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ABSTRACT
Protecting kernel integrity is one of the fundamental security ob-
jectives in building a trustworthy operating system (OS). For this
end, a variety of approaches and systems have been proposed and
developed. However, access control models used in most of these
systems are not expressive enough to capture important security
requirements such as continuous policy enforcement and mutable
process and object attributes. Even worse, most existing protec-
tion mechanisms in these systems reside in the same space as the
running OS, which unfortunately can be disabled or subverted af-
ter an attacker successfully exploits kernel-level vulnerabilities (or
features) to compromise the OS kernel. The increasing number of
kernel-level rootkit attacks clearly demonstrates this threat.

In this paper we present a simple but effective usage control
model UCONKI with unique properties of decision continuity and
attribute mutability for OS kernel integrity protection. Further, to
enforce UCONKI security policies, we propose a virtual machine
monitor (VMM) based architecture that is isolated and protected
from other untrusted processes inside a virtual machine (VM). We
have implemented a proof-of-concept prototype in Linux to demon-
strate the feasibility of our approach. Our experiments with 18 real-
world kernel rootkits show that our approach is able to successfully
detect and prevent all kernel integrity violations from them. Be-
yond kernel integrity protection, we also explore additional oppor-
tunities for general OS security, such as the confinement of process
activities as well as the protection of system utility programs at the
VMM level.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection—Unauthorized access
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1. INTRODUCTION
Despite efforts for decades, commodity operating systems (OS)

today continue to be buggy, and vulnerabilities such as buffer over-
flows are frequently found. Exploiting a kernel-level vulnerability
not only gives an attacker access to system resources, but also al-
lows the attacker to modify the operating system kernel and impor-
tant system utilities, hence compromising the integrity of the entire
system. Due to the fact that all user applications rely on the in-
tegrity of kernel and core system utilities, compromising any part
of the kernel leads to complete penetration of the entire system.

A variety of approaches such as [11, 16] have been proposed and
deployed to enhance the security and trustworthiness of OS kernel.
Unfortunately, most, if not all, existing protection mechanisms re-
side in the same space as the victim OS kernel. As a result, once
an attacker takes control of the machine, the protection mechanism
could be potentially disabled or subverted. For example, many se-
curity mechanisms use loadable kernel modules to define and en-
force access control policies. With the very same OS feature or by
exploiting a kernel-level vulnerability, an attacker can directly com-
promise the underlying access control mechanism so that security
checks are disabled or defined security policies are changed [23,
24].

Typically, kernel integrity protection is achieved through access
control mechanisms by confining a process’s activities. Several ac-
cess control models have been developed. Traditional Unix sys-
tems implement discretionary access control (DAC) policies with
access control lists (ACL’s), which however cannot prevent attacks
such as Trojan horses [10]. Early mandatory access control (MAC)
polices, such as the Bell-LaPadula secrecy policy [6] and the Biba
integrity policy [7], define clear security goals, but are too restric-
tive for convenient use of applications. These approaches provide
insufficient support for data and application integrity, separation
of duty and least privilege requirements. Recent efforts at MAC
systems (e.g., Flask [22] and SELinux [16]) use flexible and conve-
nient access control models, but demonstrate that particular secu-
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rity goals are more difficult to meet. Flexible access control mod-
els typically result in more complex policies, so it is more difficult
to determine if these policies have desired effects. For example,
SELinux supports a variety of policies by using an extended Type
Enforcement model [8] for most policy development. However, a
typical SELinux system for Linux 2.6.18 has 29 different classes
of objects, hundreds of possible operations, and over 50,000 policy
rules. Understanding and configuring a policy that guarantees sat-
isfaction of system security goals is nontrivial and difficult even for
a security expert.

Another significant shortcoming of existing MAC models in many
Unix and Linux systems is that they cannot satisfy increasing se-
curity requirements such as continuous authorization enforcement.
In traditional access control models, once an authorization deci-
sion has been made, there is no further checks during the access
process. However, it is desired in many systems where a decision
can be revoked after granting if some conditions change during the
access. A related aspect of this continuous security check require-
ment is the update of subject and object attributes. Subject and
object attributes are factors to make decisions of access requests by
a reference monitor. In dynamic systems, attribute values can be
changed, not only because of system administrative purposes, but
also, and more importantly, because of the side-effects of historical
or ongoing accesses from subjects. Attribute changes, recursively,
can result in further decision checks of a granted access or affect
future access requests. Note that interactive security properties can
be achieved with these two aspects. For example, in a Linux ker-
nel, the system call table contains the addresses of sensitive system
functions. Typically, a regular user-level process is not allowed to
modify this table, while a legitimate installation of a system compo-
nent (e.g., anti-virus software) may need to modify the system call
table, thus the address space of the table needs to be updated. With
traditional access control model such as DAC, any hijacked root
process such as a rootkit can change the system call table. Existing
MAC policies such as SELinux [16] and LOMAC [11] can prevent
this but lack the capability to update object attributes (e.g., system
call table function pointers) after a legitimate access. As another
example, during a process’s sensitive operation such as reading a
sensitive data file, the process should be in a “good” running state
such that whenever the process’s integrity is changed, its access
should be revoked immediately since a compromised process can
maliciously release data to other entities. Access control models
in existing operating systems only enforce integrity check before
an access, while continuous security check during the access is not
supported.

