
22

Computer Viruses

Theory and Experiments

Fred Cohen
Dept. of Computer Science and Electric Engmeering. Lehigh

University, Bethlehem, PA 18215, USA, and The Foundation for

Computer Integrity Research, Pittsburgh, PA 15217, USA.

This paper introduces “computer viruses” and examines
their potential for causing widespread damage to computer
systems. Basic theoretical results are presented, and the infeasi-
bility of viral defense in large classes of systems is shown.
Defensive schemes are presented and several experiments are
described.

Keywords: Computer Viruses, System Integrity, Data Integrity.

Fred Cohen received a B.S. in Electri-
cal Engineering from Carnegie-Mellon
University in 1977, an MS in Informa-
tion Science from the University of
Pittsburgh in 1981 and a Ph.D. in
Electrical Engineering from the Uni-
versity of Southern California in 1986.

He has worked as a freelance con-
sultant since 1977, and has designed
and implemented numerous devices
and systems. He is currently a profes-
sor of Computer Science and Electri-
cal Engineering at Lehigh University,

Chairman and Director of Engineering at the Foundation for
Computer Integrity Research, and President of Legal Software
Incorporated.

He is a member of the ACM, IEEE? and IACR. His current
research interests include computer vtruses, information flow
model, adaptive systems theory, genetic models of computing,
and evolutionary systems.

North-Holland
Computers & Security 6 (1987) 22-35

1. Introduction

This paper defines a major computer security
problem called a virus. The virus is interesting
because of its ability to attach itself to other
programs and cause them to become viruses as
well. Given the widespread use of sharing in cur-
rent computer systems, the threat of a virus carry-
ing a Trojan horse [1,20] is significant. Although a
considerable amount of work has been done in
implementing policies to protect against the illicit
dissemination of information [4,7], and many sys-
tems have been implemented to provide protection
from this sort of attack [12,19,21,22], little work
has been done in the area of keeping information
entering an area from causing damage [5,18]. There
are many types of information paths possible in
systems, some legitimate and authorized, and
others that may be covert [18], the most com-
monly ignored one being through the user. We will
ignore covert information paths throughout this
paper.

The general facilities exist for providing prov-
ably correct protection schemes [9], but they de-
pend on a security policy that is effective against
the types of attacks being carried out. Even some
quite simple protection systems cannot be proven
‘safe’ [14]. Protection from denial of services re-
quires the detection of halting programs which is
well known to be undecidable [ll]. The problem
of precisely marking information flow within a
system [lo] has been shown to be NP-complete.
The use of guards for the passing of untrustworthy
information [25] between users has been ex-
amined, but in general depends on the ability to
prove program correctness which is well known to
be NP-complete.

The Xerox worm program [23] has demon-
strated the ability to propagate through a network,
and has even accidentally caused denial of services.
In a later variation, the game of ‘core wars’ [8] was
invented to allow two programs to do battle with
one another. Other variations on this theme have
been reported by many unpublished authors,
mostly in the context of nighttime games played
between programmers. The term virus has also
been used in conjunction with an augmentation to

0167~4048/87/$3.50 0 1987, Elsevier Science Publishers B.V. (North-Holland)

F. Cohen / Computer Viruws 23

APL in which the author places a generic call at the
beginning of each function which in turn invokes

a preprocessor to augment the default APL inter-
preter [13].

The potential threat of a widespread security
problem has been examined [15] and the potential
damage to government, financial, business, and
academic institutions is extreme. In addition, these
institutions tend to use ad hoc protection mecha-
nisms in response to specific threats rather than
sound theoretical techniques [16]. Current military
protection systems depend to a large degree on
isolationism [3]; however, new systems are being
developed to allow ‘multilevel’ usage [17]. None of
the published proposed systems defines or imple-
ments a policy which could stop a virus.

In this paper, we open the new problem of
protection from computer viruses. First we ex-
amine the infection property of a virus and show
that the transitive closure of shared information
could potentially become infected. When used in
conjunction with a Trojan horse, it is clear that
this could cause widespread denial of services
and/or unauthorized manipulation of data. The
results of several experiments with computer
viruses are used to demonstrate that viruses are a
formidable threat in both normal and high secur-
ity operating systems. The paths of sharing, transi-
tivity of information flow, and generality of infor-
mation interpretation are identified as the key
properties in the protection from computer viruses,
and a case by case analysis of these properties is
shown. Analysis shows that the only systems with
potential for protection from a viral attack are
systems with limited transitivity and limited shar-
ing, systems with no sharing, and systems without
general interpretation of information (Turing ca-
pability). Only the first case appears to be of
practical interest to current society. In general,
detection of a virus is shown to be undecidable
both by a-priori and runtime analysis, and without
detection, cure is likely to be difficult or impossi-
ble.

Several proposed countermeasures are ex-
amined and shown to correspond to special cases
of the case by case analysis of viral properties.
Limited transitivity systems are considered hope-
ful, but it is shown that precise implementation is
intractable, and imprecise policies are shown in
general to lead to less and less usable systems with
time. The use of system-wide viral antibodies is

examined, and shown to depend in general on the
solutions to intractable problems.

It is concluded that the the study of computer
viruses is an important research area with poten-
tial applications to other fields, that current sys-
tems offer little or no protection from viral attack,
and that the only provably ‘safe’ policy as of this
time is isolationism.

2. A Computer Virus

We define a computer ‘virus’ as a program that
can ‘infect’ other programs by modifying them to
include a possibly evolved copy of itself. With the
infection property, a virus can spread throughout
a computer system or network using the authori-
zations of every user using it to infect their pro-
grams. Every program that gets infected may also
act as a virus and thus the infection grows.

The following pseudo-program shows how a
virus might be written in a pseudo-computer lan-

guage. The ‘ := ’ symbol is used for definition, the
‘:’ symbol labels a statement, the ‘;’ separates
statements, the ‘ = ’ symbol is used for assignment
or comparison, the ‘ - ’ symbol stands for not, the
‘{‘and’}’ symbols group sequences of statements
together, and the ‘ . . . ’ symbol is used to indicate
that an irrelevant portion of code has been left
implicit.

