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1. Introduction 

This paper defines a major computer security 
problem called a virus. The virus is interesting 
because of its ability to attach itself to other 
programs and cause them to become viruses as 
well. Given the widespread use of sharing in cur- 
rent computer systems, the threat of a virus carry- 
ing a Trojan horse [1,20] is significant. Although a 
considerable amount of work has been done in 
implementing policies to protect against the illicit 
dissemination of information [4,7], and many sys- 
tems have been implemented to provide protection 
from this sort of attack [12,19,21,22], little work 
has been done in the area of keeping information 
entering an area from causing damage [5,18]. There 
are many types of information paths possible in 
systems, some legitimate and authorized, and 
others that may be covert [18], the most com- 
monly ignored one being through the user. We will 
ignore covert information paths throughout this 
paper. 

The general facilities exist for providing prov- 
ably correct protection schemes [9], but they de- 
pend on a security policy that is effective against 
the types of attacks being carried out. Even some 
quite simple protection systems cannot be proven 
‘safe’ [14]. Protection from denial of services re- 
quires the detection of halting programs which is 
well known to be undecidable [ll]. The problem 
of precisely marking information flow within a 
system [lo] has been shown to be NP-complete. 
The use of guards for the passing of untrustworthy 
information [25] between users has been ex- 
amined, but in general depends on the ability to 
prove program correctness which is well known to 
be NP-complete. 

The Xerox worm program [23] has demon- 
strated the ability to propagate through a network, 
and has even accidentally caused denial of services. 
In a later variation, the game of ‘core wars’ [8] was 
invented to allow two programs to do battle with 
one another. Other variations on this theme have 
been reported by many unpublished authors, 
mostly in the context of nighttime games played 
between programmers. The term virus has also 
been used in conjunction with an augmentation to 
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APL in which the author places a generic call at the 
beginning of each function which in turn invokes 

a preprocessor to augment the default APL inter- 
preter [13]. 

The potential threat of a widespread security 
problem has been examined [15] and the potential 
damage to government, financial, business, and 
academic institutions is extreme. In addition, these 
institutions tend to use ad hoc protection mecha- 
nisms in response to specific threats rather than 
sound theoretical techniques [16]. Current military 
protection systems depend to a large degree on 
isolationism [3]; however, new systems are being 
developed to allow ‘multilevel’ usage [17]. None of 
the published proposed systems defines or imple- 
ments a policy which could stop a virus. 

In this paper, we open the new problem of 
protection from computer viruses. First we ex- 
amine the infection property of a virus and show 
that the transitive closure of shared information 
could potentially become infected. When used in 
conjunction with a Trojan horse, it is clear that 
this could cause widespread denial of services 
and/or unauthorized manipulation of data. The 
results of several experiments with computer 
viruses are used to demonstrate that viruses are a 
formidable threat in both normal and high secur- 
ity operating systems. The paths of sharing, transi- 
tivity of information flow, and generality of infor- 
mation interpretation are identified as the key 
properties in the protection from computer viruses, 
and a case by case analysis of these properties is 
shown. Analysis shows that the only systems with 
potential for protection from a viral attack are 
systems with limited transitivity and limited shar- 
ing, systems with no sharing, and systems without 
general interpretation of information (Turing ca- 
pability). Only the first case appears to be of 
practical interest to current society. In general, 
detection of a virus is shown to be undecidable 
both by a-priori and runtime analysis, and without 
detection, cure is likely to be difficult or impossi- 
ble. 

Several proposed countermeasures are ex- 
amined and shown to correspond to special cases 
of the case by case analysis of viral properties. 
Limited transitivity systems are considered hope- 
ful, but it is shown that precise implementation is 
intractable, and imprecise policies are shown in 
general to lead to less and less usable systems with 
time. The use of system-wide viral antibodies is 

examined, and shown to depend in general on the 
solutions to intractable problems. 

It is concluded that the the study of computer 
viruses is an important research area with poten- 
tial applications to other fields, that current sys- 
tems offer little or no protection from viral attack, 
and that the only provably ‘safe’ policy as of this 
time is isolationism. 

2. A Computer Virus 

We define a computer ‘virus’ as a program that 
can ‘infect’ other programs by modifying them to 
include a possibly evolved copy of itself. With the 
infection property, a virus can spread throughout 
a computer system or network using the authori- 
zations of every user using it to infect their pro- 
grams. Every program that gets infected may also 
act as a virus and thus the infection grows. 

The following pseudo-program shows how a 
virus might be written in a pseudo-computer lan- 

guage. The ‘ := ’ symbol is used for definition, the 
‘:’ symbol labels a statement, the ‘;’ separates 
statements, the ‘ = ’ symbol is used for assignment 
or comparison, the ‘ - ’ symbol stands for not, the 
‘{‘and’}’ symbols group sequences of statements 
together, and the ‘ . . . ’ symbol is used to indicate 
that an irrelevant portion of code has been left 
implicit. 