Aiming to overcome these problems and enhance the trustwor-
thiness of security mechanism, we propose a novel framework with
an access control model for policy specification and an enforcement
architecture for kernel integrity protection. Specifically, a simple
but effective usage control model (UCON) is used in our frame-
work. The decision continuity and attribute mutability properties
of UCON can provide flexible and fine-grained access control [17,
26]. To precisely specify kernel integrity policies, we develop an
event-based logic model of UCON in this paper called UCONKI .
In the enforcement architecture, our approach utilizes virtual ma-
chine monitor (VMM) technology to “vertically” control access to
sensitive kernel objects in a single virtual machine (VM) running
on top of the VMM (as opposed to “horizontal” control across mul-
tiple VMs running on the VMM). Access requests must go through
the VMM layer. Our VMM-base approach maintains the lowest
level accesses to the system and ensures that such accesses can
not be compromised by internal processes of a VM. We imple-
ment a prototype system to show the feasibility of our framework.

We demonstrate how our architecture and example policy can be
used to detect and prevent real-world kernel rootkits. Beyond in-
tegrity protection in an OS kernel, we also explore extensions of
our model and architecture to support more general security ob-
jectives for both OS and user space applications. Our extensions
include extra control decision components such as conditions and
obligations, authorization attribute management, and trusted policy
enforcement.

The remainder of this paper is organized as follows. Section 2
provides the overview of our framework and threat assumptions.
Section 3 presents the event-based logic model for UCON. Sec-
tion 4 describes the proposed VMM-based architecture. Section 5
illustrates an implemented prototype according to our architecture
and evaluates some experimental results. Extensions of our model
and architecture are investigated in Section 6 for general OS secu-
rity requirements. Section 7 presents related work on access control
models and policy enforcement for OS protection. Section 8 sum-
marizes this paper and presents our ongoing and future work.

2. FRAMEWORK OVERVIEW AND
THREAT MODEL

2.1 System Framework Overview
The basic requirement of OS kernel integrity protection prob-

lem is to control accesses to sensitive kernel objects (e.g., the ker-
nel text, the system call table, the interrupt descriptor table) in a
real-time manner. That is, authorization decisions should be based
on the real-time attribute values of requesting subjects and target
objects. Furthermore, with the increasing complexity of security
requirements, the control should be flexible and fine-grained, so
as to reflect authorization changes with mutable security attributes.
User identity and group membership are the main elements em-
phasized for authorization in previous work. However, in the OS
kernel, running states of active processes and memory locations of
sensitive objects are important authorization decision factors. For
example, normal process cannot write to any place within the scope
of system call table, while this address scope can be updated after
authorized access.

Based on these requirements, an event-based logic model for us-
age control (UCON) is used in our framework, as it is attribute-
based and has the unique properties of decision continuity and at-
tribute mutability. In UCON, authorizations are predicates defined
on subject and object attributes. A UCON policy can be specified
in the following form: when an Event occurs, if some particular
Predicates are true, then a set of Actions must be executed. An
event can be an access request, or a subject/object attribute change.
There are different types of actions, including allowing/denying an
access request, revoking an ongoing access, and updating subject
and/or object attribute values. Authorizations are enforced not only
when a subject generates an access request event, but also during
the entire ongoing stage of the accessing event, which is referred to
as decision continuity. Subject and object attributes can be updated
as the side-effect of usage; this is referred to as attribute mutabil-
ity. Previous work has shown that decision continuity and attribute
mutability can provide flexible and fine-grained access control [17,
26].

From enforcement point of view, a typical authorization system
includes a policy decision point (PDP) and a policy enforcement
point (PEP). In our enforcement architecture, both PDP and PEP
are located at the VMM layer, as shown in Figure 1(b). For an
access request event generated inside a VM, the PEP collects the
subject and object attributes and submits them to the PDP along
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Figure 1: Existing protection architecture (within the same OS) vs. our VMM-based protection architec-
ture

with the access request; The PDP makes the access control decision
according to access control policies, which is forwarded back to
the PEP and enforced by the PEP. For attribute acquisition, the PEP
fetches the subject and object attributes from the VM’s attribute
repository. The objective is to protect kernel resources in a VM
by utilizing the resource management capability of the underlying
VMM.

The PEP updates the mutable subject and object attributes and
reports to the attribute repository. An update of subject or object
attribute triggers revaluation of the policy by the PDP according to
an ongoing access event, and possibly revokes the access or updates
attributes if necessary. This approach supports decision continuity
and attribute mutability of UCON.

2.2 Threat Model
We assume that a large complex operating system can never be

uncompromisable. Many architectures and frameworks have been
proposed and deployed to enhance the security at the kernel level.
As show in Figure 1(a), which is the typical architecture of exist-
ing protection mechanisms, the PEP and the security server (which
is also called PDP) are located within the same space as kernel
itself. The overall security relies on the correctness of some ker-
nel portion to assure trustworthiness. A significant problem with
this architecture is that, by exploiting a known or hidden vulner-
ability and gaining privileged permissions, sophisticated attackers
can modify the OS kernel and disable or subvert the enforcement
mechanism. For example, in a Linux system, a user may be able
to modify the kernel by loading a kernel module or device driver
[23, 24], accessing the special device file – /dev/kmem [3], or even
launching DMA-based write operations from I/O devices.