This example virus (V) (Fig. 1) searches for an
uninfected executable file (E) by looking for ex-
ecutable files without the “1234567” in the begin-
ning, and prepends V to E, turning it into an
infected file (I). V then checks to see if some

program virus :=
(1234567;

subroutine infect-executable :=
(loop: file = random-executable;
if first-line-of-file = 1234567

then goto loop;
prepend virus to file;
>

subroutine do-damage :=
{whatever damage is desired)

subroutine trigger-pulled :=
{return true on desired conditions)

main-program :=
(infect-executable;
if trigger-pulled then do-damage;
got0 next;
?

next:}

Fig. 1. Simple virus ‘V'

triggering condition is true, and does damage.
Finally, V executes the rest of the program it was
prepended ’ to. When the user attempts to execute
E, I is executed in its place; it infects another file
and then executes as if it were E. With the excep-
tion of a slight delay for infection, 1 appears to be
E until the triggering condition causes damage.
We note that viruses need not prepend themselves
nor must they be restricted to a single infection
per use.

A common misconception of a virus relates it
to programs that simply propagate through net-
works. The worm program, ‘core wars,’ and other
similar programs have done this, but none of them
actually involve infection. The key property of a
virus is its ability to infect other programs, thus
reaching the transitive closure of sharing between
users. As an example, if V infected one of user
A’s executables (E), and user B then ran E, V

could spread to user B’s files as well.
It should be pointed out that a virus need not

be used for evil purposes or be a Trojan horse. As
an example, a compression virus could be written
to find uninfected executables, compress them
upon the user’s permission, and prepend itself to
them. Upon execution, the infected program de-
compresses itself and executes normally. Since it
always asks permission before performing services,
it is not a Trojan horse, but since it has the
infection property, it is still a virus. Studies indi-
cate that such a virus could save over 50% of the
space taken up by executable files in an average
system. The performance of infected programs
would decrease slightly as they are decompressed,
and thus the compression virus implements a par-
ticular time space tradeoff. A sample compression
virus could be written as in Fig. 2.

This program (C) finds an uninfected executa-
ble (E), compresses it, and prepends C to form an
infected executable (I). It then uncompresses the
rest of itself into a temporary file and executes
normally. When I is run, it will seek out and
compress another executable before decom-
pressing E into a temporary file and executing it.
The effect is to spread through the system com-
pressing executable files, decompressing them as
they are to be executed. Users will experience

1 The term ‘prepend’ is used in a technical fence in this paper
to mean ‘attach at the beginning'.

program compression-virus :=
(01234567;

subroutine infect-executable :=
{loop: file = random-executable.
if first-line-of-file = 0123456?

then goto loop;
compr~ess file;
prepend compression-virus to file;
>

main-program :=
(if ask-permission

then infect-executable;.
uncompress the-rest-of-this-file

into tmpfile;
run tmpfile;
?

> -

Fig. 2. Compression virus ‘C'

significant delays as their executables are decom-
pressed before being run.

As a more threatening example, let us suppose
that we modify the program V by specifying
trigger-pulled as true after a given date and time,
and specifying do-damage as an infinite loop.
With the level of sharing in most modern systems,
the entire system would likely become unusable as
of the specified date and time. A great deal of
work might be required to undo the damage of
such a virus. This modification is shown in Fig. 3.

As an analogy to a computer virus, consider a
biological disease that is 100% infectious, spreads
whenever animals communicate, kills all infected
animals instantly at a given moment, and has no
detectable side effects until that moment. If a
delay of even one week were used between the
introduction of the disease and its effect, it would
be very likely to leave only a few remote villages
alive, and would certainly wipe out the vast major-
ity of modem society. If a computer virus of this
type could spread through the computers of the
world, it would likely stop most computer use for
a significant period of time, and wreak havoc on
modern government, financial, business, and
academic institutions.

subroutine do-damage :-
{loop: got0 loop;)

subroutine trigger-pulled :-
(if year > 1984 then return(true)

otherwise return(false);

Fig. 3. A denial of services virus

F. Cohen / Computer Viruses 25

3. Prevention of Computer Viruses

We have introduced the concept of viruses to the
reader, and actual viruses to systems. Having
planted the seeds of a potentially devastating at-
tack, it is appropriate to examine protection mech-
anisms which might help defend against it. We
examine here prevention of computer viruses.

3. I Basic Limitations

In order for users of a system to be able to share
information, there must be a path through which
information can flow from one user to another.
We make no differentiation between a user and a
program acting as a surrogate for that user since a
program always acts as a surrogate for a user in
any computer use and we are ignoring the covert
channel through the user. Assuming a Turing
machine model for computation, we can prove
that if information can be read by a user with
Turing capability, then it can be copied, and the
copy can then be treated as data on a Turing
machine tape.

Given a general purpose system in which users
are capable of using information in their possession
as they wish, and passing such information as they
see fit to others, it should be clear that the ability
to share information is transitive. That is, if there
is a path from user A to user B, and there is a
path from user B to user C, then there is a path
from user A to user C with the witting or unwit-
ting cooperation of user B.

Finally, there is no fundamental distinction be-
tween information that can be used as data, and
information that can be used as program. This can
be clearly seen in the case of an interpreter that
takes information edited as data, and interprets it
as a program. In effect, information only has
meaning in its interpretation.

In a system where information can be interpre-
ted as a program by its recipient, that interpreta-
tion can result in infection as shown above. If
there is sharing, infection can spread through the
interpretation of shared information. If there is no
restriction on the transitivity of information flow,
then the information can reach the transitive
closure of information flow starting at any source.
Sharing, transitivity of information flow, and gen-
erality of interpretation thus allow a virus to spread
to the transitive closure of information flow start-
ing at any given source.

Clearly, if there is no sharing, there can be no
dissemination of information across information
boundaries, and thus no external information can
be interpreted, and a virus cannot spread outside a
single partition. This is called ‘isolationism.’ Just
as clearly, a system in which no program can be
altered and information cannot be used to make
decisions cannot be infected since infection re-
quires the modification of interpreted informa-
tion. We call this a ‘fixed first order functionality’
system. We should note that virtually any system
with real usefulness in a scientific or development
environment will require generality of interpreta-
tion, and that isolationism is unacceptable if we
wish to benefit from the work of others. Neverthe-
less, these are solutions to the problem of viruses
which may be applicable in limited situations.