This example virus (V) (Fig. 1) searches for an 
uninfected executable file (E) by looking for ex- 
ecutable files without the “1234567” in the begin- 
ning, and prepends V to E, turning it into an 
infected file (I). V then checks to see if some 

program virus := 
(1234567; 

subroutine infect-executable := 
(loop: file = random-executable; 
if first-line-of-file = 1234567 

then goto loop; 
prepend virus to file; 
> 

subroutine do-damage := 
{whatever damage is desired) 

subroutine trigger-pulled := 
{return true on desired conditions) 

main-program := 
(infect-executable; 
if trigger-pulled then do-damage; 
got0 next; 
? 

next:} 

Fig. 1. Simple virus ‘V' 



triggering condition is true, and does damage. 
Finally, V executes the rest of the program it was 
prepended ’ to. When the user attempts to execute 
E, I is executed in its place; it infects another file 
and then executes as if it were E. With the excep- 
tion of a slight delay for infection, 1 appears to be 
E until the triggering condition causes damage. 
We note that viruses need not prepend themselves 
nor must they be restricted to a single infection 
per use. 

A common misconception of a virus relates it 
to programs that simply propagate through net- 
works. The worm program, ‘core wars,’ and other 
similar programs have done this, but none of them 
actually involve infection. The key property of a 
virus is its ability to infect other programs, thus 
reaching the transitive closure of sharing between 
users. As an example, if V infected one of user 
A’s executables (E), and user B then ran E, V 

could spread to user B’s files as well. 
It should be pointed out that a virus need not 

be used for evil purposes or be a Trojan horse. As 
an example, a compression virus could be written 
to find uninfected executables, compress them 
upon the user’s permission, and prepend itself to 
them. Upon execution, the infected program de- 
compresses itself and executes normally. Since it 
always asks permission before performing services, 
it is not a Trojan horse, but since it has the 
infection property, it is still a virus. Studies indi- 
cate that such a virus could save over 50% of the 
space taken up by executable files in an average 
system. The performance of infected programs 
would decrease slightly as they are decompressed, 
and thus the compression virus implements a par- 
ticular time space tradeoff. A sample compression 
virus could be written as in Fig. 2. 

This program (C) finds an uninfected executa- 
ble (E), compresses it, and prepends C to form an 
infected executable (I). It then uncompresses the 
rest of itself into a temporary file and executes 
normally. When I is run, it will seek out and 
compress another executable before decom- 
pressing E into a temporary file and executing it. 
The effect is to spread through the system com- 
pressing executable files, decompressing them as 
they are to be executed. Users will experience 

1 The term ‘prepend’ is used in a technical fence in this paper 
to mean ‘attach at the beginning'. 

program compression-virus := 
(01234567; 

subroutine infect-executable := 
{loop: file = random-executable. 
if first-line-of-file = 0123456? 

then goto loop; 
compr~ess file; 
prepend compression-virus to file; 
> 

main-program := 
(if ask-permission 

then infect-executable;. 
uncompress the-rest-of-this-file 

into tmpfile; 
run tmpfile; 
? 

> - 

Fig. 2. Compression virus ‘C' 

significant delays as their executables are decom- 
pressed before being run. 

As a more threatening example, let us suppose 
that we modify the program V by specifying 
trigger-pulled as true after a given date and time, 
and specifying do-damage as an infinite loop. 
With the level of sharing in most modern systems, 
the entire system would likely become unusable as 
of the specified date and time. A great deal of 
work might be required to undo the damage of 
such a virus. This modification is shown in Fig. 3. 

As an analogy to a computer virus, consider a 
biological disease that is 100% infectious, spreads 
whenever animals communicate, kills all infected 
animals instantly at a given moment, and has no 
detectable side effects until that moment. If a 
delay of even one week were used between the 
introduction of the disease and its effect, it would 
be very likely to leave only a few remote villages 
alive, and would certainly wipe out the vast major- 
ity of modem society. If a computer virus of this 
type could spread through the computers of the 
world, it would likely stop most computer use for 
a significant period of time, and wreak havoc on 
modern government, financial, business, and 
academic institutions. 

subroutine do-damage :- 
{loop: got0 loop;) 

subroutine trigger-pulled :- 
(if year > 1984 then return(true) 

otherwise return(false); 

Fig. 3. A denial of services virus 
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3. Prevention of Computer Viruses 

We have introduced the concept of viruses to the 
reader, and actual viruses to systems. Having 
planted the seeds of a potentially devastating at- 
tack, it is appropriate to examine protection mech- 
anisms which might help defend against it. We 
examine here prevention of computer viruses. 