As Figure 1(b) shows, security enforcement components in our
architecture are located in the VMM. A VMM is a thin layer of soft-
ware that emulates underlying hardware, and virtualizes all hard-
ware resources in such a way that allows multiple virtual machines
to run on top of it with efficient multiplexing [12]. VMM has tradi-
tionally been used for logical server partitioning, installation man-
agement, and cross-platform development and testing. Recently,
virtual machines are widely used in servers as well as in desktop
environments. We utilize the VMM to strictly isolate internal (un-
trusted) processes of virtual machines (VMs) so as to enforce secu-
rity policies that aim to protect a VM’s kernel integrity.

With the assumption of a trustworthy VMM, our architecture
strongly isolates the PDP and PEP from the OS space of the pro-
tected VM running on top of the VMM, as shown in Figure 1(b).

This gives the security enforcement components a high degree of
attack resistance and allows them to continue to monitor and pro-
tect even if the VM has been corrupted.

3. USAGE CONTROL MODEL FOR
KERNEL INTEGRITY PROTECTION

From a VM point of view, the VMM has ultimate control of the
virtual hardware resources allocated to a VM. To achieve the in-
tegrity goal for the OS kernel in a VM, we need to confine accesses
to sensitive system resources and critical kernel objects (e.g., the
kernel text, the system call table, the interrupt descriptor table) ac-
cording to pre-defined access control polices. The polices need to
meet fine-grained, continuous, and mutable requirements.

We present a simple UCON model for OS kernel integrity, called
UCONKI , which is a minimal form of UCON. Starting with a brief
introduction of the concept of UCONKI and its decision continuity
and attribute mutability features, we present an event-based logic
model to specify UCONKI policies for OS kernel integrity protec-
tion.

3.1 UCONKI Model for OS Integrity

3.1.1 Overview

DEFINITION 1. A UCONKI model has six components:

• Subjects (S): active processes and loadable kernel modules
(LKMs);

• Objects (O): kernel memory spaces, disk devices, and regis-
ters;

• Subject attributes (ATT(S)): text hash values of subjects.

• Object attributes (ATT(O)): addresses, types, status of ob-
jects;

• Rights (R): generic actions such as read and write;

• Authorizations (A): functional predicates that have to be eval-
uated for usage decisions.

Based on the above definition, UCONKI only considers autho-
rizations in the original UCON model [17, 26] (omitting UCON
obligations and conditions). In a UCONKI system, each entity
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(subject or object) is represented with a set of attributes. An event
is an activity performed by a subject. An action is an activity per-
formed by the security system. Predicates can be defined based on
attributes as variables and constants. When an event occurs, an ac-
tion is triggered if the corresponding predicates are evaluated to be
true.

The virtual memory address of a kernel memory space is used as
one of its attributes. We can also use the type of a kernel memory
space as another attribute, such as the system call table, the kernel
text, the interrupt descriptor table, and others. The text segment of
each running process or a LKM is unique. So we can use the text’s
hash value of a subject as its attribute.

An authorization decision is determined by the requesting sub-
ject attributes, the target object attributes, and the requested right.
An authorization check can be either performed before the requested
right is exercised or while the right is exercised. For example, a
process (subject) requests to write (right) to a kernel memory space
(object). The policy is that the process’s attribute (text hash value)
is authenticated and the type (attribute) of the kernel memory can
not be one of a restricted set (e.g., the system call table).

3.1.2 Continuity and Mutability
The most important properties of UCONKI are continuity of us-

age decisions and mutability of subject and object attributes. Fig-
ure 2 shows a complete usage process consisting of three phases
along time sequence: before usage, during usage, and after usage.
In UCONKI , usage decision is not only evaluated before an ac-
cess, but also during the usage process of an access. If any of the
specified predicates does not hold during the usage process, the on-
going access is revoked by the system. That is, an access control
in UCONKI is not a one-time check and enforcement, but a con-
tinuous process. Mutability means that for a usage process, subject
and/or object attributes can be updated as the side-effect of grant-
ing the access and processing the usage. Attribute updates can be
performed before, during, or after a usage process. Due to the ex-
istence of concurrent accesses in a system, attribute updates may
invoke cascading authorization checks, e.g., an attribute change in
one usage involving a particular subject and object may affect an-
other concurrent usage of the same subject or another subject’s ac-
cess to the same object.

Both decision continuity and attribute mutability concepts are
based on a continuous ongoing accessing process. A usage session
is defined as an accessing process initiated by a subject s to an
object o with a generic right r, according to a UCONKI policy.
A usage session refers to a specific usage process with (s, o, r)
that follows a particular policy, where the attribute predicates are
evaluated based on s and/or o, and updates are performed on s’s
and/or o’s attributes.

In UCONKI , continuous security check is event-based by at-
tribute mutability: the updates of subject or object attributes. We
give some example policies using our proposed policy description
language in the next subsection.

