR DEVELOPMENT, which means
that any developer can access the object.

When Alice tries to test a module by creating a LOCK file in the
module’s source directory, the InUse value of the relevant objects
is updated to FOR TEST, which means that any developer except
the tester (i.e., Alice) cannot access the objects. Another policy is
needed to allow the tester’s access on the object being tested , in
which a <Condition> element is used to compare the subject
identity with an object attribute last-accessor-id, which in-
dicates that only the subject which has locked the object can access
it. The policy to unlock an object can be specified in a similar way.

5.3 Performance Evaluation
As a usage control decision is dynamically determined by subject

and object attributes, which are either pulled or pushed to the PDP
of each collaborative arena for evaluation, the performance of the
system should be considered. According to our proposed architec-
ture, persistent attributes are pushed by the requesting subject and
this can be a one-time operation in a single usage session, which
does not affect the runtime performance. The main overhead of
the system introduced by usage control is the overhead of the PDP
module, which consists of mutable attribute acquisitions, XACML
policy interpretations and evaluations, and the updates of mutable
attributes. Performance study with our implemented prototype sys-
tem was conducted in a closed 100Base-TX network, which con-
sists of a Linux server hosting an RP and an AR, and a Windows
client machine as a user platform. The RP holds the UCON policies
specifying the above location and task-based access control.

As the prototype system is for sharing application codes of col-
laborative software development, object attributes are defined based
on the software package or module, e.g., the existence of a LOCK
file under a module directory in RP. For simplicity we assume that
a subject only participates in a single software module at the RP.
Table 1 shows the PDP performance for updating (import com-
mand of Subversion) the code (files) of a software module. We ran
the experiment with different average size of files (10KB, 100KB,
and 1000KB) and different number of files (1, 10, 100) in a mod-
ule, and measured the processing time of the PDP. The average time
per access varies in the range 45.30 - 99.43 msec, which does not
depend on either the number of files to transfer, or the file size, as
the UM keeps the object attributes on a module (or directory) basis.
The last column in Table 1 shows the total processing time of a sin-
gle usage session on the client side, including uploading all files of
the module. For example, updating a module with 10 files with av-
erage size 1000 KB takes about 12 seconds from the user platform
to the server. The results show that the performance is acceptable
for general collaboration requirements.

As aforementioned, the PDP’s operation in a single usage pro-
cess consists of several steps, including fetching subject and object
attributes, object attributes updates, XACML policy interpretations,
and communications to mod authz ucon (the PEP). Note that the
policies evaluated in our prototype do not have the updates of sub-

187

Access operations: update Total PDP processing # of accesses Avg. time per access (msec) Session running time
(# of files, avg. file size) (msec) (msec) (sec)

1, 10 KB 2304 26 88.62 2.77
1, 100 KB 2307 26 88.73 2.68

1, 1000 KB 2473 26 95.12 3.28
10, 10 KB 3993 44 90.75 4.94

10, 100 KB 4375 44 99.43 5.47
10, 1000 KB 3506 44 79.68 11.96
100, 10 KB 12423 224 55.46 13.78

100, 100 KB 15958 224 71.24 19.97
100, 1000 KB 10147 224 45.30 85.33

Table 1: PDP performance overhead in file sharing prototype system

ject attributes 2. In order to investigate possible mechanisms for
better performance, we measured the processing time of each step
in the PDP module. As shown in Figure 4, fetching subject at-
tributes has the highest cost, which makes up 30-48% of the over-
all processing time. This results from the overhead of the SSL
handshaking between the PDP module and the AR. In real appli-
cations, mechanisms such as keep-alive connections and attribute
value cache on PDP side can be used to reduce this overhead and
thus improve the overall performance of the system.

1 x
10k

1 x 100k 1 x
1000k

10 x 10k 10 x
100k

10 x
1000k

100 x
10k

100 x
100k

100 x
1000k

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

Fetch subject attributes Fetch object attributes Update object attributes XACML interpretation Communication to PEP

Figure 4: Micro benchmark of the PDP module. Each value
shows the ratio of the stepwise running time to the entire PDP
processing time.

6. RELATED WORK
Originally in some Grid systems, each RP uses a grid-mapfile

to map external resource consumers to local identities and defines
their permission. With dynamic property of user participation and
resource sharing, this approach is not scalable.

