
Abstract

Much work is going into securing the public key infra-
structure (PKI). Various models for trust exist; Pretty
Good Privacy (PGP) and the Progressive-Constraint
Trust model are examples.[3] These models describe
how to protect and ensure the interrelationships of their
certificate based structures; however, vulnerabilities
may arise when structures based on certificate authori-
ties (CAs) are involved. The vulnerability is based upon
multiple root certificate authorities. This paper exam-
ines the need for improved methods for verifying the
binding of a certificate authority (root) to the source of a
protocol’s messages. The protection mechanisms devel-
oped for protecting and ensuring this binding within a
CA hierarchy can break down in environments where
multiple roots exist. This can lead to the possibility of a
CA undermining the trust placed in a peer CA.

1. Introduction

In the bookSecure Electronic Commerce, the authors
state “... the certificate user may hold multiple root
public keys and may make decisions that one root key is
trusted for some purpose and another root key is trusted
for another purpose. (In saying the root key is trusted,
we actually mean that all certification paths starting
from that root key are trusted.)”[3] If a root makes a
decision to imitate a peer root, severe consequences can
result.

The following examination considers the World
Wide Web (WWW) and uniform resource locators
(URLs) used in the Secure Socket Layer (SSL) Protocol
and the Secure Hypertext Transfer Protocol (S-HTTP).
Various scenarios are presented that demonstrate the
subtleness of the problem of trust and certificates.
These scenarios are based on an analysis of the design

of current Web browser features, use of certificate
servers in the PKI, and an expansion of the discussion
on “Handling Multiple Certification Authorities” in [7].

This author describes how trust can be manipulated
to take advantage of this potential security problem with
Web browsers using S-HTTP 1.3, SSL 3.0, or
potentially any WWW-based secure protocol that
operates in an environment susceptible to outside
tampering. The key to the vulnerability is the
unprotected and unverified exchange of public keys in
certificates. It is envisioned that the exploitation of this
problem would in some instances go unnoticed by users
of Web browsers.

Certificates can be used to securely process
transactions across the WWW. A server’s certificate
will contain information such as the name of the holder,
its URL, a public key, and other identification
information. In addition, a good certificate will be
certified by a CA indicating that the holder of the
certificate is indeed authentic. Avalid certificate is
defined as a certificate that has been signed by a CA that
a browser is willing to accept without challenge. If a
client computer is presented with avalid certificate, it
can encrypt a message with the public key of the
certificate and send the message securely to the holder
of the certificate. The holder of the certificate will
decrypt the message with her private key. The holder
keeps the private key in a secure place so that no one
else will be able to retrieve information from the
messages that are encrypted with her public key.

Certificate masquerading allows a masquerader to
substitute an unsuspecting server’svalid certificate with
the masquerader’svalid certificate. The masquerader
could monitor Web traffic, picking up unsuspecting
victims’ surfing habits, such as the various net shopping
malls and stores a victim may visit. The masquerader
could change messages at will without detection, or
collect the necessary information and go shopping on
his or her own time. In each instance, the masquerader

The Problem with Multiple Roots in
Web Browsers - Certificate Masquerading

Capt James M. Hayes
The Office of INFOSEC Research and Technology

Suite 6534 - 9800 Savage Road
Fort George G. Meade, Maryland 20755-6534

jmh@tycho.ncsc.mil

need not worry about problems addressed in Web
Spoofing: An Internet Con Game [2], i.e., rewriting
URLs, modifying the status line, or worrying about the
user looking at the source document. All URLs would
be unchanged. Certificate masquerading could also
involve replacing the client’s certificate with the
masquerader’s client certificate; however, this paper
does not address client certificate masquerading.

To demonstrate one situation where certificate
masquerading can take place, and how the purpose of a
legitimate root could be abused, the author will enlist
the assistance of a couple of the usual characters needed
for demonstrating protocols: Bob, a good guy, and
Mallory, a malicious active attacker. In this illustration,
Bob and Mallory will be playing the roles of employees
who work at the Bureaucratic Institution for
Mismanagement (BIMM) Corporation.

2. A Case Study of the BIMM Corporation

Bob often performs on-line trading of stocks. His
on-line trading company uses SSL with server
authentication. The server’s certificate is signed by
Ultra Trust Security Services, Inc. The Ultra Trust root
is distributed within Bob’s Web browsers at home and
at work. The on-line trading server does not require that
Bob use a client certificate. This allows him to perform
transactions at home and at work.