3. I Basic Limitations 

In order for users of a system to be able to share 
information, there must be a path through which 
information can flow from one user to another. 
We make no differentiation between a user and a 
program acting as a surrogate for that user since a 
program always acts as a surrogate for a user in 
any computer use and we are ignoring the covert 
channel through the user. Assuming a Turing 
machine model for computation, we can prove 
that if information can be read by a user with 
Turing capability, then it can be copied, and the 
copy can then be treated as data on a Turing 
machine tape. 

Given a general purpose system in which users 
are capable of using information in their possession 
as they wish, and passing such information as they 
see fit to others, it should be clear that the ability 
to share information is transitive. That is, if there 
is a path from user A to user B, and there is a 
path from user B to user C, then there is a path 
from user A to user C with the witting or unwit- 
ting cooperation of user B. 

Finally, there is no fundamental distinction be- 
tween information that can be used as data, and 
information that can be used as program. This can 
be clearly seen in the case of an interpreter that 
takes information edited as data, and interprets it 
as a program. In effect, information only has 
meaning in its interpretation. 

In a system where information can be interpre- 
ted as a program by its recipient, that interpreta- 
tion can result in infection as shown above. If 
there is sharing, infection can spread through the 
interpretation of shared information. If there is no 
restriction on the transitivity of information flow, 
then the information can reach the transitive 
closure of information flow starting at any source. 
Sharing, transitivity of information flow, and gen- 
erality of interpretation thus allow a virus to spread 
to the transitive closure of information flow start- 
ing at any given source. 

Clearly, if there is no sharing, there can be no 
dissemination of information across information 
boundaries, and thus no external information can 
be interpreted, and a virus cannot spread outside a 
single partition. This is called ‘isolationism.’ Just 
as clearly, a system in which no program can be 
altered and information cannot be used to make 
decisions cannot be infected since infection re- 
quires the modification of interpreted informa- 
tion. We call this a ‘fixed first order functionality’ 
system. We should note that virtually any system 
with real usefulness in a scientific or development 
environment will require generality of interpreta- 
tion, and that isolationism is unacceptable if we 
wish to benefit from the work of others. Neverthe- 
less, these are solutions to the problem of viruses 
which may be applicable in limited situations. 

3.2 Partition Models 

Two limits on the paths of information flow can 
be distinguished, those that partition users into 
closed proper subsets under transitivity, and those 
that do not. Flow restrictions that result in closed 
subsets can be viewed as partitions of a system 
into isolated subsystems. These limit each infec- 
tion to one partition. This is a viable means of 
preventing complete viral takeover at the expense 
of limited isolationism, and is equivalent to giving 
each partition its own computer. 

The integrity model [5] is an example of a 
policy that can be used to partition systems into 
closed subsets under transitivity. In the Biba 
model, an integrity level is associated with all 
information. The strict integrity properties are the 
dual of the Bell-LaPadula properties; no user at a 
given integrity level can read an object of lower 
integrity or write an object of higher integrity. In 
Biba’s original model, a distinction was made be- 
tween read and execute access, but this cannot be 
enforced without restricting the generality of in- 
formation interpretation since a high integrity 
program can write a low integrity object, make 
low integrity copies of itself, and then read low 
integrity input and produce low integrity output. 

If the integrity model and the Bell-LaPadula 
model coexist, a form of limited isolationism re- 
sults which divides the space into closed subsets 
under transitivity. If the same divisions are used 
for both mechanisms (higher integrity corresponds 
to higher security), isolationism results since infor- 
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mation moving up security levels also moves up 
integrity levels, and this is not permitted. When 
the Biba model has boundaries within the Bell- 
LaPadula boundaries, infection can only spread 
from the higher integrity levels to lower ones 
within a given security level. Finally, when the 
Bell-LaPadula boundaries are within the Biba 
boundaries, infection can only spread from lower 
security levels to higher security levels within a 
given integrity level. There are actually nine cases 
corresponding to all pairings of lower boundaries 
with upper boundaries, but the three shown 
graphically in Fig. 4 are sufficient for understand- 
ing. 

Biba’s work also included two other integrity 
policies, the ‘low water mark’ policy which makes 
output the lowest integrity of any input, and the 
‘ring’ policy in which users cannot invoke every- 
thing they can read. The former policy tends to 
move all information towards lower integrity 
levels, while the latter attempts to make a distinc- 

Biba B-L Result 

Biba 

Biba B-L Result 

Fig. 4. Pairings of lower boundaries with upper boundaries. 

Top: Biba within B-L; middle: B-L within Biba; bottom: same 
divisions. \\ cannot write; // cannot read; X X no access; 

\+/=x. 

tion that cannot be made with generalized infor- 
mation interpretation. 