The Community Authorization Service (CAS) [17] is a central-
ized approach, in which a CAS server maintains the access con-
trol policies and the PDP is deployed on the CAS side. Although
this approach solves the scalability problem, it lacks flexibility for
ad-hoc collaborations. For example, for a temporal group collabo-
rating between some users with mobile devices, the authorization
is based on the location of the platforms, e.g., only users in the
same room can access the shared resources. Since there is no cen-
tralized point, CAS cannot solve this problem. Also, CAS lacks

2The change of the subject’s location is not an update of the PDP,
but a user’s discretionary activity, and is not included in the UCON
policy.

flexibility to support a new RP which has not established trust rela-
tionship with CAS, or an existing RP to change its policy regarding
its shared resources.

Instead of centralized authorization, the Virtual Organization Mem-
bership Service (VOMS) [7] describes an approach in which each
RP has a set of local policies. To access shared resource, a user pro-
vides an attribute certificate issued from the VO to identify the role,
group name, and capabilities of the user. By moving the PDP from
centralized server to each RP’s local site, VOMS can solve the scal-
ability problem with gridmap file and the flexibility of CAS, but it
cannot support collaborations without well-established infrastruc-
ture since it still requires a (globally) centralized attribute author-
ity. Further, since an attribute in VOMS only includes role and
group information in a VO, some policies cannot be implemented,
such as user-level and VO-level delegation, and context-based au-
thorization. That is, a user only can gain permissions from a VO
administrator.

PRIMA [13] is a privilege management system which supports
ad-hoc collaboration and permission delegation. To submit a re-
quest to an RP, a user provides a set of attributes, which define the
privileges of the user, such as file access permissions, user quota,
network access, etc. The RP assigns permissions to the user with
these attributes, according to the local policies. A shortcoming with
this approach is that, in a dynamic collaborative environment, the
privileges of a user may change according to the resource consum-
ing status in an RP, or some constraints with other concurrent jobs
running in the RP. Therefore the pre-issued privilege attributes in
PRIMA cannot support this dynamic and in-time permission as-
signments. A significant difference between PRIMA and our ap-
proach is that we use general attributes without any pre-assigned
privileges, such such as context-aware attributes [19]. The permis-
sions of a subject are granted just when the subject generates the
requests and the corresponding attribute values are presented, ei-
ther pushed by the requesting subject or pulled by the PDP. Also,
our approach supports dynamic properties of collaborations, such
as continuous control and attribute mutability during an access.

Akenti [21] is a distributed policy management system, where a
set of stakeholders define conditions for a resource usage. An RP
makes authorization decisions based on all these conditions in at-
tribute certificate format. Condition certificates are pulled by the
PDP, which is similar the mutable attribute acquisition in our ap-
proach model, while the mutability of conditions are not supported
in Akenti. Also, since it is extensively dependent on public key
infrastructure (PKI), Akenti cannot support ad-hoc collaborations
without pre-established infrastructure.

Context-aware authorizations have been studied by several re-
searchers. In [8] the security-relevant context of access request en-
vironments are captured by environment roles in RBAC. A context-
aware access control model based on RBAC is presented in [24] for
pervasive Grid applications, where a context agent collects envi-

188

ronmental information and dynamically enforces user-role assign-
ments and permission-role assignments. In [22], access control
models are reviewed and compared in the context of collaborative
systems, and a set of assessment criteria is proposed to consider
access control in collaborations. Very recently, a framework for
secure collaboration between domains is proposed in [20], where
each domain uses RBAC and policies are locally enforced by indi-
vidual domains in a mediator-free manner.

7. CONCLUSION AND FUTURE WORK
An authorization framework is proposed in this paper for col-

laborative computing systems following the OM-AM approach. To
meet scalable, dynamic, and fine-grained authorization requirements,
in the model layer, the recently developed UCON model is used
to support various authorization policies for collaborations. Our
proposed architecture can support attribute mutability and decision
continuity by leveraging a hybrid approach of attribute acquisitions
and event-based updates. An implemented prototype for group-
based collaborative software development demonstrates the feasi-
bility of our framework, and the performance study shows that our
framework can be used for general collaborations.

The access control model in this paper only includes authoriza-
tions and conditions of UCON, and we are going to capture the
obligation aspect in the future work. As the obligations of a us-
age session are actions that have to be performed by the request-
ing subject or some other subjects in the system, the architecture
layer will need mechanisms to monitor and propagate obligation
satisfactions. Also, XACML will be extended to support UCON
obligations in policy specifications.