3.2 Partition Models

Two limits on the paths of information flow can
be distinguished, those that partition users into
closed proper subsets under transitivity, and those
that do not. Flow restrictions that result in closed
subsets can be viewed as partitions of a system
into isolated subsystems. These limit each infec-
tion to one partition. This is a viable means of
preventing complete viral takeover at the expense
of limited isolationism, and is equivalent to giving
each partition its own computer.

The integrity model [5] is an example of a
policy that can be used to partition systems into
closed subsets under transitivity. In the Biba
model, an integrity level is associated with all
information. The strict integrity properties are the
dual of the Bell-LaPadula properties; no user at a
given integrity level can read an object of lower
integrity or write an object of higher integrity. In
Biba’s original model, a distinction was made be-
tween read and execute access, but this cannot be
enforced without restricting the generality of in-
formation interpretation since a high integrity
program can write a low integrity object, make
low integrity copies of itself, and then read low
integrity input and produce low integrity output.

If the integrity model and the Bell-LaPadula
model coexist, a form of limited isolationism re-
sults which divides the space into closed subsets
under transitivity. If the same divisions are used
for both mechanisms (higher integrity corresponds
to higher security), isolationism results since infor-

26 F. Cohen / Cornpurer Vwures

mation moving up security levels also moves up
integrity levels, and this is not permitted. When
the Biba model has boundaries within the Bell-
LaPadula boundaries, infection can only spread
from the higher integrity levels to lower ones
within a given security level. Finally, when the
Bell-LaPadula boundaries are within the Biba
boundaries, infection can only spread from lower
security levels to higher security levels within a
given integrity level. There are actually nine cases
corresponding to all pairings of lower boundaries
with upper boundaries, but the three shown
graphically in Fig. 4 are sufficient for understand-
ing.

Biba’s work also included two other integrity
policies, the ‘low water mark’ policy which makes
output the lowest integrity of any input, and the
‘ring’ policy in which users cannot invoke every-
thing they can read. The former policy tends to
move all information towards lower integrity
levels, while the latter attempts to make a distinc-

Biba B-L Result

Biba

Biba B-L Result

Fig. 4. Pairings of lower boundaries with upper boundaries.

Top: Biba within B-L; middle: B-L within Biba; bottom: same
divisions. \\ cannot write; // cannot read; X X no access;

\+/=x.

tion that cannot be made with generalized infor-
mation interpretation.

Just as systems based on the Bell-LaPadula
model tend to cause all information to move to-
wards higher levels of security by always increas-
ing the level to meet the highest level user, the
Biba model tends to move all information towards
lower integrity levels by always reducing the in-
tegrity of results to that of the lowest incoming
integrity. We also know that a precise system for
integrity is NP-complete (just as its dual is NP-
complete).

The most trusted programmer is (by definition)
the programmer that can write programs execut-
able by the most users. In order to maintain the
Bell-LaPadula policy, high level users cannot write
programs used by lower level users. This means
that the most trusted programmers must be those
at the lowest security level. This seems contradic-
tory. When we mix the Biba and Bell-LaPadula
models, we find that the resulting isolationism
secures us from viruses, but does not permit any
user to write programs that can be used throughout
the system. Somehow, just as we allow encryption
or declassification of data to move it from higher
security levels to lower ones, we should be able to
use program testing and verification to move in-
formation from lower integrity levels to higher
ones.

Another commonly used policy that partitions
systems into closed subsets is the compartment
policy used in typical military applications. This
policy partitions users into compartments, with
each user only able to access information required
for their duties. If every user has access to only
one compartment at a time, the system is secure
from viral attack across compartment boundaries
because they are isolated. Unfortunately, in cur-
rent systems, users may have simultaneous access
to multiple compartments. In this case, infection
can spread across these boundaries to the transi-
tive closure of information flow.

3.3 Flow Models

In policies that do not partition systems into
closed proper subsets under transitivity, it is possi-
ble to limit the extent over which a virus can
spread. The ‘flow distance’ policy implements a
distance metric by keeping track of the distance
(number of sharings) over which data has flowed.

F. Cohen / Computer Viruses 27

The rules are; the distance of output information
is the maximum of the distances of input informa-
tion, and the distance of shared information is one

more than the distance of the same information
before sharing. Protection is provided by en-

forcing a threshold above which information be-
comes unusable. Thus a file with distance 8 shared
into a process with distance 2 increases the pro-
cess to distance 9, and any further output will be
at least that distance.

The ‘flow list’ policy maintains a list of all
users who have had an effect on each object. The
rule for maintaining this list is; the flow list of
output is the union of the flow lists of all inputs
(including the user who causes the action). Protec-
tion takes the form of an arbitrary Boolean ex-
pression on flow lists which determines accessibil-
ity. This is a very general policy, and can be used
to represent any of the above policies by selecting
proper Boolean expressions.

As an example, user A could only be allowed to
access information written by users (B and C) or
(B and D), but not information written by B, C,
or D alone. This can be used to enforce certifica-
tion of information by B before C or D can pass it
to A. The flow list system can also be used to
implement the Biba and the distance models. As
an example, the distance model can be realized as
follows:

oR(users < distance 1)

AND NOT(OR(users > distance 1))

A further generalization of flow lists to flow
sequences is possible, and appears to be the most
general scheme possible for implementing a flow
control policy.

In a system with unlimited information paths,
limited transitivity may have an effect if users do
not use all available paths, but since there is
always a direct path between any two users, there
is always the possibility of infection. As an exam-
ple, in a system with transitivity limited to a
distance of 1 it is ‘safe’ to share information with
any user you ‘trust’ without having to worry about
whether that user has incorrectly trusted another
user.

3.4 Limited Interpretation

With limits on the generality of interpretation less
restrictive than fixed first order interpretation, the

ability to infect is an open question because infec-
tion depends on the functions permitted. Certain

functions are required for infection. The ability to
write is required, but any useful program must
have output. It is possible to design a set of
operations that do not allow infection in even the
most general case of sharing and transitivity, but
it is not known whether any such set includes non
fixed first order functions.