Just as systems based on the Bell-LaPadula 
model tend to cause all information to move to- 
wards higher levels of security by always increas- 
ing the level to meet the highest level user, the 
Biba model tends to move all information towards 
lower integrity levels by always reducing the in- 
tegrity of results to that of the lowest incoming 
integrity. We also know that a precise system for 
integrity is NP-complete (just as its dual is NP- 
complete). 

The most trusted programmer is (by definition) 
the programmer that can write programs execut- 
able by the most users. In order to maintain the 
Bell-LaPadula policy, high level users cannot write 
programs used by lower level users. This means 
that the most trusted programmers must be those 
at the lowest security level. This seems contradic- 
tory. When we mix the Biba and Bell-LaPadula 
models, we find that the resulting isolationism 
secures us from viruses, but does not permit any 
user to write programs that can be used throughout 
the system. Somehow, just as we allow encryption 
or declassification of data to move it from higher 
security levels to lower ones, we should be able to 
use program testing and verification to move in- 
formation from lower integrity levels to higher 
ones. 

Another commonly used policy that partitions 
systems into closed subsets is the compartment 
policy used in typical military applications. This 
policy partitions users into compartments, with 
each user only able to access information required 
for their duties. If every user has access to only 
one compartment at a time, the system is secure 
from viral attack across compartment boundaries 
because they are isolated. Unfortunately, in cur- 
rent systems, users may have simultaneous access 
to multiple compartments. In this case, infection 
can spread across these boundaries to the transi- 
tive closure of information flow. 

3.3 Flow Models 

In policies that do not partition systems into 
closed proper subsets under transitivity, it is possi- 
ble to limit the extent over which a virus can 
spread. The ‘flow distance’ policy implements a 
distance metric by keeping track of the distance 
(number of sharings) over which data has flowed. 
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The rules are; the distance of output information 
is the maximum of the distances of input informa- 
tion, and the distance of shared information is one 

more than the distance of the same information 
before sharing. Protection is provided by en- 

forcing a threshold above which information be- 
comes unusable. Thus a file with distance 8 shared 
into a process with distance 2 increases the pro- 
cess to distance 9, and any further output will be 
at least that distance. 

The ‘flow list’ policy maintains a list of all 
users who have had an effect on each object. The 
rule for maintaining this list is; the flow list of 
output is the union of the flow lists of all inputs 
(including the user who causes the action). Protec- 
tion takes the form of an arbitrary Boolean ex- 
pression on flow lists which determines accessibil- 
ity. This is a very general policy, and can be used 
to represent any of the above policies by selecting 
proper Boolean expressions. 

As an example, user A could only be allowed to 
access information written by users (B and C) or 
(B and D), but not information written by B, C, 
or D alone. This can be used to enforce certifica- 
tion of information by B before C or D can pass it 
to A. The flow list system can also be used to 
implement the Biba and the distance models. As 
an example, the distance model can be realized as 
follows: 

oR(users < distance 1) 

AND NOT(OR(users > distance 1)) 

A further generalization of flow lists to flow 
sequences is possible, and appears to be the most 
general scheme possible for implementing a flow 
control policy. 

In a system with unlimited information paths, 
limited transitivity may have an effect if users do 
not use all available paths, but since there is 
always a direct path between any two users, there 
is always the possibility of infection. As an exam- 
ple, in a system with transitivity limited to a 
distance of 1 it is ‘safe’ to share information with 
any user you ‘trust’ without having to worry about 
whether that user has incorrectly trusted another 
user. 

3.4 Limited Interpretation 

With limits on the generality of interpretation less 
restrictive than fixed first order interpretation, the 

ability to infect is an open question because infec- 
tion depends on the functions permitted. Certain 

functions are required for infection. The ability to 
write is required, but any useful program must 
have output. It is possible to design a set of 
operations that do not allow infection in even the 
most general case of sharing and transitivity, but 
it is not known whether any such set includes non 
fixed first order functions. 

As an example, a system with only the function 
‘display-file’ can only display the contents of a file 
to a user, and cannot possibly modify any file. In 
fixed database or mail systems this may have 
practical applications, but certainly not in a devel- 
opment environment. In many cases, computer 
mail is a sufficient means of communications and 
so long as the computer mail system is partitioned 
from other applications so that no information 
can flow between them except in the covert chan- 
nel through the user, this may be used to prevent 
infection. 

Although no fixed interpretation scheme can 
itself be infected, a high order fixed interpretation 
scheme can be used to infect programs written to 
be interpreted by it. As an example, the microcode 
of a computer may be fixed, but code in the 
machine language it interprets can still be infected. 
LISP, APL, and Basic are all examples of fixed 
interpretation schemes that can interpret informa- 
tion in general ways. Since their ability to inter- 
pret is general, it is possible to write a program in 
any of these languages that infects programs in 
any or all of them. 