3.2 Event-based Policy Model for UCONKI
Event Condition Action (ECA) languages are intuitive and pow-

erful for policy description in programming reactive systems [4, 9,
15]. Originated from ECA, Event-Predicate-Action (EPA) is used
in our framework for UCONKI . In a high level view, a policy is en-
forced with the following primitive activities: the VMM observes
an event happening in a VM environment and reacts by performing
corresponding actions to make an authorization decision and/or at-
tribute updates if particular predicates are true.

Before Usage After

Decision Continuity

pre-decision ongoing-decision

pre-update ongoing-update post-update

Attribute Mutability

Figure 2: Continuity and mutability properties of UCONKI

Before Usage After

revokeaccess postupdate

endaccess

preupdate onupdate*
permitaccess

or
denyaccess

System Actions

Subject Events

tryaccess ongoingaccess*

Figure 3: Subject events and system actions

A UCONKI policy is defined as follows:

DEFINITION 2. A UCONKI policy is a well-typed policy rule
of the form:

(e1 ∧ ... ∧ ei) causes ( act1 ∧ ... ∧ actj) if (p1 ∧ ... ∧ pk)
where e1, ..., ei are events, act1, ..., actj are actions, and p1, ...,
pk are predicates.

A UCONKI policy specifies that when events e1, ..., ei are hap-
pening, actions act1, ..., actj must be performed by the system if
predicates p1, ..., pk are satisfied.

An event is an action that is being performed by an active sub-
ject. Figure 3 shows three events defined in our policy model:
tryaccess, ongoingaccess and endaccess. The semantics of
these events are briefly explained below.

1. tryaccess(s, o, r): subject s generates an access request to
o with right r. For sake of simplicity, we refer (s,o,r) as an
access request or an ongoing access when the context is clear.

2. ongoingaccess(s, o, r): subject s executes an access to ob-
ject o with right r. This event only happens when the access
is in the ongoing usage phase.

3. endaccess(s, o, r): subject s ends an access to object o with
right r.

Note that ongoingaccess(s, o, r) events can be repeated dur-
ing a usage process, which may be periodically or triggered by
other events or actions, e.g., other access requests or updates of
subject/object attributes.

An action is performed by the security system. Figure 3 shows
six different actions defined in our model, which are briefly ex-
plained below.

1. permitaccess(s, o, r): grants an access request (s,o,r).
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2. denyaccess(s, o, r): rejects an access request (s,o,r).

3. revokeaccess(s, o, r): revokes an ongoing access (s,o,r).

4. preupdate(attribute): updates a subject or object attribute
in the pre-usage phase.

5. onupdate(attribute): updates a subject or object attribute
during the ongoing usage phase.

6. postupdate(attribute): updates a subject or object attribute
in the post-usage phase.

Similar to ongoingaccess(s, o, r), onupdate(attribute) actions
can be repeated periodically or triggered by other events or actions.

A predicate is a boolean expression built from variables and con-
stants, including subject and object attributes. Similar to attributes,
predicates are application-specific. Different types of predicates
can be defined in a security system. For example, a unary predi-
cate p(a) is built with one attribute and any number of constants,
where the attribute can be a subject or an object attribute; a binary
predicate p(a1, a2) is built with two attributes and any number of
constants, where the attributes can be from a single entity or two
different entities. Typically, a predicate can be defined with any
number of attributes from a single entity, or two entities.

Now we use the EPA language to specify three example policies
as follows.
Example 1 Pre-Authorization Consider a process (subject) that
wants to write to a kernel memory space (object). The policy re-
quires that the process’s attribute (text hash value) is authenticated
and the type (attribute) of the kernel memory cannot be one of the
restricted set: the system call table (sys call table), the kernel
text (k text), and the interrupt descriptor table (idt). The policy
is specified as follows:

tryaccess(s, o, w) causes permitaccess(s, o, w) if
H(s) ∈ C ∧ o.type /∈ {sys call table, k text, idt}

where H(s) is the text’s hash value of s and C is a set of approved
text hash values. �

Example 2 Continuity Suppose a process (say s1) is accessing the
system call table of an OS kernel. When another process (say s2) is
accessing s1 at the same time, s1’s integrity value is measured and
the revokeaccess(s1, sys call table, r1) action is triggered if the
process’s integrity value is changed. Here we use a process’s text
hash value as its integrity value. The policy is specified as follows:

ongoingaccess(s2, s1, r2)∧ongoingaccess(s1, sys call table, r1)
causes revokeaccess(s1, sys call table, r1) if H(s1)

′ �= H(s1)

where H(s1) and H(s1)
′ are the hash values of s1’s text before

and after the event, respectively. �

Example 3 Mutability A legitimate installation of anti-virus soft-
ware modifies the system call table of an OS kernel. The system
call table’s address is updated after installation. The usage control
policy is specified as follows:

tryaccess(s, sys call table, write) causes
permitaccess(s, sys call table, write) if p1 ∧ ... ∧ pi

endaccess(s, sys call table, write) causes
postupdate(sys call table.addr) if true

where s is the anti-virus software installation process. p1, ..., pi are
predicates that have to be satisfied in order to allow s to write the

system call table, and they are determined by other system or or-
ganization security policies. For example, a predicate can require
that the anti-virus software must be signed by a trusted provider.
The second rule states that after the access, the system call table’s
address (attribute addr) is updated. �

4. ARCHITECTURE
This section first introduces the overall VMM-based architecture

of our framework, followed by the features to support attribute mu-
tability and decision continuity. The goal of our architecture is to
support the UCONKI model introduced in previous section.