Mallory is a poorly paid system administrator at the
BIMM Corporation. He is responsible for network
security duties, which include monitoring of http traffic,
setting up firewalls, and something new to the
organization called certificate authority management.
During the course of his http monitoring duties, Mallory
notices that Bob visits www.host.com. Mallory realizes
that this is Bob’s on-line trading site. Mallory is jealous
of Bob because Bob is a manager and pulls down a six
figure income. Mallory decides to steal money from
Bob’s on-line account.

It is a Monday afternoon and the stock market seems
to be taking a dive. Bob connects to www.host.com to
sell some of his shares. He notices that the security icon
of his browser is on, and no alerts have sounded. Bob
believes that everything is fine and signs on, using his
password, and makes the sale.

Two days later, Bob is back at work and the market
is on the rise. He signs on to www.host.com to buy
some shares, and finds out that he has no funds left in
his cash account. Bob does not know it, but Mallory
stole all of his money. The following sections will
show how Mallory may have performed this feat.

3. Certificate Masquerading Basics

The masquerade begins with Mallory sitting between
Bob and the on-line trading server. This is the
traditional “man-in-the-middle” scenario. The first task
for Mallory is to set up an environment where he can
monitor network traffic and change the initial,
unprotected handshake messages of the protocol at will
(S-HTTP, SSL). Next, Mallory creates avalid
certificate and keying material for the www.host.com
server. Once these two tasks are complete, Mallory is
ready to start the masquerade.

Figure 1 [6] shows how the basic masquerade is put
into play after Bob initiates a request for the
www.host.com server’s certificate information.
Typically, this is done by an HTTPS or S-HTTP request
in which the server responds with certificate
information.

Step 1Mallory intercepts the server’s certificate;
Step 2Mallory then substitutes hisvalid certificate for that

of the server’svalid certificate (Note: Mallory’s certifi
cate does not come from the Ultra Trust root CA, it is
linked to the BIMM Corporation root CA, both of
which are in Bob’s Web browser at work);

Step 3Bob’s Web browser generates a session key, encrypts it
with the public key found in Mallory’s certificate,
and sends it back to the server;

Step 4Mallory intercepts Bob’s message, decrypts the
(S-HTTP or SSL) encapsulated message to obtain the
session key, re-encrypts the message with the server’s
public key signed by the Ultra Trust CA, and sends it
on to the server.

This would be the first cycle of many messages in
which Mallory could simply monitor or tamper with S-
HTTP or SSL message traffic. Protocols that encrypt
session keys using the server certificate’s public key

E
a
v
e
s
d
r
o
p
p
i
n
g

3. Session key
created by the
client,
encrypted with
Mallory’s pub-

lic key

4. Session key

encrypted with

WWW server
public key

 Bob

Mallory

1. Server
Certificate2. Masquerading

 Certificate

www.host.com

Normal Protocol

 Figure 1 - Masquerade Initialization

may be susceptible to this masquerade. The goal is to
determine why the masquerade is possible and how to
prevent it. In order to do this, one must have an
understanding of Web browsers’ defense mechanisms.

4. WWW Browser Defense and
 Limitations

It should be pointed out that a Web browser-based
defense is not the only possible line of defense.
Directory services can also serve a purpose in an
enterprise setting; but on the WWW, Web browser
defense is the only practical means presently available.

A typical Web browser has two basic forms of
defense for validating and verifying server certificates.

Server authentication in the Web browser vali-
dates both the Internet identity of the server
and the integrity of the public key certificate.
For example, when Bob’s browser accesses a
secure URL pointing to host.com, the SSL pro-
tocol delivers the public key certificate from
host.com to Bob’s browser. First, the browser
verifies the digital signature on the certificate,
essentially verifying that its crypto checksum is
intact. Then the browser compares the host
name in the certificate against the host name in
the URL. If the two match, then Bob is defi-
nitely establishing an SSL session with
host.com. If the two do not match, then Bob
may be connected to a bogus server masquer-
ading as host.com.[7]

As the previous quote illustrates, the assumption in
the past was that a man-in-the-middle had to control the
server. Further discussion will show why Bob’s SSL
connection to host.com may be definite, yet still
compromised by Mallory.