In limited interpretation systems, infection can- 
not spread any further than in general interpreta- 
tion systems, because every function in a limited 
system must also be able to be performed in a 
general system. The previous results therefore pro- 
vide upper bounds on the spread of a virus in 
systems with limited interpretation. 

3.5 Precision Problems 

Although isolationism and limited transitivity offer 
solutions to the infection problem, they are not 
ideal in the sense that widespread sharing is gener- 
ally considered a valuable tool in computing. Of 
these policies, only isolationism can be precisely 
implemented in practice because tracing exact in- 
formation flow requires NP-complete time, and 
maintaining markings requires large amounts of 
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General lnterpretatlon Llmlted Interpretation 

tronsltivity transitivity 

Fig. 5. Limits of viral infection 

space [7]. This leaves us with imprecise techniques. 
The problem with imprecise techniques is that 
they tend to move systems towards isolationism. 
This is because they use conservative estimates of 
effects in order to prevent potential damage. The 
philosophy behind this is that it is better to be safe 
than sorry. 

The problem is that when information has been 
unjustly deemed unreadable by a given user, the 
system becomes less usable for that user. This is a 
form of denial of services in that access to infor- 
mation that should be accessible is denied. Such a 
system always tends to make itself less and less 
usable for sharing until it either becomes com- 
pletely isolationist or reaches a stability point 
where all estimates are precise. If such a stability 
point existed, we would have a precise system for 
that stability point. Since we know that any pre- 
cise stability point besides isolationism requires 
the solution to an NP-complete problem, we know 
that any non NP-complete solution must tend 
towards isolationism. 

3.6 Summary and Conclusions 

Fig. 5 summarizes the limits placed on viral 
spreading by the preventative protection just ex- 
amined. Unknown is used to indicate that the 
specifics of specific systems are known, but that 
no general theory has been shown to predict limi- 
tations in these categories. 

4. Cure of Computer Viruses 

Since prevention of computer viruses may be in- 
feasible if sharing is desired, the biological anal- 
ogy leads us to the possibility of cure as a means 
of protection. Cure in biological systems depends 
on the ability to detect a virus and find a way to 

overcome it. A similar possibility exists for com- 
puter viruses. We now examine the potential for 
detection and removal of a computer virus. 

4.1 Detection of Viruses 

In order to determine that a given program ‘P ’ is 
a virus, it must be determined that P infects other 
programs. This is undecidable since P could in- 
voke any proposed decision procedure ‘D ’ and 
infect other programs if and only if D determines 
that P is not a virus. We conclude that a program 
that precisely discerns a virus from any other 
program by examining its appearance is infeasible. 
In the following modification to program V (Fig. 
6), we use the hypothetical decision procedure D 

which returns “true” iff its argument is a virus, to 
exemplify the undecidability of viral detection. 

By modifying the main program of V, we have 
assured that, if the decision procedure D de- 
termines CV to be a virus, CV will not infect 
other programs and thus will not act as a virus. If 
D determines that CV is not a virus, CV will 
infect other programs and thus be a virus. There- 
fore, the hypothetical decision procedure D is self 
contradictory, and precise determination of a virus 
by its appearance is undecidable. 

4.2 Evolutions of a Virus 

In our experiments, some viruses took under 100 
bytes to implement on a general purpose com- 
puter. Since we could interleave any program that 
doesn’t halt, terminates in finite time, and does 
not overwrite the virus or any of its state varia- 
bles, and still have a virus, the number of possible 
variations on a single virus is clearly very large. In 
this example of an evolutionary virus EV, we 

augment V by allowing it to add random state- 

program contradictory-virus := 
( . . . 
main-program := 

(if -D(contradictory-virus) then 
{infect-executable; 
if trigger-pulled then 

do-damage; 
> 

got. 0 next ; 
> 

> 

Fig. 6. Contradiction of the decidability of a virus ‘C’ 
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ments between any two necessary statements (Fig. 

7). 
In general, proof of the equivalence of two 

evolutions of a program ‘P’ (‘PI’ and ‘P2’) is 
undecidable because any decision procedure ‘D ’ 
capable of finding their equivalence could be in- 
voked by P, and P2. If found equivalent they 
perform different operations, and if found differ- 
ent they act the same, and are thus equivalent. 
This is exemplified by the modification in Fig. 8 
to program EV in which the decision procedure D 
returns “true” iff two input programs are equiv- 
alent. 