As an example, a system with only the function
‘display-file’ can only display the contents of a file
to a user, and cannot possibly modify any file. In
fixed database or mail systems this may have
practical applications, but certainly not in a devel-
opment environment. In many cases, computer
mail is a sufficient means of communications and
so long as the computer mail system is partitioned
from other applications so that no information
can flow between them except in the covert chan-
nel through the user, this may be used to prevent
infection.

Although no fixed interpretation scheme can
itself be infected, a high order fixed interpretation
scheme can be used to infect programs written to
be interpreted by it. As an example, the microcode
of a computer may be fixed, but code in the
machine language it interprets can still be infected.
LISP, APL, and Basic are all examples of fixed
interpretation schemes that can interpret informa-
tion in general ways. Since their ability to inter-
pret is general, it is possible to write a program in
any of these languages that infects programs in
any or all of them.

In limited interpretation systems, infection can-
not spread any further than in general interpreta-
tion systems, because every function in a limited
system must also be able to be performed in a
general system. The previous results therefore pro-
vide upper bounds on the spread of a virus in
systems with limited interpretation.

3.5 Precision Problems

Although isolationism and limited transitivity offer
solutions to the infection problem, they are not
ideal in the sense that widespread sharing is gener-
ally considered a valuable tool in computing. Of
these policies, only isolationism can be precisely
implemented in practice because tracing exact in-
formation flow requires NP-complete time, and
maintaining markings requires large amounts of

28 F. Cohen / Computer Viruws

General lnterpretatlon Llmlted Interpretation

tronsltivity transitivity

Fig. 5. Limits of viral infection

space [7]. This leaves us with imprecise techniques.
The problem with imprecise techniques is that
they tend to move systems towards isolationism.
This is because they use conservative estimates of
effects in order to prevent potential damage. The
philosophy behind this is that it is better to be safe
than sorry.

The problem is that when information has been
unjustly deemed unreadable by a given user, the
system becomes less usable for that user. This is a
form of denial of services in that access to infor-
mation that should be accessible is denied. Such a
system always tends to make itself less and less
usable for sharing until it either becomes com-
pletely isolationist or reaches a stability point
where all estimates are precise. If such a stability
point existed, we would have a precise system for
that stability point. Since we know that any pre-
cise stability point besides isolationism requires
the solution to an NP-complete problem, we know
that any non NP-complete solution must tend
towards isolationism.

3.6 Summary and Conclusions

Fig. 5 summarizes the limits placed on viral
spreading by the preventative protection just ex-
amined. Unknown is used to indicate that the
specifics of specific systems are known, but that
no general theory has been shown to predict limi-
tations in these categories.

4. Cure of Computer Viruses

Since prevention of computer viruses may be in-
feasible if sharing is desired, the biological anal-
ogy leads us to the possibility of cure as a means
of protection. Cure in biological systems depends
on the ability to detect a virus and find a way to

overcome it. A similar possibility exists for com-
puter viruses. We now examine the potential for
detection and removal of a computer virus.

4.1 Detection of Viruses

In order to determine that a given program ‘P ’ is
a virus, it must be determined that P infects other
programs. This is undecidable since P could in-
voke any proposed decision procedure ‘D ’ and
infect other programs if and only if D determines
that P is not a virus. We conclude that a program
that precisely discerns a virus from any other
program by examining its appearance is infeasible.
In the following modification to program V (Fig.
6), we use the hypothetical decision procedure D

which returns “true” iff its argument is a virus, to
exemplify the undecidability of viral detection.

By modifying the main program of V, we have
assured that, if the decision procedure D de-
termines CV to be a virus, CV will not infect
other programs and thus will not act as a virus. If
D determines that CV is not a virus, CV will
infect other programs and thus be a virus. There-
fore, the hypothetical decision procedure D is self
contradictory, and precise determination of a virus
by its appearance is undecidable.

4.2 Evolutions of a Virus

In our experiments, some viruses took under 100
bytes to implement on a general purpose com-
puter. Since we could interleave any program that
doesn’t halt, terminates in finite time, and does
not overwrite the virus or any of its state varia-
bles, and still have a virus, the number of possible
variations on a single virus is clearly very large. In
this example of an evolutionary virus EV, we

augment V by allowing it to add random state-

program contradictory-virus :=
(. . .
main-program :=

(if -D(contradictory-virus) then
{infect-executable;
if trigger-pulled then

do-damage;
>

got. 0 next ;
>

>

Fig. 6. Contradiction of the decidability of a virus ‘C’

F. Cohen / Cornpurer Viruses 29

ments between any two necessary statements (Fig.

7).
In general, proof of the equivalence of two

evolutions of a program ‘P’ (‘PI’ and ‘P2’) is
undecidable because any decision procedure ‘D ’
capable of finding their equivalence could be in-
voked by P, and P2. If found equivalent they
perform different operations, and if found differ-
ent they act the same, and are thus equivalent.
This is exemplified by the modification in Fig. 8
to program EV in which the decision procedure D
returns “true” iff two input programs are equiv-
alent.

The program UEV evolves into one of two
types of programs, PI or P2. If the program type is
P, the statement labeled “zzz” will become:

if D(P,, P,) thenprint 1;

while if the program type is P2, the statement
labeled “zzz” will become:

if D(PI, P,) then print 0;

The two evolutions each call decision procedure D
to decide whether they are equivalent. If D indi-
cates that they are equivalent, then P, will print a
1 while Pz will print a 0, and D will be con-
tradicted. If D indicates that they are different,
neither prints anything. Since they are otherwise
equal, D is again contradicted. Therefore, the
hypothetical decision procedure D is self con-
tradictory, and the precise determination of the

program evolutionary-virus :=
c . . .
subroutine print-random-statement :=

{print (random-variable-name, "=",
random-variable-name);

loop: if random-bit = 1 then
{print (random-operator,

random-variable-name);
goto loop;)

print (semicolon);
1

subroutine copy-virus-with-inserti
(loop: copy evolutionary-virus

to virus till semi
if random-bit = 1 then

print-random-statement;
if -end-of-input-file goto loop
>

main-program :=
{copy-with-random-insertions;
infect-executable; __ . _
if trigger-pulled then do-damage;
got 0 next ; >

next:)