4.1 Architecture Overview
Figure 4 shows the architecture overview for VMM-based OS

kernel integrity protection. Typically, the architecture includes three
main components within the VMM: VM enforcer (VME), Attribute
Repository (AR), and Policy Decision Point (PDP). VME is a mod-
ule to intercept access request events from the guest VM, push/pull
subject and object attributes, and enforce access executions. AR is
used to store and push subject and object attributes. PDP delivers
authorization decisions according to policies. To improve perfor-
mance, the Access Vector Cache (AVC) component caches access
decisions.

A usage session is initialized by a subject (e.g., a process from
the guest VM) and works as follows. First the subject generates
an access request event from the guest VM, and the request is inter-
cepted by VME (step 1). After receiving the request, VME contacts
AR and retrieves the subject attributes and object attributes (steps
2 and 3). Then VME queries AVC (step 4). If there is already a
decision cached and the attributes of subject and object have not
been changed since last access, the cached access decision is used
(step 5) and the decision is forwarded to VME and enforced in the
execution (step 8); otherwise VME pushes the request to PDP (step
6) along with the attributes. PDP makes the access control decision
by evaluating polices with subject and object attributes (step 7). Fi-
nally, the decision is forwarded to VME and enforced in the VM
execution environment (step 8).

As the side effect of making a usage decision, attribute updates
are performed by VME according to the corresponding policy. VME
gets the new attributes from the guest VM (step 9). New subject
and object attributes are pushed back to AR (step 10). As a result,
updated attributes can be shared between different usage sessions,
and VME always checks AR for the latest attribute values when a
new access request event is generated. Also after a usage session,
VME pushes a decision cache to AVC (step 11).

4.2 Attribute Acquisition and Management
As UCONKI is attribute-based, a critical requirement to cor-

rectly enforce access control policies is to get real-time attribute
values when PDP makes authorization decisions. The VMM can
observe low-level system states (e.g., memory pages and machine
registers). By transparently inspecting a VM’s internal system state,
we can accurately derive the processes, kernel-level object (e.g., the
system call table), and their attributes (text hash values of the run-
ning processes).

We assume that all the internal processes of a VM are untrusted.
Typically, when a subject generates an access request, subject and
object attributes are pulled from VM by VME, e.g., after integrity
measurements. VME queries the values stored in AR to check
whether they have been changed or not. When an update is per-
formed, the new attribute value is pushed by VME to AR.
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4.3 Mutability and Continuity

4.3.1 Updates of Attributes
UCONKI includes pre-updates, ongoing-updates and post-updates.

As ongoing-updates are results of decision continuity, they are dis-
cussed in the following subsection.

According to our architecture, pre-updates are performed by VME
when the access is granted according to a policy. As a policy de-
cision is generated by PDP, attribute update requests are forwarded
by PDP to VME along with the authorization decision. Updated
attribute values are reported to AR by VME.

Post-updates can be triggered by a subject’s endaccess event or
the revokeaccess action of an ongoing usage session by the system.
For the first type, VME reports an endaccess event after a subject
ends the usage. VME performs the updates and the new attribute
values to AR. For the second case, as the revocation of an ongoing
access is the result of the decision continuity (described shortly)
enforced by VME, the post-updates are performed by VME and
reported to AR.

4.3.2 Continuous Enforcement of Policies
During a usage session, the policy is checked and the decision

is enforced repeatedly if there are ongoing decision components
in this policy. Since a decision component is built with attribute
predicates, ongoing checks, in practice, are triggered by attribute
changes during a usage session (e.g., the updates of mutable subject
and object attributes as discussed above).

In our architecture, upon successful update of a subject or an ob-
ject attribute, ongoing usage sessions involving the subject and the
object are re-evaluated by querying PDP. When the predicates of
the policy are still satisfied, the ongoing access is allowed to con-
tinue; otherwise, a revokeaccess action is generated by PDP and the
decision is enforced by VME. As a UCONKI policy associates ex-
actly one subject and one object, an update event is involved with an
ongoing usage session (s,o,r) only if the event updates an attribute
of s or o.

5. IMPLEMENTATION AND EVALUATION
We have implemented a proof-of-concept prototype of the pro-

posed architecture. In order to validate its practicality and effective-
ness, we subject the prototype to a variety of kernel rootkit attacks
that compromise OS kernel integrity. So far, we have tested with 18

real-world kernel rootkits that are publicly available and the exper-
imental results are encouraging: our system is able to successfully
detect and prevent all kernel integrity violations from these rootkits.