The program UEV evolves into one of two 
types of programs, PI or P2. If the program type is 
P, the statement labeled “zzz” will become: 

if D(P,, P,) thenprint 1; 

while if the program type is P2, the statement 
labeled “zzz” will become: 

if D( PI, P,) then print 0; 

The two evolutions each call decision procedure D 
to decide whether they are equivalent. If D indi- 
cates that they are equivalent, then P, will print a 
1 while Pz will print a 0, and D will be con- 
tradicted. If D indicates that they are different, 
neither prints anything. Since they are otherwise 
equal, D is again contradicted. Therefore, the 
hypothetical decision procedure D is self con- 
tradictory, and the precise determination of the 

program evolutionary-virus := 
c . . . 
subroutine print-random-statement := 

{print (random-variable-name, "=", 
random-variable-name); 

loop: if random-bit = 1 then 
{print (random-operator, 

random-variable-name); 
goto loop;) 

print (semicolon); 
1 

subroutine copy-virus-with-inserti 
(loop: copy evolutionary-virus 

to virus till semi 
if random-bit = 1 then 

print-random-statement; 
if -end-of-input-file goto loop 
> 

main-program := 
{copy-with-random-insertions; 
infect-executable; __ . _ 
if trigger-pulled then do-damage; 
got 0 next ; > 

next:) 

Fig. 7. Evolutionary virus ‘EV' 

ons := 

colon; 

program undecidable-E'4 := 
c 
szioutine copy-with-undecidable := 

{copy undecidable-EV to 
file till line-starts-with zzz; 

if file = Pl then 
print ("if D(Pl,P2) print 1;"); 

if file = P2 then 
print ("if D(Pl,P2) print 0;"); 

copy undecidable-EV to 
file till end-of-input-file; 

1 

main-program :- 
{if random-bit = 0 then file = Pl 

otherwise file = P2; 
copy-with-undecidable; 
zzz : 
infect-executable; 
if trigger-pulled then do-damage; 
got0 next;) 

next:) 

Fig. 8. Undecidable equivalenceofevolutionsofavirus‘UEV'. 

equivalence of these two programs by their ap- 
pearance is undecidable. 

Since both P, and P2 are evolutions of the 
same program, the equivalence of evolutions of a 
program is undecidable, and since they are both 
viruses, the equivalence of evolutions of a virus is 
undecidable. Program UEV also demonstrates that 
two unequivalent evolutions can both be viruses. 

An alternative to detection by appearance, is 
detection by behavior. A virus, just as any other 
program, acts as a surrogate for the user in re- 
questing services, and the services used by a virus 
are legitimate in legitimate uses. The behavioral 
detection question then becomes one of defining 
what is and is not a legitimate use of a system 
service, and finding a means of detecting the 
difference. 

As an example of a legitimate virus, a compiler 
that compiles a new version of itself is in fact a 
virus by the definition given here. It is a program 
that ‘infects’ another program by modifying it to 
include an evolved version of itself. Since the viral 
capability is in most compilers, every use of a 
compiler is a potential viral attack. The viral activ- 
ity of a compiler is only triggered by particular 
inputs, and thus in order to detect triggering, one 
must be able to detect a virus by its appearance. 
Since precise detection by behavior in this case 
leads to precise detection by the appearance of the 
inputs, and since we have already shown that 
precise detection by appearance is undecidable, it 
follows that precise detection by behavior is also 
undecidable. 
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4.3 Limited Viral Protection 

A limited form of virus has been designed [24] in 
the form of a special version of the C compiler 
that can detect the compilation of the login pro- 
gram and add a Trojan horse that lets the author 
login. Thus the author could access any Unix 
system with this compiler. In addition, the com- 
piler can detect compilations of new versions of 
itself and infect them with the same Trojan horse. 

As a countermeasure, we can devise a new login 
program (and C compiler) sufficiently different 

from the original as to make its equivalence very 
difficult to determine. If the ‘best AZ program of 
the day’ would be incapable of detecting their 
equivalence in a given amount of time, and the 
compiler performed its task in less than that much 
time, it could be reasonably assumed that the 
virus could not have detected the equivalence, and 
therefore would not have propagated itself. If the 
exact nature of the detection were known, it would 
likely be quite simple to work around it. Once a 
virus free compiler is generated, the old (and 
presumably more efficient) version can be recom- 
piled for further use. 

Although we have shown that in general it is 
impossible to detect viruses, any particular virus 
can be detected by a particular detection scheme. 
For example, virus V could easily be detected by 
looking for 1234567 as the first line of an executa- 
ble. If the executable were found to be infected, it 
would not be run, and would therefore not be able 
to spread. The program in Fig. 9 is used in place 
of the normal run command, and refuses to ex- 
ecute programs infected by virus V. 

Similarly, any particular detection scheme can 
be circumvented by a particular virus. As an 
example, if an attacker knew that a user was using 
the program PV as protection from viral attack, 
the virus V could easily be substituted with a virus 
V’ where the first line was 123456 instead of 
1234567. Much more complex defense schemes 
and viruses can be examined. What becomes quite 

(file = name-of-ployrsm-t~o~run; 
if first-line-of-file = 1234567 then 

{print ("the program has a virus"); 
exit;) 

run file; 
> 

Fig. 9. Protection from virus V ‘PV’ 

evident is that no infection can exist that cannot 
be detected, and no detection mechanism can exist 
that cannot be infected. 