Fig. 7. Evolutionary virus ‘EV'

ons :=

colon;

program undecidable-E'4 :=
c
szioutine copy-with-undecidable :=

{copy undecidable-EV to
file till line-starts-with zzz;

if file = Pl then
print ("if D(Pl,P2) print 1;");

if file = P2 then
print ("if D(Pl,P2) print 0;");

copy undecidable-EV to
file till end-of-input-file;

1

main-program :-
{if random-bit = 0 then file = Pl

otherwise file = P2;
copy-with-undecidable;
zzz :
infect-executable;
if trigger-pulled then do-damage;
got0 next;)

next:)

Fig. 8. Undecidable equivalenceofevolutionsofavirus‘UEV'.

equivalence of these two programs by their ap-
pearance is undecidable.

Since both P, and P2 are evolutions of the
same program, the equivalence of evolutions of a
program is undecidable, and since they are both
viruses, the equivalence of evolutions of a virus is
undecidable. Program UEV also demonstrates that
two unequivalent evolutions can both be viruses.

An alternative to detection by appearance, is
detection by behavior. A virus, just as any other
program, acts as a surrogate for the user in re-
questing services, and the services used by a virus
are legitimate in legitimate uses. The behavioral
detection question then becomes one of defining
what is and is not a legitimate use of a system
service, and finding a means of detecting the
difference.

As an example of a legitimate virus, a compiler
that compiles a new version of itself is in fact a
virus by the definition given here. It is a program
that ‘infects’ another program by modifying it to
include an evolved version of itself. Since the viral
capability is in most compilers, every use of a
compiler is a potential viral attack. The viral activ-
ity of a compiler is only triggered by particular
inputs, and thus in order to detect triggering, one
must be able to detect a virus by its appearance.
Since precise detection by behavior in this case
leads to precise detection by the appearance of the
inputs, and since we have already shown that
precise detection by appearance is undecidable, it
follows that precise detection by behavior is also
undecidable.

30 F. Cohn / Computer Vrrwe.\

4.3 Limited Viral Protection

A limited form of virus has been designed [24] in
the form of a special version of the C compiler
that can detect the compilation of the login pro-
gram and add a Trojan horse that lets the author
login. Thus the author could access any Unix
system with this compiler. In addition, the com-
piler can detect compilations of new versions of
itself and infect them with the same Trojan horse.

As a countermeasure, we can devise a new login
program (and C compiler) sufficiently different

from the original as to make its equivalence very
difficult to determine. If the ‘best AZ program of
the day’ would be incapable of detecting their
equivalence in a given amount of time, and the
compiler performed its task in less than that much
time, it could be reasonably assumed that the
virus could not have detected the equivalence, and
therefore would not have propagated itself. If the
exact nature of the detection were known, it would
likely be quite simple to work around it. Once a
virus free compiler is generated, the old (and
presumably more efficient) version can be recom-
piled for further use.

Although we have shown that in general it is
impossible to detect viruses, any particular virus
can be detected by a particular detection scheme.
For example, virus V could easily be detected by
looking for 1234567 as the first line of an executa-
ble. If the executable were found to be infected, it
would not be run, and would therefore not be able
to spread. The program in Fig. 9 is used in place
of the normal run command, and refuses to ex-
ecute programs infected by virus V.

Similarly, any particular detection scheme can
be circumvented by a particular virus. As an
example, if an attacker knew that a user was using
the program PV as protection from viral attack,
the virus V could easily be substituted with a virus
V’ where the first line was 123456 instead of
1234567. Much more complex defense schemes
and viruses can be examined. What becomes quite

(file = name-of-ployrsm-t~o~run;
if first-line-of-file = 1234567 then

{print ("the program has a virus");
exit;)

run file;
>

Fig. 9. Protection from virus V ‘PV’

evident is that no infection can exist that cannot
be detected, and no detection mechanism can exist
that cannot be infected.

This result leads to the idea that a balance of
coexistent viruses and defenses could exist, such
that a given virus could only do damage to a given
portion of the system, while a given protection
scheme could only protect against a given set of
viruses. If each user and attacker used identical
defenses and viruses, there could be an ultimate
virus or defense. It makes sense from both the
attacker’s point of view and the defender’s point
of view to have a set of (perhaps incompatible)
viruses and defenses.

In the case where viruses and protection
schemes do not evolve, this would likely lead to
some st of fixed survivors, but program (or virus)
that evolves into a diffcult to attack program (or
virus) is more likely to survive. As evolution takes
place, balances tend to change, with the eventual
result being unclear in all but the simplest cir-
cumstances. This has very strong analogies to bio-
logical theories of evolution [6], and might relate
well to genetic theories of diseases. Similarly, the
spread of viruses through systems might well be
analyzed by using mathematical models used in
the study of infectious diseases [2].

Since we cannot precisely detect a virus, we are
left with the problem of defining potentially illi-
gitimate use in a decidable and easily computable
way. We might be willing to detect many pro-
grams that are not viruses and even not detect
some viruses in order to detect a large number of
viruses. If an event is relatively rare in ‘normal’
use, it has high information content when it oc-
curs, and we can define a threshold at which
reporting is done. If sufficient instrumentation is
available, flow lists can be kept which track all
users who have affected any given file. Users that
appear in many incoming flow lists could be con-
sidered suspicious. The rate at which users enter
incoming flow lists might also be a good indicator
of a virus.

This type of measure can be of value if the
services used by viruses are rarely used by other
programs, but presents several problems. If the
threshold is known to the attacker, the virus can
be made to work within it. An intelligent
thresholding scheme could adapt so the threshold
could not be easily determined by the attacker.
Although this ‘game’ can clearly be played back

F. Cohen / Computer Viruses 31

and forth, the frequency of infection can be kept experiments not be based on implementation

low enough to slow the undetected virus without lapses but only on fundamental flaws in security

interfering significantly with legitimate use. policies.

