Ram Krishnan (George Mason University)

Ravi Sandhu, Jianwei Niu, William Winsborough
(University of Texas at San Antonio)

ACM Symposium on Access Control Models and Technologies (SACMAT 2009)
June 3-5, Stresa, Italy

Presentation Outline

® Motivation for g—SIS

® Group-CentricVs Dissemination-Centric SIS
® Core g-SIS properties
® Group operation semantics
® TI-system g-SIS specification
® Verification of Tt-system

® Conclusion

Secure Information Sharing (SIS)

® Share but protect
* A fundamental problem in cyber security

® Traditional models do capture important SIS aspects
® But not satisfactory

® Discretionary Access Control (owner control)
Too fine-grained, lacks copy control
® Bell-LaPadula (information flow)
Too rigid and coarse-grained
® Role-Based Access Control (effective administration)

Too general and does not directly address information sharing

e UCON/ABAC also too general
L Primary issues

* Copy control
° Manageabﬂity

@

Dissemination-Centric Sharing

e Extensive research in the last two decades

e ORCON, DRM, ERM, XrML, ODRL, etc.

° Copy/ usage control has received major attention

o Manageability problem largely unaddressed

Attribute +
Attribute + Policy
Pollcy Cloud Cloud

® >® P - = mimimim i m (Y >®

Alice Charlie Susie

Attribute Attribute
Cloud Cloud
Dissemination Chain with Sticky Policies on Objects

(2 y

Attribute
+ Policy
Cloud

Attribute
+ Policy
Cloud

Group-Centric Sharing (g-SIS)

® Brings users & objects together in a group Users
e Focuses on manageability using groups JO| N g@ | eave

o (Co-exists with dissemination-centric

* Two metaphors
Secure Meeting Room (E.g. Program committee meeting)

Subscription Model (E.g. Secure multicast)

® Operational aspects Grou P
° Group characteristics A u t h 7 (u ; O, r) ',)

E.g Are there any core properties?
® Group operation semantics

E.g. What is authorized by join, add, etc.?
® Read-only Vs Read-Write

* Administrative aspects add —_—— remove
® E.g. Who authorizes join, add, etc.? Objects

® May be application dependant

Multiple groups

* Inter-group relationship

@

Roles Vs Groups in SIS

e Roles

® Users get same set of privileges on role assignment
® Does not consider timing of assignment/ activation
® Temporal RBAC considers specific timing aspects
E.g. authorizations for when a role can be activated
® Groups
® Privileges may differ with time of join, leave, etc.
® Sharing is promoted within and across groups

® Inter-group relationship may differ from that of roles

Formalization of g-SIS

Terminology

® A state in g-SIS is a function from predicates to {True,False
® Predicates include join, leave, add and remove

* Authorization depends on type of join, leave, add and remove

® A traceis an infinite sequence of states]
Sers

join =" |egve
A sample g-SIS trace

s _— A
- add(o;) } Jomniu Group
oin(u authz(uy,01,T) ce
{join(u1)} {authz(ul,ol,r) authz(uz, 01,7) Authz (u,o,r)?
So S1 S2
N / J
add === remove
May depend on type Objects

of join(u,) and add(o,)

@ y

Notations

* Use Join, Leave, Add and Remove to refer to some respective
event type occurring
Join(u) = (join, (u) V joiny(u) V ... V join,, (w))
Leave(u) = (leave; (u) V leavea(u) V ... V leave, (u))
Add(o) = (add; (o) V addz(0) V ... V add,(0))
Remove(o) = (remove; (0) V ... V remove,(0))

®* Drop the parameters for convenience

Authz — (Join A (—(Leave V Remove)))

Yu € UVo € O.Authz(u, o,7) — (Join(u) A (—(Leave(u) V Remove(0))))

@

Well-Formed Traces

® Multiple events cannot occur in a state for the same user (or object)
® E.g. 1 User cannot join and leave in the same state

° E.g. 2 Two types of join cannot occur in the same state

i) J { romovst J { ot} { remomion 1| 3¢

>0 - 51 >2 \\ >3 Malformed
E.g.1 E.g.2 trace
® User events should occur alternatively beginning with a join event
® E.g. 1 leave cannot occur before join
* E.g. 2 join should be followed by a leave before another join
[{lea\éel (u1)} {join; (u1)} {joir;l (u2)} {jo';nz (u2)}} i\r/:lcli:rmed
0 1 2 3

@ Eg. 1 E.g. 2 -

LTL Specification of Well-Formed Traces

70 = O(—(Add A Remove) A —(Join A Leave))