8. REFERENCES
[1] DB4Object, http://www.db4o.com/.
[2] mod dav: a DAV module for Apache,

http://www.webdav.org/mod dav/.
[3] OpenLDAP, http://www.openldap.org/.
[4] OpenSSL, http://www.openssl.org/.
[5] Subversion, http://subversion.tigris.org/.
[6] Sun’s XACML implementation,

http://sunxacml.sourceforge.net/.
[7] R. Alfieri, R. Cecchinib, V. Ciaschinic, L. dell’Agnellod,

A. Frohnere, K. Lorenteyf, and F. Spatarog. From
gridmap-file to voms: Managing authorization in a grid
environment. Future Generation Computer Systems 21,
2005.

[8] M. J. Covington, W. Long, S. Srinivasan, A. K. Dey,
M. Ahamad, and G. D. Abowd. Securing context-aware
applications using environment roles. In Proceedings of the
9th ACM Symposium on Access Control Models and
Technologies, pages 10–20, Chantilly, Virginia, USA, May
3-4 2001.

[9] E. Bertino et al. Panel: Security for grid-based computing
systems issues and challenges. In Proceedings of the
Symposium on Access Control Models and Technologies,
pages 125–125, Yorktown Heights, New York, USA, June
2-4 2004.

[10] I. Foster, C. Kessekan, G. Tsudik, and S. Tueckel. A security
architecture for computational grids. In Proceedings of ACM
Conference on Computer and Communications Security,
SanFrancisco, California, USA, pages =.

[11] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
grid: Enabling scalable virtual organization. International
Journal of Supercomputing Applications, 15(3), 2001.

[12] W. E. Johnston. The computing and data grid approach:
Infrastructure for distributed science applications. Computing
the Informatics, Special Issue on Grid Computing, 2002.

[13] M. Lorch, D. B. Adams, D. Kafura, M. S. R. Koneni,
A. Rathi, and S. Shah. The prima system for privilege
management, authorization and enforcement in grid
environments. In Proceedings of the 4th International
Workshop on Grid Computing, pages 109–116, Nov. 17
2003.

[14] OASIS XACML TC. Core Specification: eXtensible Access
Control Markup Language (XACML), 2005.

[15] J. Park and R. Sandhu. The UCONabc usage control model.
ACM Transactions on Information and Systems Security,
7(1):128–174, February 2004.

[16] J. Park, X. Zhang, and R. Sandhu. Attribute mutability in
usage control. In Proceedings of the Annual IFIP WG 11.3
Working Conference on Data and Applications Security,
pages 15–29, Sitges, Catalonia, Spain, July 25-28 2004.

[17] L. Pearlman, V. Welch, I. Foster, and K. Kesselman. A
community authorization service for group collaboration. In
Proceedings of IEEE Workshop on Policies for Distributed
Systems and Networks, pages 50–59, Monteray, California,
USA, June 5-7 2002.

[18] R. Sandhu. Engineering authority and trust in cyberspace:
The OM-AM and RBAC way. In Proceedings of Fifth ACM
Workshop on Role-based Access Control, pages 111–119,
Berlin, Germany, 2000.

[19] Manoj R. Sastry and Michael J. Covington. Attribute-based
authentication using trusted platforms. In Proceedings of
Wireless Personal Multimedia Communications, Aalborg,
Denmark, September 18-22 2005.

[20] M. Shehab, E. Bertino, and A. Ghafoor. Secure collaboration
in mediator-free environments. In Proceedings of the 12th
ACM Conference on Computer and Communication
Security, pages 58–67, Alexandria, Virginia, USA, 2005.

[21] M. Thompson, A. Essiari, and S. Mudumbai.
Certificate-based authorization policy in a pki environment.
ACM Transactions on Information and System Security,
6(4):566–588, 2003.

[22] W. Tolone, G. Ahn, and T. Pai. Access control in
collaborative systems. ACM Computing Surveys,
37(1):29–41, March 2005.

[23] V. Welch et al. Security for grid services. In Proceedings of
the 12th IEEE International Symposium on High
Performance Distributed Computing, pages 48 – 57, June
22-24 2003.

[24] G. Zhang and M. Parashar. Dynamic context-aware access
control for grid applications. In Proceedings of the 4th
International Workshop on Grid Computing, pages 101–108,
Nov. 17 2003.

[25] X. Zhang, F. Parisi-Presicce, R. Sandhu, and J. Park. Formal
model and policy specification of usage control. ACM
Transactions on Information and Systems Security,
8(4):351–387, November 2005.

189

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