The shortcoming in current Web browser defense is
that Bob must examine various items before he can
make a decision as to whether or not to connect to a site.
Keep in mind that in the example, Bob did not get a
security alert and therefore, he did not bother to examine
the server’s certificate. Even if he did, he may not have
come to the correct conclusion. The following analysis
will show some situations where it would have been
difficult for Bob to determine if his connection was
actually secure.

5. Server Certificate Masquerading

The following section will examine three forms of

server certificate-based masquerading which could have
been executed in the BIMM example. In each case, the
Web browser would not have given a warning. In the
second and third cases, the look-alike Web server
certificates would display with the proper CA names,
but they would not be digitally equivalent to the
authentic certificate.

5.1 Certificate Masquerading with the
 Subject Name - No Browser
 Warning

This form of masquerade is based on the lack of
granularity checking in present day browsers. Mallory
controls the BIMM CA and knows that Bob’s browser is
willing to accept certificates from both the Ultra Trust
and BIMM CAs. Mallory has the ability to create
certificates that chain up to the BIMM root CA, found in
Bob’s Web browser at work.

The masquerade takes place as follows. Mallory
creates avalid certificate that looks like an ordinary
certificate that is signed by the BIMM Corporation CA.
However, the common name (CN) points to the targeted
WWW server, www.host.com. There are no warnings
for unrecognized CA and URL binding given by the
browser. Table 1 illustrates this property. If Bob had
looked at the certificate, would he have known which
CA should have signed the www.host.com certificate?

Table 1

Subject: Subject:
US US
New York New York
New York New York
The Barter Group The Barter Group
On-Line Trade Div On-Line Trade Div
www.host.com www.host.com
Issuer: Issuer:
US US
Ultra Trust Security BIMM Corporation
 Services, Inc.
Certification Certification
 Authority Authority

5.2 Certificate Masquerading Using a
 Subordinate Certificate Authority or Cross
 Certification - No Browser Warning

A subordinate CA (SCA) is a CA that is created by a
higher level CA. The higher level CA can be a root or a
CA in the path of the root that has the authority to sign
CA certificates. Cross-certification is a process in
which two CAs securely exchange keying information

so that each can certify the trustworthiness of the
other’s keys. Essentially, cross-certification is simply
an extended form of third-party trust in which network
users in one CA domain implicitly trust users in all other
CA domains which are cross-certified with their own
CA. [1] In the case of the BIMM Corporation, Mallory
could have created a fraudulent Ultra Trust look-alike
SCA or a fraudulent Root CA and cross-certified with it.

The following three certificates shown in Table 2
demonstrate this property using a fraudulent SCA:
Certificate 1 is the BIMM root; Certificate 2 is a
fraudulent SCA; and certificate 3 is Mallory’s
www.host.com masquerading certificate. The crypto
handshake will show that the sender’s (Mallory’s)
certificate will chain correctly to the BIMM root in
Bob’s Web browser and that the sender has the private
key associated with the public key in the certificate. In
addition, the CN (www.host.com) will resolve correctly
with the URL.

Table 2

1. BIMM Root 2. Fraudulent 3. Masquerading
Ultra Trust Certificate
“Root”

Subject: Subject: Subject:
US US US
BIMM Cor- Ultra Trust New York
 poration Security Ser- New York
Certifica- vices, Inc. The Barter
 ion Auth- Certifica- Group
 ority ion Auth- On-Line Trade

 ority Division
www.host.
 com

Issuer: Issuer: Issuer:
US US US
BIMM Cor- BIMM Cor- Ultra Trust
 poration poration Security Ser-

 vices, Inc.
Certifica- Certifica- Certifica-
 ion Auth- ion Auth- ion Auth-
 ority ority ority

Since Mallory could have created a fraudulent SCA or
cross-certified CA, Bob would have had a difficult time
determining whether or not he had the “authentic”
certificate. If Bob did check, he would have seen the
fraudulent certificate signed by the fraudulent “Ultra
Trust” created by Mallory.

6. Name Constraints - No Defense in an
 Environment of Multiple Roots

 The following description of the X.509 name
constraint model is given by [3]:

The X.509 name constraint model allows any
certification authority to specify, when it certi-
fies another certification authority, exactly
what names are allowed in subsequent certifi-
cates in the certification path.

Although any given root CA may manage its name
space through name constraints, it cannot apply these
constraints across multiple root CAs. Name constraints
across multiple roots must be managed by the
application or an external service to the application.