This result leads to the idea that a balance of 
coexistent viruses and defenses could exist, such 
that a given virus could only do damage to a given 
portion of the system, while a given protection 
scheme could only protect against a given set of 
viruses. If each user and attacker used identical 
defenses and viruses, there could be an ultimate 
virus or defense. It makes sense from both the 
attacker’s point of view and the defender’s point 
of view to have a set of (perhaps incompatible) 
viruses and defenses. 

In the case where viruses and protection 
schemes do not evolve, this would likely lead to 
some st of fixed survivors, but program (or virus) 
that evolves into a diffcult to attack program (or 
virus) is more likely to survive. As evolution takes 
place, balances tend to change, with the eventual 
result being unclear in all but the simplest cir- 
cumstances. This has very strong analogies to bio- 
logical theories of evolution [6], and might relate 
well to genetic theories of diseases. Similarly, the 
spread of viruses through systems might well be 
analyzed by using mathematical models used in 
the study of infectious diseases [2]. 

Since we cannot precisely detect a virus, we are 
left with the problem of defining potentially illi- 
gitimate use in a decidable and easily computable 
way. We might be willing to detect many pro- 
grams that are not viruses and even not detect 
some viruses in order to detect a large number of 
viruses. If an event is relatively rare in ‘normal’ 
use, it has high information content when it oc- 
curs, and we can define a threshold at which 
reporting is done. If sufficient instrumentation is 
available, flow lists can be kept which track all 
users who have affected any given file. Users that 
appear in many incoming flow lists could be con- 
sidered suspicious. The rate at which users enter 
incoming flow lists might also be a good indicator 
of a virus. 

This type of measure can be of value if the 
services used by viruses are rarely used by other 
programs, but presents several problems. If the 
threshold is known to the attacker, the virus can 
be made to work within it. An intelligent 
thresholding scheme could adapt so the threshold 
could not be easily determined by the attacker. 
Although this ‘game’ can clearly be played back 
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and forth, the frequency of infection can be kept experiments not be based on implementation 

low enough to slow the undetected virus without lapses but only on fundamental flaws in security 

interfering significantly with legitimate use. policies. 

Several systems were examined for their abili- 
ties to detect viral attacks. Surprisingly, none of 
these systems even include traces of the owner of a 
program run by other users. Marking of this sort 
must almost certainly be used if even the simplest 
of viral attacks are to be detected. 

5.1 The First Virus 

Once a virus is implanted, it may not be easy to 
remove. If the system is kept running during re- 
moval, a disinfected program could be reinfected. 
This presents the potential for infinite tail chasing. 
Without some denial of services, removal is likely 
to be impossible unless the program performing 
removal is faster at spreading than the virus being 
removed. Even in cases where the removal is slower 
than the virus, it may be possible to allow most 
activities to continue during removal without hav- 
ing the removal process be very fast. For example, 
one could isolate a user or subset of users and cure 
them without denying services to other users. 

On November 3, 1983, the first virus was con- 
ceived of as an experiment to be presented at a 
weekly seminar on computer security. The concept 
was first introduced in this seminar by the author, 
and the name ‘virus’ was thought of by Len 
Adleman. After eight hours of expert work on a 
heavily loaded VAX 11/750 system running Unix, 
the first virus was completed and ready for dem- 
onstration. Within a week, permission was ob- 
tained to perform experiments, and five experi- 
ments were performed. On November 10, the virus 
was demonstrated to the security seminar. 

In general, precise removal depends on precise 
detection because without precise detection it is 
impossible to know precisely whether or not to 
remove a given object. In special cases, it may be 
possible to perform removal with an inexact al- 
gorithm. As an example, every file written after a 
given date could be removed in order to remove 
any virus started after that date. This may be quite 
painful if viruses are designed to have long waiting 
periods before doing damage, since even backups 
would have to be discarded to fully cleanse the 
system. 

The initial infection was implanted in ‘ vd’, a 
program that displays Unix structures graphically, 
and introduced to users via the system bulletin 
board. Since vd was a new program on the system, 
no performance characteristics or other details of 
its operation were known. The virus was im- 
planted at the beginning of the program so that it 
was performed before any other processing. 

One concern that has been expressed and is 
easily laid to rest is the chance that a virus could 
be spontaneously generated. This is strongly re- 
lated to the question of how long it will take N 
monkeys at N keyboards to create a virus, and is 
laid to rest with similar dispatch. 

Several precautions were taken in order to keep 
the attack under control. All infections were per- 
formed manually by the attacker and no damage 
was done, only reporting. Traces were included to 
assure that the virus would not spread without 
detection, access controls were used for the infec- 
tion process, and the code required for the attack 
was kept in segments, each encrypted and pro- 
tected to prevent illicit use. 