Several systems were examined for their abili-
ties to detect viral attacks. Surprisingly, none of
these systems even include traces of the owner of a
program run by other users. Marking of this sort
must almost certainly be used if even the simplest
of viral attacks are to be detected.

5.1 The First Virus

Once a virus is implanted, it may not be easy to
remove. If the system is kept running during re-
moval, a disinfected program could be reinfected.
This presents the potential for infinite tail chasing.
Without some denial of services, removal is likely
to be impossible unless the program performing
removal is faster at spreading than the virus being
removed. Even in cases where the removal is slower
than the virus, it may be possible to allow most
activities to continue during removal without hav-
ing the removal process be very fast. For example,
one could isolate a user or subset of users and cure
them without denying services to other users.

On November 3, 1983, the first virus was con-
ceived of as an experiment to be presented at a
weekly seminar on computer security. The concept
was first introduced in this seminar by the author,
and the name ‘virus’ was thought of by Len
Adleman. After eight hours of expert work on a
heavily loaded VAX 11/750 system running Unix,
the first virus was completed and ready for dem-
onstration. Within a week, permission was ob-
tained to perform experiments, and five experi-
ments were performed. On November 10, the virus
was demonstrated to the security seminar.

In general, precise removal depends on precise
detection because without precise detection it is
impossible to know precisely whether or not to
remove a given object. In special cases, it may be
possible to perform removal with an inexact al-
gorithm. As an example, every file written after a
given date could be removed in order to remove
any virus started after that date. This may be quite
painful if viruses are designed to have long waiting
periods before doing damage, since even backups
would have to be discarded to fully cleanse the
system.

The initial infection was implanted in ‘ vd’, a
program that displays Unix structures graphically,
and introduced to users via the system bulletin
board. Since vd was a new program on the system,
no performance characteristics or other details of
its operation were known. The virus was im-
planted at the beginning of the program so that it
was performed before any other processing.

One concern that has been expressed and is
easily laid to rest is the chance that a virus could
be spontaneously generated. This is strongly re-
lated to the question of how long it will take N
monkeys at N keyboards to create a virus, and is
laid to rest with similar dispatch.

Several precautions were taken in order to keep
the attack under control. All infections were per-
formed manually by the attacker and no damage
was done, only reporting. Traces were included to
assure that the virus would not spread without
detection, access controls were used for the infec-
tion process, and the code required for the attack
was kept in segments, each encrypted and pro-
tected to prevent illicit use.

5. Experiments with Computer Viruses

To demonstrate the feasibility of viral attack and
the degree to which it is a threat, several experi-
ments were performed. In each case, experiments
were performed with the knowledge and consent
of systems administrators. In the process of per-
forming experiments, implementation flaws were
meticulously avoided. It was critical that these

In each of five attacks, all system rights were
granted to the attacker in under an hour. The
shortest time was under five minutes, and the
average under 30 minutes. Even those who knew
the attack was taking place were infected. In each
case, files were ‘disinfected’ after experimentation.
It was expected that the attack would be success-
ful, but the very short takeover times were quite
surprising. In addition, the virus was fast enough
(under l/2 second) that the delay to infected
programs went unnoticed.

Once the results of the experiments were an-
nounced, administrators decided that no further
computer security experiments would be per-
mitted on their system. This ban included the
planned addition of traces which could track

32 F. Cohen / Computer Viruses

potential viruses and password augmentation ex-
periments which could potentially have improved
security to a great extent. This apparent fear reac-
tion is typical, rather than try to solve technical
problems technically inappropriate and inade-
quate policy solutions are often chosen.

After successful experiments had been per-
formed on a Unix system, it was quite apparent
that the same techniques would work on many

other systems. In particular, experiments were
planned for a Tops-20 system, a VMS system, a
v~/370 system, and a network containing several
of these systems. In the process of negotiating
with administrators, feasibility was demonstrated
by developing and testing prototypes. Prototypes
attacks for the Tops-20 system were developed by
an experienced Tops-20 user in six hours, a novice
VM/370 user with the help of an experienced
programmer in 30 hours, and a novice VMS user
without assistance in 20 hours. These programs
demonstrated the ability to find files to be in-
fected, infect them, and cross user boundaries.

After several months of negotiation and admin-
istrative changes, it was decided that the experi-
ments would not be permitted. The security officer
at the facility was in constant opposition to secur-
ity experiments, and would not even read any
proposals. This is particularly interesting in light
of the fact that it was offered to allow systems
programmers and security officers to observe and
oversee all aspects of all experiments. In addition,
systems administrators were unwilling to allow
sanitized versions of log tapes to be used to
perform offline analysis of the potential threat of
viruses, and were unwilling to have additional
traces added to their systems by their programmers
to help detect viral attacks. Although there is no
apparent threat posed by these activities, and they
require little time, money, and effort, administra-
tors were unwilling to allow investigations. It ap-
pears that their reaction was the same as the fear
reaction of the Unix administrators.

5.2 A Bell-LuPadula Based System

In March of 1984, negotiations began over the
performance of experiments on a Bell-LaPadula
[4] based system implemented on a Univac 1108.
The experiment was agreed upon in principal in a
matter of hours, but took several months to be-
come solidified. In July of 1984, a two week
period was arranged for experimentation. The

purpose of this experiment was merely to demon-
strate the feasibility of a virus on a Bell-LaPadula
based system by implementing a prototype.

Because of the extremely limited time allowed
for development (26 hours of computer usage by a
user who had never used an 1108, with the assis-
tance of a programmer who had not used an 1108
in five years), many issues were ignored in the
implementation. In particular, performance and
generality of the attack were completely ignored.
As a result, each infection took about 20 seconds,
even though they could easily have been done in
under a second. Traces of the virus were left on
the system although they could have been
eliminated to a large degree with little effort.
Rather than infecting many files at once, only one
file at a time was infected. This allowed the
progress of a virus to be demonstrated very clearly
without involving a large number of users or pro-
grams. As a security precaution, the system was
used in a dedicated mode with only a system disk,
one terminal, one printer, and accounts dedicated
to the experiment.