7. Defending Against Certificate
 Masquerading

The following is an analysis of ways to prevent these
scenarios. In terms of certificate masquerading, the
following question must be answered: Does the
certificate presented belong to the organization in
question for the validity period given, and is it
representative of the purpose for which it is intended to
be used? There are several aspects to that question, only
some of which can be answered in this paper.

Solutions will be presented to show what Bob could
have done with his present Web browser and Web
technology. Solutions will then be suggested for
possible improvements for the future.

7.1 Present Web Technology Defenses

There are two possibilities of present day defense
that may have helped Bob: certificate fingerprints and
SSL 3.0 client authentication.

7.1.1 Certificate Fingerprints

Certificate fingerprints, like human fingerprints, are
unique. Generally speaking, they consist of an MD5 or
SHA-1 hash of the certificate. If Bob had prior
knowledge of the www.host.com certificate fingerprint,
he could have checked the certificate’s fingerprint and
determined that Mallory had slipped a masquerading
certificate into Bob’s protocol handshake with the
server.

This solution requires diligence on Bob’s part. He
would have to check the server’s certificate each time he

connects. Bob would also be required to have prior
knowledge of the server’s fingerprint. This solution
may work in this situation, but would require Bob to
securely acquire the fingerprint of every Web server
with which he attempted to perform secure
communications.

7.1.2 SSL 3.0 Client Authentication

SSL 3.0 supports client authentication; however,
what is unique about SSL 3.0 is that it supports a
CertificateVerify message that will allow the server to
detect any manipulation of the SSL 3.0 Handshake
Protocol. The assumption is that Mallory cannot create
a client certificate that the server is willing to accept as
Bob.

If Bob has a client certificate that has a signing
capability and the www.host.com server trusts Bob’s
certificate, then Bob’s browser can perform the SSL 3.0
CertificateVerify message. The sequence of events for
detecting Mallory’s attack would be as follows: Bob’s
browser performs the CertificateVerify which consists
of a hash of all handshake messages starting at client
hello up to but not including the CertificateVerify
message and then creates a signature over that hash. [4]
It is not important to know what all of the messages are
that make up the Handshake protocol; however, it is
important to know that the Handshake messages include
the server certificate. The browser sends the
CertificateVerify to the server. Since it is signed by
Bob, Mallory cannot change the message. Mallory
cannot create a fake CertificateVerify because he does
not have a client certificate that the server is willing to
accept. When the server receives Bob’s
CertificateVerify, the server will detect that the server
hello messages (server’s messages in the Handshake
protocol) were manipulated. This is because Bob’s
browser will calculate the CertificateVerify message
using Mallory’s certificate and not the server’s. Mallory
will be caught.

This solution works fairly well in applications where
the server has prior knowledge of the client’s certificate.
“In practice, SSL client authentication is primarily used
for special applications and not for general-purpose
authentication of Internet users.” [7] In Bob’s situation,
bringing a certificate in from home is out of the
question. He fears that loading a certificate on his
computer at work would leave him open to the
possibility of someone using his private key if he were
away from his computer. A smart card may solve this
problem.

7.2 Possible Browser Improvements

It is apparent that the browser should allow the
displaying of the certificate chain. In addition, features
should be added that allow the browser to enforce its
own form of policies. Both of these issues will be
discussed in the remaining sections.

7.2.1 Displaying of Certificate Chain

A certificate chain display should be available so that
the user can view a certificate chain from the end entity
certificate through the root certificate. This capability
would allow the user to quickly notice the masquerades
described in Sections 5.2. In both cases, Bob might see
that the Ultra Trust issuer of the end entity certificate is
linked to the BIMM Corporation’s CA.

This solution, however, does not help the novice to
determine whether or not there is a masquerade during
the session. It also requires the user to diligently check
the certificates each and every time.

7.2.2 CA Regions and Granularity
 Checking

Generally speaking, individuals like Bob perform
surfing that can be broken down into regions, based on
where on the Internet a user is surfing. The regions
could be Internet, intranet, and trusted sites. Intuitively,
the BIMM Corporation’s CA should only be used for
intranet regions and the Ultra Trust CA should be used
for Internet regions. This knowledge can be used in an
attempt to devise a solution that ties the CAs (root keys)
to their purpose.

