

Cryptography Basics and Symmetric Cryptography

Prof. Ravi Sandhu
Executive Director and Endowed Chair

Lecture 2

ravi.utsa@gmail.com www.profsandhu.com

Basic Concepts

Cryptographic Technology

SYMMETRIC KEY

Secret Key Single Key Conventional **ASYMMETRIC KEY**

Public Key Public-Private Key

I-C-S Cryptographic Technology

- Symmetric-key encryption
- Symmetric-key message authentication codes (MACs)
- Public-key encryption
- Public-key digital signatures
- Public-key key agreement
- Message digests (hash functions)
- Public-key certificates
- Challenge-response authentication

C-S Cryptographic Technology

- Symmetric-key encryption
- Symmetric-key message authentication codes (MAC)
- Public-key encryption
- Public-key digital signatures
- Public-key key agreement
- Message digests (hash functions)
- Public-key certificates
- Challenge-response authentication

SSL uses all of these

ATMs run on symmetric-key technology

Cryptographic Services

- confidentiality
 - traffic flow confidentiality
- integrity
- authentication
- > non-repudiation

Traditional formulation

Cryptographic Services

- confidentiality
 - crypto keys leak profusely via side channels
- integrity + authentication
 - no point having one without the other
- > non-repudiation
 - requires asymmetric cryptography
 - stronger form of integrity + authentication
- replay protection
 - beyond integrity?

Important insights

Safe Cryptography

- Symmetric-key cryptography
 - 128 bit or higher
- Public-key cryptography
 - 2048 bit or higher
- Message digests
 - 256 bit or higher
- > These numbers keep increasing
 - https://www.keylength.com/

Symmetric Encryption

Symmetric-Key Encryption

Symmetric-Key Encryption

- confidentiality depends only on secrecy of the key
 - size of key is critical
- Symmetric key systems do not scale well
 - ❖ with N parties we need to generate and distribute N*(N-1)/2 keys
- A and B can be people or computers

Master Keys and Session Keys

- master keys, long lifetime
 - prolonged use increases exposure
- session keys
 - short-term keys communicated by means of
 - master symmetric keys
 - public key technology

Cryptanalysis

- ciphertext only
 - cryptanalyst only knows ciphertext
- known plaintext
 - cryptanalyst knows some plaintextciphertext pairs
- chosen plaintext
- > chosen ciphertext

- \succ 40 bit key requires $2^{39} \approx 5 * 10^{11}$ trials on average (exportable from USA, early 1990's)
- >trials/second time required

1 20,000 years

10³ 20 years

10⁶ 6 days

10⁹ 9 minutes

10¹² 0.5 seconds

- >56 bit key requires $2^{55} \approx 3.6 * 10^{16}$ trials on average (DES, 1977)
- >trials/second time required

10 ⁹ year	S
	10 ⁹ year

10³ 10⁶ years

10⁶ 10³ years

10⁹ 1 year

10¹² 10 hours

- >80 bit key requires $2^{79} \approx 6 * 10^{23}$ trials on average (SKIPJACK, mid-1990s)
- >trials/second time required

1	10 ¹⁶ years
10 ³	10 ¹³ years
10 ⁶	10 ¹⁰ years
10 ⁹	10 ⁷ years
10 ¹²	10 ⁴ years

- ➤ 128 bit key requires $2^{127} \approx 2 * 10^{38}$ trials on average (AES-128, 2001)
- >trials/second time required

1	10 ³⁰ years
10 ³	10 ²⁷ years
10 ⁶	10 ²⁴ years
10 ⁹	10 ²¹ years
1012	10 ¹⁸ years

AES

- Advanced encryption standard, 2001
 - ➤ DES, 1977: designed by IBM. Blessed by NSA.
 - SKIPJACK, early 1990s: designed by NSA, declassified 1998
 - AES, 2001: designed by open international competition, winner was a European team
- > 3 key sizes: 128, 192, 256
- Block size: 128
 - Previously most (e.g. DES) used 64 bit block size
 - ❖ 128 bit block size is safer due to birthday attack

Symmetric-Key Encryption

Password Derived Keys

Password Derived Keys

Perfect Secrecy

Double DES

effective key size is only 57 bits due to meet-inthe-middle attack

Triple DES

➤ effective key size is 112 bits due to meet-in-themiddle attack

Electronic Code Book (ECB) Mode

- OK for small messages
- > identical data blocks will be identically encrypted

Cipher Block Chaining (CBC) Mode

Symmetric-Key Message Authentication Code (MAC)

INSECURE CHANNEL

INSECURE CHANNEL

Does not provide non-repudiation

Symmetric Encryption Based

Message-Digest Based

Symmetric Encryption Based

Message-Digest Based

Will revisit after discussing message digests