After 18 hours of connect time, the 1108 virus
performed its first infection. After 26 hours of use,
the virus was demonstrated to a group of about 10
people including administrators, programmers,
and security officers. The virus demonstrated the
ability to cross user boundaries and move from a
given security level to a higher security level. Again
it should be emphasized that no system flaws were
involved in this activity, but rather that the Bell-
LaPadula model allows this sort of activity to
legitimately take place.

The attack was not difficult to perform. The
code for the virus consisted of five lines of assem-
bly code, about 200 lines of Fortran code, and
about 50 lines of command files. It is estimated
that a competent systems programmer could write
a much better virus for this system in under two
weeks. In addition, once the nature of a viral
attack is understood, developing a specific attack
is not difficult. Each of the programmers present
was convinced that they could have built a better
virus in the same amount of time. (This is believa-
ble since this attacker had no previous 1108 expe-
rience.)

5.3 Instrumentation

In early August of 1984, permission was granted
to instrument a VAX Unix System to measure

F. Cohen / Conqmtrr Virusa 33

sharing and analyze viral spreading. Data at this
time is quite limited, but several trends have ap-
peared. The degree of sharing appears to vary
greatly between systems, and many systems may
have to be instrumented before these deviations
are well understood. A small number of users
appear to account for the vast majority of sharing,
and a virus could be greatly slowed by protecting
them. The protection of a few ‘social’ individuals
might also slow biological diseases. The instru-
mentation was conservative in the sense that infec-
tion could happen without the instrumentation
picking it up, so estimated attack times are unreal-
istically slow.

As a result of the instrumentation of these
systems, a set of ‘social’ users were identified.
Several of these surprised the main systems ad-
ministrator. The number of systems administra-
tors was quite high, and if any of them were
infected, the entire system would likely fall within
an hour. Some simple procedural changes were
suggested to slow this attack by several orders of
magnitude without reducing functionality.

Two systems are shown in Fig. 10, with three
classes of users (S for system, A for system ad-
ministrator, and U for normal user). ‘# #’ in-
dicates the number of users in each category,
‘spread’ is the average number of users a virus
would spread to, and ‘time’ is the average time
taken to spread to them once they logged in,
rounded up to the nearest minute. Average times
are misleading because once an infection has re-
ached the ‘root’ account on Unix, all access is
granted. Taking this into account leads to take-

System 1
iclass: # :spread: time :

: s :3: 22 : 0 :

8 A :1: 1 : 0 :

: u :4: 5 I18 :

System 2
:class: # :spread: time :

: s :5 : 160: 1 :

: A : 7: 78 : 120 :

I u :7: 24 : 600 :

over times on the order of one minute which is so
fast that infection time becomes a limiting factor
in how quickly infections can spread. This coin-
cides with previous experimental results using an
actual virus.

Users who were not shared with are ignored in
these calculations, but other experiments indicate

that any user can get shared with by offering a
program on the system bulletin board. Detailed
analysis demonstrated that systems administrators
tend to try these programs as soon as they are
announced. This allows normal users to infect
system files within minutes. Administrators used
their accounts for running other users’ programs
and storing commonly executed system files, and
several normal users owned very commonly used
files. These conditions make viral attack very
quick. The use of separate accounts for systems
administrators during normal use was immediately
suggested, and the systematic movement (after
verification) of commonly used programs into the
system domain was also considered.

5.4 Summary and Conclusions

The Fig. 11 summarizes the results of these and
several other experiments. The systems are across
the horizontal axis (Unix, Bell-LaPadula, . . .),
while the vertical axis indicates the measure of
performance (time to program, infection time,
number of lines of code, number of experiments
performed, minimum time to takeover, average
time to takeover, and maximum time to takeover)
where time to takeover indicates that all privileges
would be granted to the attacker within that delay
after introducing the virus.

Viral attacks appear to be easy to develop in a
very short time, can be designed to leave few if
any traces in most current systems, are effective

Fig. 11. Experimental results Fig. 10. Summary of spreading.

34 F. Cohen / Computer Virtues

against modem security policies for multilevel
usage, and require only minimal expertise to im-
plement. Their potential threat is severe, and they
can spread very quickly through a computer sys-
tem. It appears that they can spread through
computer networks in the same way as they spread
through computers, and thus present a widespread
and fairly immediate threat to many current sys-
tems.

The problems with policies that prevent con-
trolled security experiments are clear; denying
users the ability to continue their work promotes
illicit attacks; and if one user can launch an attack
without using system bugs or special knowledge,
other users will also be able to. By simply telling
users not to launch attacks, little is accomplished.
Users who can be trusted will not launch attacks
but users who would do damage cannot be trusted,
so only legitimate work is blocked. The perspec-
tive that every attack allowed to take place re-
duces security is, in the author’s opinion, a fallacy.
The idea of using attacks to learn of problems is
even required by government policies for trusted
systems [16,17]. It would be more rational to use
open and controlled experiments as a resource to
improve security.

6. Summary, Conclusions, and Further Work

To quickly summarize, absolute protection can be
easily attained by absolute isolationism, but that is
usually an unacceptable solution. Other forms of
protection all seem to depend on the use of ex-
tremely complex and/or resource intensive ana-
lytical techniques, or imprecise solutions that tend
to make systems less usable with time.

Prevention appears to involve restricting
legitimate activities, while cure may be arbitrarily
difficult without some denial of services. Precise
detection is undecidable, however, statistical
methods may be used to limit undetected spread-
ing either in time or in extent. Behavior of typical
usage must be well understood in order to use
statistical methods, and this behavior is liable to
vary from system to system. Limited forms of
detection and prevention could be used in order to
offer limited protection from viruses.

It has been demonstrated that a virus has the
potential to spread through any general purpose
system which allows sharing. Every general pur-

pose system currently in use is open to at least
limited viral attack. In many current ‘secure’ sys-
tems, viruses tend to spread further when created
by less trusted users. Experiments show the viabil-
ity of viral attack, and indicate that viruses spread
quickly and are easily created on a variety of
operating systems. Further experimentation is still
underway.

The results presented are not operating system
or implementation specific, but are based on the
fundamental properties of systems. More im-
portantly, they reflect realistic assumptions about
systems currently in use. Further, nearly every
‘secure’ system currently under development is
based on the Bell-LaPadula or lattice policy alone,
and this work has clearly demonstrated that these
models are insufficient to prevent viral attack. The
virus essentially proves that integrity control must
be considered an essential part of any secure
operating system.