An assumption must be made that the CAs used in
the Internet region will not perform any masquerading
amongst themselves, and that they will not issue
certificates to incorrect entities. For example, Ultra
Trust is the actual CA for www.host.com; no other CA
trusted as an Internet CA should issue a www.host.com
certificate to any other entity other than the on-line
trading company that owns www.host.com. If an
Internet-class CA was responsible for issuing a
masquerading certificate and got caught, it would
undermine its ability to claim to be trustworthy.

The following solution is proposed: Browsers
should allow users to assign CAs to regions based on
their purpose. There would be three regions, based on
Internet, intranet, and trusted sites.

The Internet region would be based upon any CAs
not assigned to an intranet or trusted site region. If a
server’s certificate is not signed by a CA in the intranet
or trusted site region, then the server certificate would

have to be able to be certified by a CA in the Internet
region. In Bob’s case, the Internet region would consist
of Ultra Trust CA and any other CAs that are distributed
with his Web browser. Addition of CAs to this region
should be strictly controlled. For the intranet region,
Bob would assign the BIMM Corporation’s CA with a
granularity check requiring the URL in the CN to
conform to the constraint of *.BIMM.com. If a finer
grain of control is called for within the intranet region,
then granularity checking similar to Table 3 may be
instituted. Users could be given the ability to require
that a certificate contain certain values in attributes
before allowing the use of the public key of the
certificate to be used for delivery of a session or
transaction key. For example, if a user has a habit of
connecting to *.BIMM.com domains, and all
*.BIMM.com Web servers are certified by the BIMM
CA, then the user could require that the certificate
adhere to the granularity check presented in Table 3.

Table 3

Subject: Issuer:
C=US C=US
S=* S=
L=* L=
O=BIMM Corporation O=BIMM Corporation
OU=* OU=
CN=*.BIMM.com

This ability limits the scope of masquerades. For
example, the browser may be willing to accept various
certificates for various CAs, but when connecting to
*.BIMM.com, the masquerader would have to be in the
certificate chain of the root CA. In order to reduce this
possibility, the example in Table 3 shows that for all US
based servers, the certificate must be signed by a US
based BIMM CA. If the BIMM Corporation PKI did not
support name constraints, and a foreign BIMM CA
attempted to masquerade as a US based server, the
browser would catch it. For trusted sites, a tighter
binding must be enforced.

A trusted site can best be described as a site that is
not authenticated by an intranet CA or an Internet CA.
It is a site that operates its own CA that a user must
connect to. The specific URL must be bound to the CA
in question. The difficulty in safely assigning a CA of
this type to the trusted site region is in creating the
initial secure binding of the CA information to the URL
in the client.

8. Conclusions

Any protocol and application that uses multiple roots
and the public key in a receiver’s certificate for passing
a session key may be a candidate for certificate
masquerading. The underlying problem in the
masquerade, if not apparent by now, is Gerald
Holzmann’s second element of a protocol specification
which states, “Each specification should include
explicitly the assumptions about the environment in
which the protocol is executed” [5]. Even if one
believes that one has air-tight security, the fundamental
question comes down to “Does one trust the host one is
connected to and the path to that host?”

Acknowledgments

Andrea Colegrove, Bill Kutz, Pete Sell, Doug Maughan,
Eric Harder, Mike Oehler, and Sonya Hunt provided sig-
nificant input to and review of this document.

References

[1] Curry, I.,The Concept of Trust in Network Security,
Entrust Technologies White Paper,
http://www.entrust.com/downloads/trust.pdf, 1995

[2] Felten, E. W., Balfanz, D., Dean, D., Wallach, D. S.,
Web Spoofing: An Internet Con Game, In

Proceedings of the 20th National Information
Systems Security Conference, October 1997
pp. 95-103.

[3] Ford, W., Baum, M. S.,Secure Electronic
Commerce,Prentice Hall PTR, Upper Saddle
River, N.J., 1997.

[4] Freier, A. O., Karlton, P., Kocher, P. C.,The SSL
Protocol Version 3.0
http://search.netscape.com/eng/ssl3/draft302.txt,
November 1996 (working draft).

[5] Holzmann, G. J.,Design and Validation of Computer
Protocols, Prentice Hall, Englewood Cliffs,
NJ,1991.

[6] Josang, A., Security Protocol Verification using
SPIN. InProceedings of SPIN95 the First SPIN
Workshop, http://netlib.bell-labs.com/netlib/spin/
ws95/papers.html, October 95.

[7] Smith, R. E.,Internet Cryptography, Addison-
Wesley, Reading, Massachusetts, July 1997.