1 =Vi,§ O #) — (ol A joing))A
Vi, j O((¢ # j) — —(leave; Aleave;)) A
Vi, § O((G # 5) — —(add; A add;))A
Vi, j O((i # j) — —(remove; A remove;))

72 =0(Join — O (—~Join W Leave)) A
O(Leave — QO (—Leave W Join)) A
O(Add — QO (-Add W Remove))A
O(Remove — O (—Remove W Add))

73 = O(Leave — 4Join) A O(Remove — $Add)

g-SIS Specification (Syntactic Correctness)

® Defines precisely when authorization holds

o A g—SIS specification 1S S/VHtCICtiCCIH/V correct if
e Stated in terms of user and object operations

e Satisfies well-formedness constraints

[7 = Vu € UVo € O0.0(Authz(u, 0,7) < 1¥(u,0)) A /\ Ti 1
0<i<3 1

specified using join, leave, add Well-formedness
and remove (but not authz) constraints

* A g-SIS specification is semantically correct if it satisfies following

@

core properties

Core g-SIS Properties

® Persistence

e Authorization cannot change if no group event occurs

o = O(Authz — (Authz W (Join V Leave V Add V Remove)))
¢1 = O(-Authz — (-Authz W (Join V Leave V Add V Remove)))

® Provenance

e Authorization can begin to hold only after a simultaneous
period of user and object membership

[2 =(—Authz W (Authz A (—Leave S Join) A (-Remove S Add)))]

—Remove -Leave
A A

| | - | |
| | — V. |

? >
Add Join Authz Join Add Authz

Core g-SIS Properties (contd)

® Bounded Authorization
® Authorization cannot grow during non—membership periods

s = O((Leave A —~Authz) — (—Authz W Join))
4 = O((Remove A ~Authz) — (-Authz W Add))

-Authz - Authz

Vv

Leave A~Authz Join Remove A-Authz Add
® Availability
* After add, authorization should hold for all existing group users
| @5 =DO(Join — ((Add — Authz) W Leave)) |
—-Lelave

I |

| | g
@ Join Add A Authz

v

g-SIS Specification (Semantic Correctness)

© Semantically correct if it satisfies the core g-SIS properties

° Syntactic correctness

{7 = Vu € UVo € O0.0(Authz(u, 0,7) < 1¥(u,0)) A /\ Ti }
0<i<3

@

g-SIS Operation Semantics

Users

Qﬁ%

-

join leave

GROUP
Authz (u,o,r)?

S —
Objects

add remove

g-SIS Operation Semantics

Users :
Strict, e=—— e !N

Leave

Join
Liberal Liberal
Join Leave
GROUP
Authz (u,o,r)?
Strict ‘
Add Strict
— Remove

Objects

Add Remove

Group Operation Semantics

° Membership semantics

® Considers authorizations enabled by Join and Add
And those disabled by Leave and Remove

® Strict Vs Liberal operations
User operations (S], L], SL, LL)
Object operations (SA, LA, SR, LR)

u not authorized to access objects
.~ added prior to join time

Users joining after add time not
.~ authorized to access o

l_‘_\ [1
SJ(u) SA(0) Users authorized to access o at
u retains access to objects authorized remove time retain access
.~ atleave time e
— | |
| > | >
K@ LL (u) LR (0)

Group Operation Semantics (contd)

® Membership Renewal Semantics
* Considers authorizations from past membership period(s)

® Lossless Vs Lossy Join
® Lossless: Authorizations from past membership period not lost
® Lossy: Some authorizations lost at rejoin time

® Restorative Vs Non-Restorative Join

® Restorative: Authorizations from past membership restored

® Non-Restorative: Past authorizations not restored at rejoin time

e

LTL spec for Membership and Membership Renewal Properties (contd)

Operation Explanation Property
Strict Join (SJ) Only objects added after join time can be accessed oo = O(Authz — #(Add A (—Leave S join,)))
Liberal Join (L.J) Can access objects added before and after join time There exists a well-formed trace that does not satisfy ag
Strict Leave (SL) Lose access to all objects on leave a1 = O(Authz — (—leave; S Join))

Liberal Leave (LL)

Retain access to objects authorized before leave time

There exists a well-formed trace that does not satisfy a1

Strict Add (SA)
Liberal Add (LA)
Strict Remove (SR)
Liberal Remove (LR)

Only users who joined prior to add time can access
Users who joined before or after add time may access
All users lose access on remove

Users who had access at remove time retain access

az = O(add; — (—4Join — (—Authz W Add)))
There exists a well-formed trace that does not satisfy aa
a3 = O(remove; — (—Authz W Add))