5.1 Prototype Implementation
The prototype is implemented by leveraging and extending an

open-source emulator-based VMM platform called Bochs [1]. With
the availability of its source code, we can conveniently prototype
our system to validate the feasibility of the proposed approach.
However, we point out that our approach is general and can also
be applied to other VMM platforms, such as VMware [2] and Xen
[5]. In the following, we describe three main extensions we made
to the original Bochs system:

(1) From the VMM, we transparently inspect a VM’s internal
system state and accurately derive various internal model-related
entities such as processes, kernel-level objects (e.g., the system call
table), and their attributes (e.g., hash values of the running pro-
cesses). Some entities are straightforward to identify. For example,
the location of the system call table (sys call table) might be ex-
ported by the kernel and we can directly find its location from the
/boot/System.map file. However, there also exist some entities (e.g.,
running processes and the related hash values) that require addi-
tional efforts to obtain. The main reason is that the original VMM
only observes low-level system states (e.g., memory pages and ma-
chine registers), which, unfortunately, are not straightforward to
derive model-friendly entities with high-level semantic-rich infor-
mation. To address that, we instantiate the general methodology
known as “virtual machine introspection” (VMI) [12, 13] at the
VMM layer. With the knowledge of the VM system internals, VMI
aims to interpret the runtime VM state and infer internal entities
(e.g., processes and files). For instance, our current prototype is
able to extract all interested model-related information, including
the entities such as internal processes and specific kernel-level ob-
jects as well as their attributes. Note that different types of policies
may involve different entities and our current prototype mainly fo-
cuses on the integrity protection of important kernel objects, i.e.,
the system call table, the interrupt descriptor table, the kernel text
segment, and various virtual file system (VFS)-related data struc-
tures.

(2) The second extension is to dynamically generate model-related
events from the detected internal VM actions at the VMM level.
Particularly, our current prototype continuously monitors those kernel-
level memory-writing instructions and checks whether they are at-
tempting to modify protected kernel objects. Note that each de-
tected attempt leads to generating a model-related event. As an ex-
ample, when an internal process is attempting to modify the system
call table, an event is triggered to execute our policy enforcement
engine. Based on the specified policy, our enforcement engine then
validates whether the modification should be allowed or not.

(3) The third extension is the real-time capability of the VMM
to enforce specified policies so that the runtime OS kernel integrity
can be protected. For example, suppose one policy stipulates that
the kernel text, the system call table, the interrupt descriptor table,
and the jump table of the virtual file system should not be modified
after the system boots up. Any tampering attempts are captured and
the subsequent writing operations are denied. In our current proto-
type, we utilize Bochs to intercept every memory writing instruc-
tion to ensure that its execution does not violate this policy. Note
that the instruction-level interception will introduce significant per-
formance slowdown and it can be improved by leveraging certain
hardware features (e.g., read-only memory pages) [12]. Figure 5
shows a number of key kernel-level objects (and their runtime ad-
dresses in a running RedHat 7.2) that are protected by our system.
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“Adore-ng” rootkit

“suckit” rootkit

“Adore” rootkit

Figure 6: Detecting and preventing OS kernel integrity violations
.

5.2 Evaluation
We have evaluated our system with 18 real-world kernel-level

rootkits (Table 1) that are publicly available. Note that all of these
rootkits can successfully compromise the OS kernel integrity on
vulnerable systems.

Rootkit Target Attacker Vector Prevented
adore 0.53 system call table LKM

√
knark system call table LKM

√
phide system call table LKM

√
rial system call table LKM

√
rkit 1.01 system call table LKM

√
synapsys system call table LKM

√
override system call table LKM

√
maxty system call table LKM

√
kbdv3 system call table LKM

√
all-root system call table LKM

√
suckit kernel text Raw memory access

√
suckit2priv kernel text Raw memory access

√
enyelkm kernel text LKM

√
phantasmagoria kernel text LKM

√
superkit kernel text Raw memory access

√
Phalanx system call table Raw memory access

√
mood-nt system call table Raw memory access

√
adore-ng virtual file system LKM

√

Table 1: 18 Linux kernel rootkits used for our evaluation

Among these rootkits, we choose three representative ones for
detailed examinations: adore [23], adore-ng [24], and suckit [21].
The detailed examinations are helpful to understand how our sys-
tem is able to effectively detect and prevent kernel integrity vio-
lations. As shown in Table 1, the adore rootkit makes use of the
loadable kernel module (LKM) support in commodity Linux ker-
nels to directly hijack a number of system call table entries. The
adore-ng rootkit uses the same LKM support to subtly modify the
jump table of the virtual file system. Note that the jump table con-

tains a number of function pointers that are indirectly invoked when
system monitoring tools such as ps and ls are executed to list files
in the current directory or running processes. Once these function
pointers are hijacked, certain files and processes can be chosen by
attackers to be “invisible” from these system monitoring tools. As
such, though the system call table is not modified, the same “hid-
ing” goal can still be achieved. The third chosen rootkit – suckit
takes advantage of the writable special device file – /dev/kmem
to directly modify OS kernel instructions. These instructions are
craftily chosen to control the kernel-level execution flows so that
system call results can be manipulated.

Figure 6 shows a screenshot of how our system detects the in-
tegrity violation attempts from these three representative kernel
rootkits: The left xterm screen (with black background color) shows
the inside of the VM while the right xterm screen (with white back-
ground color) shows the reported alerts from our system. Our sys-
tem is able to capture all kernel-level write instructions and further
infer the kernel objects that are being attacked. In the following,
we describe detailed attacks from these three rootkits.

