

Asymmetric Cryptography

Prof. Ravi Sandhu Executive Director and Endowed Chair

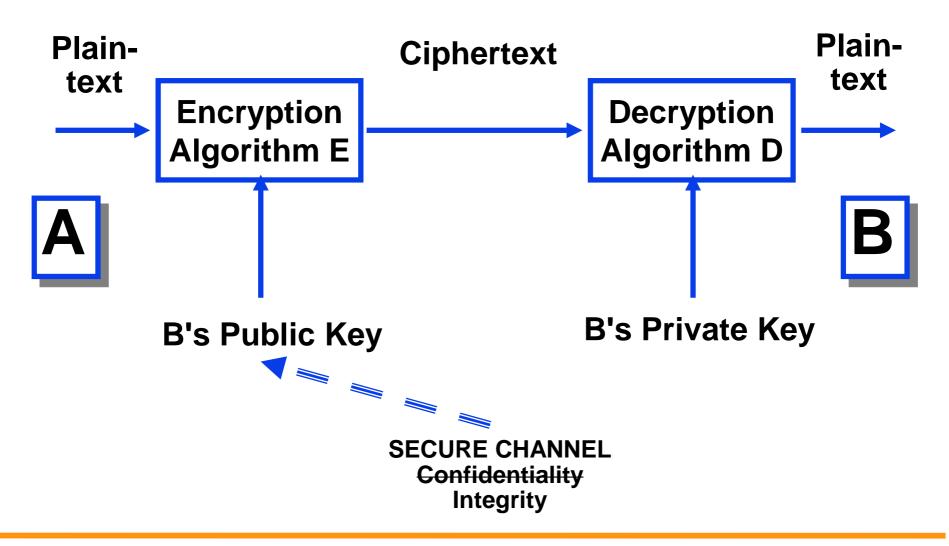
Lecture 3

ravi.utsa@gmail.com www.profsandhu.com

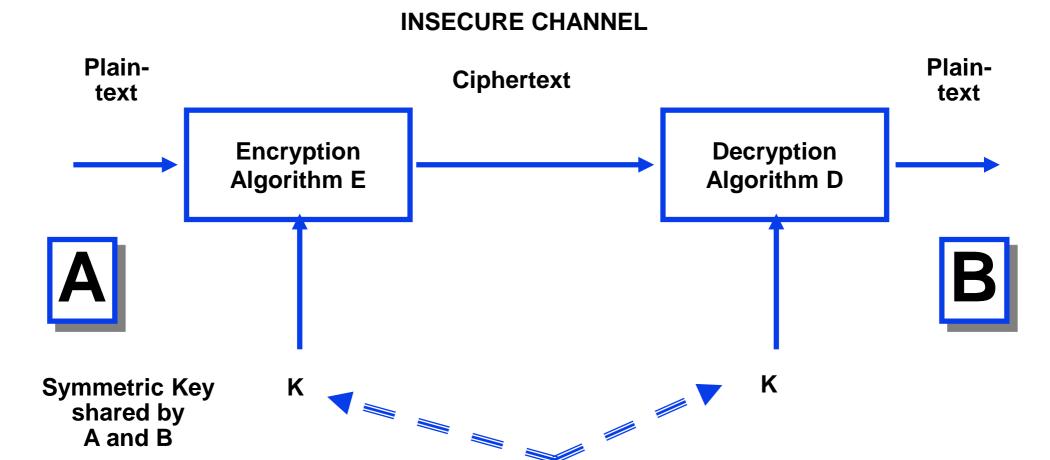
Asymmetric Encryption

Public-Key Encryption

INSECURE CHANNEL



Symmetric-Key Encryption



SECURE CHANNEL
Confidentiality
Integrity

Public-Key Encryption

- reduces the key distribution problem to a secure channel for authentic communication of public keys
- requires authentic dissemination of 1 public key/party
- scales well for large-scale systems
 - with N parties we need to generate and distribute N public keys

Known Public-Key Attack

- confidentiality based on infeasibility of computing B's private key from B's public key
- key sizes are large (2048 bits and above) to make this computation infeasible

Speed

- public key runs 1000 times slower than symmetric key
 - think 2g versus 4g on smartphone
- This large difference in speed is likely to remain
 - Maybe reduce to 100 times
- Use public keys to distribute symmetric keys, use symmetric keys to protect data

RSA Cryptosystem

- public key is (n,e)
- private key is d
- encrypt: C = M^e mod n
 decrypt: M = C^d mod n

in lecture

RSA Cryptosystem

- public key is (n,e)
- private key is d
- \triangleright encrypt: $C = M^{\theta} \mod n$
- \triangleright decrypt: M = C^d mod n

X Not covered in lecture This naive use of RSA is not secure but will suffice for our purposes

RSA Key Generation

- choose 2 large prime numbers p and q
- \triangleright compute n = p * q
- pick e relatively prime to (p-1)*(q-1)
- > compute d, $e^*d = 1 \mod (p-1)^*(q-1)$
- publish (n,e)
- > keep d private (and discard p, q)