Several undecidable problems have been identi-
fied with respect to viruses and countermeasures.
Several potential countermeasures were examined
in some depth, and none appear to offer ideal
solutions. Several of the techniques suggested in
this paper which could offer limited viral protec-
tion are in limited use at this time. To be perfectly
secure against viral attacks, a system must protect
against incoming information flow, while to be
secure against leakage of information a system
must protect against outgoing information flow.
In order for systems to allow sharing, there must
be some information flow. It is therefore the major
conclusion of this paper that the goals of sharing
in a general purpose multilevel security system
may be in such direct opposition to the goals of
viral security as to make their reconciliation and
coexistence impossible.

The most importam ongoing research involves
the effect of viruses on computer networks. Of
primary interest is determining how quickly a
virus could spread to a large percentage of the
computers in the world. This is being done through
simplified mathematical models and studies of
viral spreading in ‘typical’ computer networks.
The implications of a virus in a secure network are
also of great interest. Since the virus leads us to
believe that both integrity and security must be
maintained in a system in order to prevent viral
attack, a network must also maintain both criteria
in order to allow multilevel sharing between com-

F. Cohen / Computer Viruses

puters. This introduces significant constraints on
these networks.

Significant examples of evolutionary programs
have been developed at the source level for pro-
ducing many evolutions of a given program. A
simple evolving virus has been developed, and a
simple evolving antibody is also under develop-
ment.

Acknowledgements

Because of the sensitive nature of much of this
research and the experiments performed in its
course, many of the people to whom I am greatly
indebted cannot be explicitly thanked. Rather than
ignoring anyone’s help, I have decided to give only
first names. Len and David have provided a lot of
good advice in both the research and writing of
this paper, and without them I would likely never
have gotten it to this point. John, Frank, Connie,
Chris, Peter, Terry, Dick, Jerome, Mike, Mat-v,
Steve, Lou, Steve, Andy, and Loraine all put their
noses on the line more than just a little bit in their
efforts to help perform experiments, publicize re-
sults, and lend covert support to the work. Martin,
John, Magdy, Xi-an, Satish, Chris, Steve, JR, Jay,
Bill, Fadi, Irv, Saul, and Frank all listened and
suggested, and their patience and friendship were
invaluable. Alice, John, Mel, Ann, and Ed pro-
vided better blocking than the USC front 4 ever
has.

References

111

121

131

141

J.P. Anderson: Computer Security Technology Planning

Study. Technical Report ESD-TR-73-51, USAF Electronic

Systems Division, Ott, 1972. Cited in Denning.

Norman T.J. Baily: The Mathematical Theory of Epide-

mics. Hafner Publishing Co., N.Y., 1957.

D.B. Baker: Department of Defense Trusted Computer

System Evaluation Criteria (Final Draft). Private com-

munication, The Aerospace Corporation, 1983.

D.E. Bell and L.J. LaPadula: Secure Computer Systems:

Mathematical Foundations and Model. The Mitre Corpora-
tion, 1973. Cited in many papers.

[51

[61

[71

PI

[91

[lOI

[111

[121

P61

1171

[I81

[I91

PO1

WI

WI

~231

~241

[251

35

K.J. Biba: Integrity Considerations for Secure Computer

Systems. USAF Electronic Systems Division, 1977. Cited

in Denning.

Richard Da&ins: The Selfish Gene. Oxford Press, N.Y.,

N.Y., 1978.

D.E. Denning: Cryptography and Data Security. Addison

Wesley, 1982.

A.D. Dewdney: Computer Recreations. Scientific Ameri-

can 250(5): 14-22, May, 1984.

R.J. Feiertag and P.G. Neumann: The Foundations of a

Provable Secure Operating System (PSOS). In National

Computer Conference, pages 329-334. AIFIPS, 1979.
J.S. Fenton: Information Protection Systems. PhD thesis,

U. of Cambridge, 1973. Cited in Denning.

M.R. Garey and D.S. Johnson: Computers and Intmctabrl-

ity. Freeman, 1979.

B.D. Gold, R.R. Linde, R.J. Peeler, M. Schaefer, J.F.

Scheid, and P.D. Ward: A Security Retrofit of VM/370.

In National Computer Conference, pages 3355344. AIFIPS,

1979.

Gunn, ACM: Use of Virus Functrons to Provide o Virtual

APL Interpreter Under User Control, 1974.

M.A. Harrison, W.L. Ruuo, and J.D. Ullman: Protection

in Operating Systems. In Proceedings. ACM, 1976.

L.J. Hoffman: Impacts of information system vulnerabili-

ties on society. In National Computer Conference, pages

461-467. AIFIPS, 1982.

U.S. Dept. of Justice, Bureau of Justice Statistics: Corn-

puter Crime - Computer Security Techmques. U.S.

Government Printing Office, Washington, DC, 1982.

M.H. Klein: Department of Defense Trusted Computer

System Eualuation Criteria. Department of Defense, Fort

Meade, Md. 20755, 1983.

B.W. Lampson: A note on the Confinement Problem. In

Communications. ACM, Ott, 1973.

C.E. Landwehr: The Best Available Technologies for

Computer Security. Computer 16(7), July, 1983.
R.R. Linde: Operating System Penetration. In National

Computer Conference, pages 361-368. AIFIPS, 1975.
E.J. McCauley and P.J. Drongowski: KSOS - The Design

of a Secure Operating System. In National Computer

Conference, pages 345-353. AIFIPS, 1979.

G.J. Popek, M. Kampe, C.S. Kline, A. Stoughton, M.

Urban, and E.J. Walton: UCLA Secure Unix. In National

Computer Conference. AIFIPS, 1979.

Schochaud, Hupp, ACM: The ‘Worm’ Programs - Early

Experience with a Distributed Computation, 1982.

K. Thompson, ACM: Reflections on Trusting Trust, 1984.

J.P.L. Woodward: Applications for Multilevel Secure Op-

erating Systems. In National Computer Conference, pages

319-328. AIFIPS. 1979.