• The adore rootkit (executed by the command insmod adore.o
as shown in the left window) hijacks 15 entries in the system
call table and replaces them with its own implementations.
A customized user-space program called ava can be used to
send hiding instructions to the kernel-level attack code so
that certain files or processes of attackers’ choices can be
hidden. As shown in the right window of Figure 6, when
the command is executed to load the kernel module adore.o,
our system immediately reports an alert with details showing
what are those system call entries being modified. More-
over, our system further examines the VM state to identify
the corresponding process ID as well as the responsible user
command triggering these violation attempts. Such trace-
back feature is desirable when there is a need to hold them
accountable for launching the rootkit attack.

• The adore-ng rootkit subverts the jump table of the “Virtual
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Kernel Text

System call table

Interrupt Description
Table

Virtual file system

proc_root_ops

root_dir_ops

0xc00000000

0xc0100000

0xc023d600

0xc023e13c

0xc023e53c

0xc028f000

0xc028f800

0xc0241d20

0xd0838560

0xfe0000000

Figure 5: Protected key kernel objects that are commonly at-
tacked by real-world kernel rootkits. Their runtime addresses
are collected from a RedHat 7.2 Linux system (with kernel ver-
sion 2.4.7-10).

File System” by replacing the directory listing handler rou-
tines with its own ones. Such replacement allows it to manip-
ulate the information about the root file system as well as the
/proc pseudo-file system to achieve the file-hiding or process-
hiding purposes. As shown in Figure 6, once the adore-ng.o
module is loaded, our system reports what are those kernel
objects being compromised and which process is the culprit
process (i.e., the process with PID 605: insmod adore-ng.o).

• The suckit rootkit installs itself through /dev/kmem interface
to subvert the OS kernel where the LKM support might not
be available. As reported from our system, the suckit not
only modifies one system call entry – oldolduname, but also
overwrites two instructions inside the kernel text. Further
analysis shows that the oldolduname system call entry is hi-
jacked to allocate a kernel memory space to store its own
kernel-level attack code. The two instructions are overwrit-
ten to hijack the system call flow, which can be later misused
to hide attack files or processes.

6. EXTENSIONS AND DISCUSSIONS

Our current model and the prototype system focus on OS kernel
integrity protection. In this section, we explore other aspects of
OS security that are beyond kernel integrity and examine possible
extensions of UCONKI and policy enforcement architecture for
these purposes.

6.1 OS Security Requirements
To provide a high quality OS security protection, access con-

trol techniques must be able to support various real-word security
requirements. From the model point of view, the access control
model needs to support flexible and application-specific polices
such as fine-grained least privilege and dynamic separation of duty.

We explore possible extensions of UCONKI to support flexible se-
curity policies in next subsection. From policy enforcement point
of view, the architecture must ensure that performance overhead of
the usage control is minimal and the OS must operate transparently
to applications and users except when access failures occur. We
discuss how to extend our VMM-based architecture to meet these
requirements at the end of this section.

6.2 UCONKI Extensions

6.2.1 Attributes Management
We can specify most OS security policy using UCONKI by in-

troducing additional subject and object attributes. Flexible policies
can be defined, such as role-based access control (RBAC), dynamic
separation of duty, Chinese Wall, and polices with low or high wa-
ter mark properties, which have been conceptually and formally
studied in previous work [17, 26]. In an OS, an object can be a
file, a running process, a library, a kernel memory space, a disk de-
vice, or a register on which particular actions (requiring appropriate
rights) can be performed by an active subject. A subject can be an
active process, or a LKM that can generate access requests. Besides
the text hash value, subject attributes can also include role, group,
and domain name. Additionally, application-specific attributes can
be defined depending on the target object. Specifically, when there
is a system resource that can only be used by a single process at
a time, a subject attribute specifying the conflict-of-interest groups
could be defined. Object attributes include address, type, owner-
ship, content, inclusive/exclusive accesses, access history and sta-
tus, etc. For example, we can express Chinese Wall Policy using
UCONKI as follows.
Example 4 Chinese Wall Policy Consider a system with a set of
conflict object classes C = c1, c2..., cn. An object attribute class
indicates which class it belongs to. A subject attribute is defined as
ac = cs1 , cs2 , ..., csm , where s1, s2, ...sm are integers from 1 to n,
to record the classes that a subject has accessed. Another subject
attribute is ao = o1, o2, ...ok, which records the objects that the
subject has accessed. If a subject has accessed an object, the Chi-
nese Wall policy is:

tryaccess(s, o, r) causes permitaccess(s, o, r) if o ∈ s.ao

For an access request for an object that is not in the subject’s ao,
the policy is defined as the following:

tryaccess(s, o, read) causes permitaccess(s, o, read) if
(o /∈ s.ao) ∧ (o.class /∈ s.ac))
permitaccess(s, o, read) causes preupdate(s.ac)
∧ preupdate(s.ao) if true
preupdate(s.ac) : s.ac′ = s.ac ∪ o.class
preupdate(s.ao) : s.ao′ = s.ao ∪ o �

6.2.2 Conditions
In a modern OS, a subject’s permission depends on the state of

a system. To address this requirement, we need to add conditions
as decision components in UCONKI . As conditions are environ-
mental restrictions, system attributes are introduced. Specifically,
a condition is a predicate built on system attributes to specify the
restriction that has to be satisfied before or during a usage pro-
cess. Although system attributes are not updated in UCON, they
change due to dynamic system environment. For example, the sys-
tem attribute status changes from boot to normal till shutdown. As
a result, this change may affect the decision of a subsequent access
request or an ongoing access.
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6.2.3 Obligations
In many cases, in order to grant a subject’s requested access,

an action, which is not like any action or event defined in our
UCONKI model, need to be performed by the subject or another
subject. We need to introduce the obligation component to UCONKI .
An obligation is an action that must be performed by a subject be-
fore or during an access. For example, when an anti-virus applica-
tion wants to update virus data, an obligation is defined that before
the update, it has to check the availability of the latest virus defini-
tion by opening a dedicated network port. Without this action, the
update request is denied.