X Not covered in lecture

RSA Key Protection

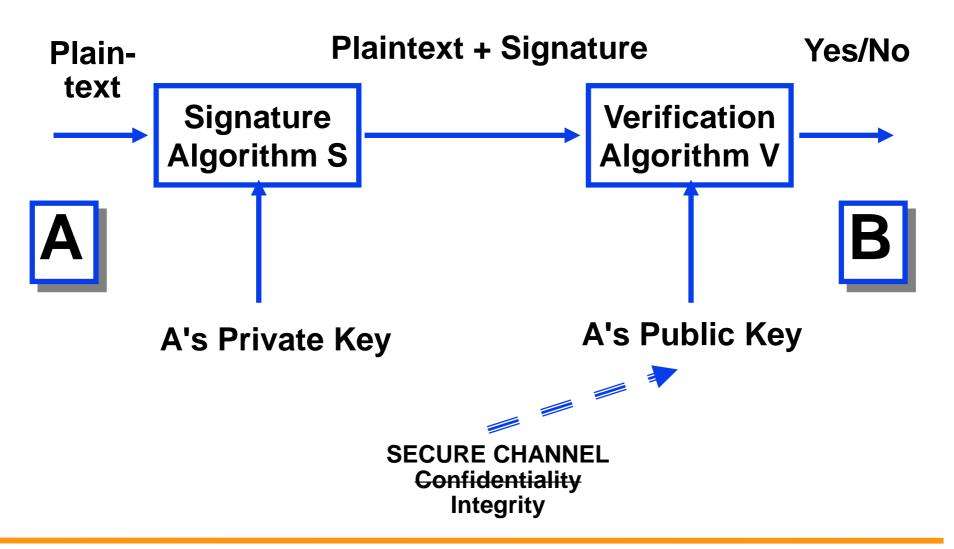
- > compute d, $e^*d = 1 \mod (p-1)^*(q-1)$
- if factorization of n into p*q is known, this is easy to do
- security of RSA is no better than the difficulty of factoring n into p, q