There exists a well-formed trace that does not satisfy ag

Opcration

Explanation

Property

Lossless Join

Lossy Join

Non-Restorative
Join

Restorative Join

Authorizations prior to join time is not lost

Authorizations from prior to join may be lost

Authorizations from past membership periods not ex-
plicitly restored

Authorizations from past membership may be restored

Bo = O((Join A —“Remove A (=) Authz) — Authz)
There exists a well-formed trace that does not satisfy 3o
p1 = (join, (ul) A join, (u2) A
Authz(ul,o,r) A mAuthz(u2,o0,7))
p2 = (Authz(ul, o,r) A —Authz(u2, 0, 7))
B1 = Vil(p1 — p2)
There exists a well-formed trace that does not satisfy /3

Gainless Leave

Gainful Leave

Non-Restorative
Leave

Restorative Leave

Authorizations that never held during most recent mem-
bership period cannot be obtained

New authorizations may be granted at Leave time

Authorizations that the user had prior to joining the
group are not explicitly restored

Authorizations from prior to join time may be restored

B2 = O((Leave A (=Join U (Authz A —=Join))) —
O ((mAuthz A =Join) S (Authz A (=Join S Join))))
There exists a well-formed trace that does not satisly 32

B3 = O(Leave A Authz — (=) Authz)

There exists a well-formed trace that does not satisfy 33

™

The -System g-SIS Specification

® TI-system is a g-SIS specification
* Allows all membership ops (Strict and Liberal user/object ops)

® Allows only selected membership renewal ops

Lossless and Non-Restorative Join

Gainless and Non-Restorative Leave

Bo b1

Vi.Type(join,;) € {SJ,LJ}x {Losslé} X {Non-Res‘igrative}
Vi.Type(leave;) € {SL,LL}x{Gainless} x{Non-Restorative}
Vi.Type(add;) € {SA, LA} \,32 \,33
Vi.Type(remove;) € {SR,LR}

@

The n-System g-SIS Specification (contd)

Well-formed traces

T-system g-SIS Specification: /
Use

T= I:I(Authz =)\ V}\z) A /\ Tj Strict @%
0Sj$3 Liberal !

Join

A1 =((-SL A-SR) S ((SA VLA) A ((-LL A -SL)
S (8JVLI)))) ~—

Authz (u,o,r)?
Add after Join: = strict b

Add
A2 =((-SL A =SR) S (LJ A (SR A -=LR) S LA))) Liberal Objects
Add
™~ Add before Join

Entailment Theorem: The TL-system entails the Core

g—SIS properties

[m=(A ear A\ ﬂr)\L

0<q¢<5b f 0<r<3

/ AN

Core properties Membership Renewal Properties

™

Strict
Leave

Liberal
Leave

Liberal
Remove

Verification Using Model Checker

® Model allows join, leave, add and remove to occur

concurrently, non-deterministically and in any order

4)
T — /\ Soq/\ A ﬂr

0<q¢<5 0<r<3
N J

® The above implication is used as the LTLSPEC

® The model checker generates a counter—example if the

specification is false

e Used the open-source NuSMV model checker

@

Conclusion

® Group-CentricVs Dissemination-Centric SIS
® Core g-SIS properties
® Various group operation semantics
® g-SIS specification using LTL
® Entailment theorem
® Ongoing work
® Read-Write model with versioning

® Multiple groups

Backup

¥
Vertical
View
Looks
Across
Layers

@

PEl Framework for
Secure Systems Design

Security and system goals Necessarily
(objectives/policy) Informal
) Policy models uggﬂ;ﬂ-‘;_l A Use Linear Temporal Logic (LTL) to
d specify g-SIS properties and Authz
: pecity g-515 prop
Horizontal I
view
System block
—> Enforcement models diagrams,
Looks at Protocol flows
Individual I
I
AYer Mol . del Pseudo-
—> mplementation models code
Trusted Computing Technology Actual
{mechanisms/implementation) Code

Formal Specification using LTL allows:
1. Precise, Concise expression of state sequence properties

2. Enables automated verification of properties

Linear Temporal Logic (summary)

* Nextp (Op)

e Formula P holds in the next state

* Henceforth p (Dp)

® Starting from current state, p will continuously hold in all the future states

°* puntilq (pu Q)

° q will occur sometime in the future and p will hold at least until the first occurrence of q

® punlessq (p w Q)

® p holds either until the next occurrence of q or if q never occurs, it holds throughout

® Previous p (@ p)

® Formula p held in the previous state

Once p (’p)

® Formula p held at least once in the past

° psinceq(psq)

® qhappened in the past and p held continuously from the position following the last occurrence of q to

the present

@ y