6.3 Policy Enforcement
Currently, our VMM-based architecture has the capability to en-

force policies for kernel integrity in a VM. To support user level
policy enforcement, we need to extend this architecture with non-
trivial extra capability of VMM. One limitation of our prototype
is its inability of intercepting user-level semantic information of a
guest OS. In order to enforce the user level security policies, one
way is to develop tools for VMM to minimize the semantic gap.

Another possible solution is to insert a “trusted” kernel module
into the OS kernel in the VM. The trusted module redirects the user
level access requests to the VME in our architecture and enforces
usage decisions. Our current prototype can be extended to not only
ensure the kernel integrity, but also protect this particular security
module. As part of our future work, we will investigate possible
security risks and examine its feasibility.

7. RELATED WORK
A logic policy model of UCON has been proposed in previous

work [26, 27]. In this model, activities performed by subjects and
security system are called “actions” without distinctions. In this pa-
per, we consider the activities performed by a subject as “events”
and the reactive activities performed by a security system as “ac-
tions”, which is more intuitive and precise. Another difference in
our approach is that we use event-predicate-action (EPA) in our
logic specification, and we focus on a higher level access control
policies, while previous model focuses on atomic actions and tem-
poral properties during a single usage process.

Traditional MAC polices, such as the Bell-LaPadula secrecy pol-
icy [6] and the Biba integrity policy [7], define clear security goals,
but are too restrictive for convenient use of applications. These ap-
proaches are very coarse-grained for least privilege requirements.
A different form of MAC known as Type Enforcement (TE) [8]
offers several advantages over the traditional models. In TE, se-
curity policies can be easily customized, and users and individual
programs can be easily limited to least privilege through the defini-
tion of domains and domain transitions. However, TE also has its
limitations. Since the security policy logic is defined through la-
bels and there are no implicit relationships among labels, it would
be cumbersome to express a complex Bell-LaPadula or BiBa lat-
tice using TE. TE also does not directly address dynamic security
policy requirements, which are often needed in real-world envi-
ronments. UCON can provide flexible, fine-grained, and dynamic
access control. Additional comparison details can be found in pre-
vious work [17, 26].

The policy enforcement mechanisms in the systems, like SELinux [16],
Systrace [19] and Nooks [25], reside in the same space as the run-
ning OS. Once an intruder takes control of the machine, the pro-
tection mechanism can be potentially disabled or subverted. An
advantage of our mechanism over these systems is that an attacker
can not comprise our protection mechanism from a guest VM.

Co-processor based systems, such as the system introduced by
Zhang et al. [28] and Copilot [14, 18], monitor operating system
by polling kernel memory periodically. Since they use separate
co-processor such as PCI card, and are independently connected
to monitor stations, they can reliably detect intrusions and cannot
easily be compromised by an attacker with root privilege. While
these approaches can perform very efficient detection, they cannot
perform any prevention as they cannot interpose the host’s execu-
tions. Also the view of the monitor is limited to memory. Our
VMM based approach not only can detect intrusions but prevent
malicious activities by intercepting events in real time. Note that
our architecture is derived from a general methodology known as
“virtual machine introspection” (VMI) [12]. We point out that
VMI is mainly used for intrusion detection purposes, while our ar-
chitecture is mainly for access control policy enforcement.

The Secure Hypervisor (sHype) [20] project aims to support con-
trolled sharing of resources between VMs on a platform, such as
memory, CPU cycles, and network bandwidth. While sHype pro-
tects sharing of resources between VMs in a “horizontal” way,
our architecture “vertically” controls access to sensitive kernel re-
sources in a single VM running on top of the VMM.

8. CONCLUSION AND FUTURE WORK
We present a security framework to protect OS kernel integrity

which includes a policy model and an enforcement architecture. To
meet flexible and fine-grained authorization requirements, a simple
UCONKI model is proposed. We define an event-predicate-action
logic model to specify policies for kernel integrity purposes. Our
proposed architecture can support attribute mutuality and decision
continuity by leveraging the capabilities of strong isolation and re-
source monitoring of VMMs. We implement a proof-of-concept
prototype to demonstrate the effectiveness of our approach. Exper-
iments show that our system can successfully detect and prevent a
variety of real-world rootkit attacks.

Based on this framework, we are extending our model and ar-
chitecture to support general OS security objectives, including the
protection of OS resources and services, and user level applica-
tions. With the strong expressive power of UCON and increasing
capabilities of VMMs, our goal is to build a general framework for
OS security.
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