X Not covered in lecture

Asymmetric Digital Signatures

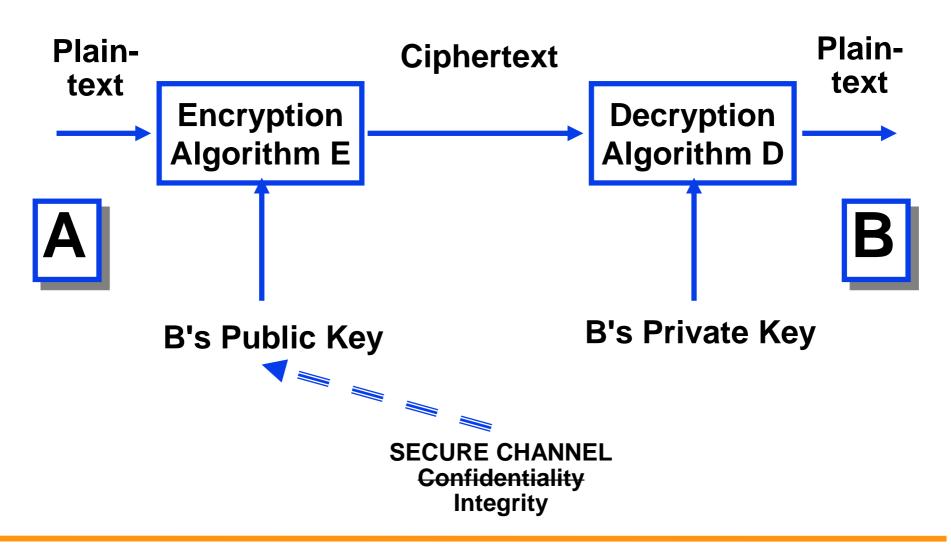
Public-Key Digital Signature

INSECURE CHANNEL

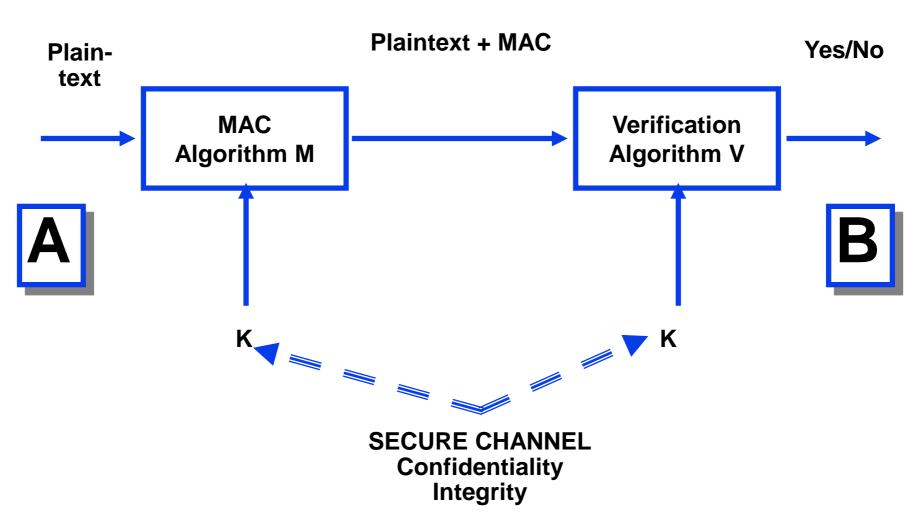


Compare Public-Key Encryption

INSECURE CHANNEL



Compare Symmetric Key MAC



I-C-S Digital Signatures in RSA

- RSA has a unique property, not shared by other public key systems
- Encryption and decryption commute
- > (M^e mod n)^d mod n = M encryption
- \rightarrow (M^d mod n)^e mod n = M signature
- Same public key can be use for encryption and signature
 - But not recommended

Message Digest

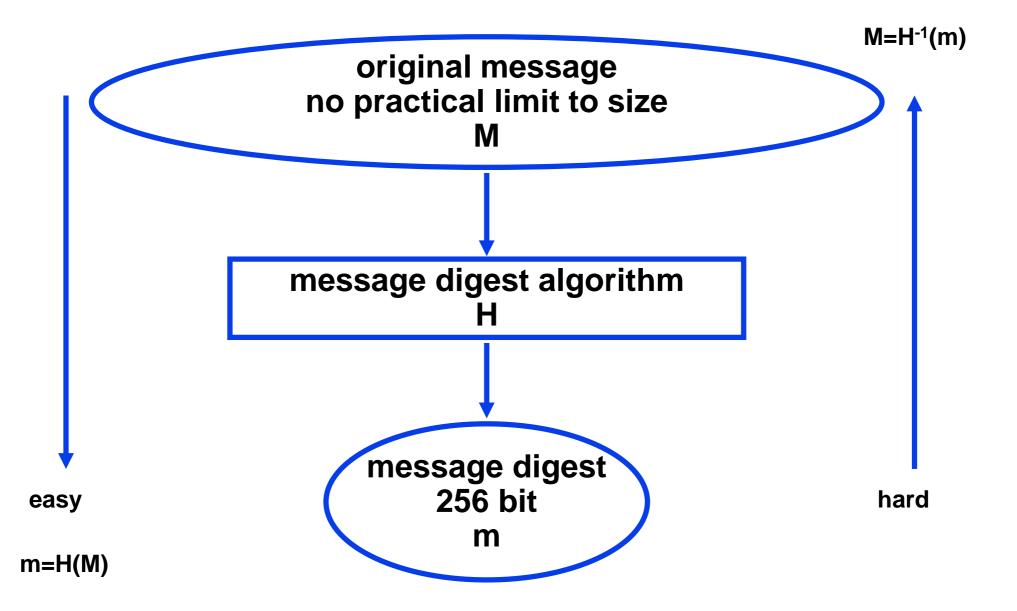
Encryption Speed Revisited

- public key runs 1000 times slower than symmetric key
 - think 2g versus 4g on smartphone
- This large difference in speed is likely to remain
 - Maybe reduce to 100 times
- Use public keys to distribute symmetric keys, use symmetric keys to protect data

Digital Signature Speed

- public key runs 1000 times slower than symmetric key
 - think 2g versus 4g on smartphone
- This large difference in speed is likely to remain
 - Maybe reduce to 100 times
- Sign the message digest (or hash) not the message

Message Digest (Hash)



Desired Characteristics

- weak hash function
 - difficult to find M' such that H(M')=H(M)
- given M, m=H(M) try messages at random to find M' with H(M')=m
 - ❖ 2^k trials on average, k=128 to be safe

Desired Characteristics

- strong hash function
 - difficult to find any two M and M' such that H(M')=H(M)
- try pairs of messages at random to find M and M' such that H(M')=H(M)
 - ❖ 2^{k/2} trials on average, k=256 to be safe

Birthday paradox

Message Authentication Code

Symmetric Encryption Based

CBC-MAC

MAC has same size as block size of underlying cryptosystem

CCM mode Provides confidentiality and integrity

Message-Digest Based

HMAC

Hash the message and a symmetric key

MAC has same size as underlying hash function or can truncate

Revisiting after discussing message digests

Asymmetric Key Exchange

Diffie-Hellman Key Agreement

y_A=a^xA mod p public key

y_B=a^xB mod p public key

private key

private key x_B

 $k = y_B^{x_A} \mod p = y_A^{x_B} \mod p = a^{x_A^{*x_B}} \mod p$

system constants: p: prime number, a: integer

X Not covered in lecture

Diffie-Hellman Key Agreement

- security depends on difficulty of computing x given y=a^x mod p
- called the discrete logarithm problem

X Not covered in lecture

Diffie-Hellman Man-in-the-Middle Attack

X Not covered in lecture Public keys need to be authenticated