5. Experiments with Computer Viruses 

To demonstrate the feasibility of viral attack and 
the degree to which it is a threat, several experi- 
ments were performed. In each case, experiments 
were performed with the knowledge and consent 
of systems administrators. In the process of per- 
forming experiments, implementation flaws were 
meticulously avoided. It was critical that these 

In each of five attacks, all system rights were 
granted to the attacker in under an hour. The 
shortest time was under five minutes, and the 
average under 30 minutes. Even those who knew 
the attack was taking place were infected. In each 
case, files were ‘disinfected’ after experimentation. 
It was expected that the attack would be success- 
ful, but the very short takeover times were quite 
surprising. In addition, the virus was fast enough 
(under l/2 second) that the delay to infected 
programs went unnoticed. 

Once the results of the experiments were an- 
nounced, administrators decided that no further 
computer security experiments would be per- 
mitted on their system. This ban included the 
planned addition of traces which could track 
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potential viruses and password augmentation ex- 
periments which could potentially have improved 
security to a great extent. This apparent fear reac- 
tion is typical, rather than try to solve technical 
problems technically inappropriate and inade- 
quate policy solutions are often chosen. 

After successful experiments had been per- 
formed on a Unix system, it was quite apparent 
that the same techniques would work on many 

other systems. In particular, experiments were 
planned for a Tops-20 system, a VMS system, a 
v~/370 system, and a network containing several 
of these systems. In the process of negotiating 
with administrators, feasibility was demonstrated 
by developing and testing prototypes. Prototypes 
attacks for the Tops-20 system were developed by 
an experienced Tops-20 user in six hours, a novice 
VM/370 user with the help of an experienced 
programmer in 30 hours, and a novice VMS user 
without assistance in 20 hours. These programs 
demonstrated the ability to find files to be in- 
fected, infect them, and cross user boundaries. 

After several months of negotiation and admin- 
istrative changes, it was decided that the experi- 
ments would not be permitted. The security officer 
at the facility was in constant opposition to secur- 
ity experiments, and would not even read any 
proposals. This is particularly interesting in light 
of the fact that it was offered to allow systems 
programmers and security officers to observe and 
oversee all aspects of all experiments. In addition, 
systems administrators were unwilling to allow 
sanitized versions of log tapes to be used to 
perform offline analysis of the potential threat of 
viruses, and were unwilling to have additional 
traces added to their systems by their programmers 
to help detect viral attacks. Although there is no 
apparent threat posed by these activities, and they 
require little time, money, and effort, administra- 
tors were unwilling to allow investigations. It ap- 
pears that their reaction was the same as the fear 
reaction of the Unix administrators. 

5.2 A Bell-LuPadula Based System 

In March of 1984, negotiations began over the 
performance of experiments on a Bell-LaPadula 
[4] based system implemented on a Univac 1108. 
The experiment was agreed upon in principal in a 
matter of hours, but took several months to be- 
come solidified. In July of 1984, a two week 
period was arranged for experimentation. The 

purpose of this experiment was merely to demon- 
strate the feasibility of a virus on a Bell-LaPadula 
based system by implementing a prototype. 

Because of the extremely limited time allowed 
for development (26 hours of computer usage by a 
user who had never used an 1108, with the assis- 
tance of a programmer who had not used an 1108 
in five years), many issues were ignored in the 
implementation. In particular, performance and 
generality of the attack were completely ignored. 
As a result, each infection took about 20 seconds, 
even though they could easily have been done in 
under a second. Traces of the virus were left on 
the system although they could have been 
eliminated to a large degree with little effort. 
Rather than infecting many files at once, only one 
file at a time was infected. This allowed the 
progress of a virus to be demonstrated very clearly 
without involving a large number of users or pro- 
grams. As a security precaution, the system was 
used in a dedicated mode with only a system disk, 
one terminal, one printer, and accounts dedicated 
to the experiment. 

After 18 hours of connect time, the 1108 virus 
performed its first infection. After 26 hours of use, 
the virus was demonstrated to a group of about 10 
people including administrators, programmers, 
and security officers. The virus demonstrated the 
ability to cross user boundaries and move from a 
given security level to a higher security level. Again 
it should be emphasized that no system flaws were 
involved in this activity, but rather that the Bell- 
LaPadula model allows this sort of activity to 
legitimately take place. 

The attack was not difficult to perform. The 
code for the virus consisted of five lines of assem- 
bly code, about 200 lines of Fortran code, and 
about 50 lines of command files. It is estimated 
that a competent systems programmer could write 
a much better virus for this system in under two 
weeks. In addition, once the nature of a viral 
attack is understood, developing a specific attack 
is not difficult. Each of the programmers present 
was convinced that they could have built a better 
virus in the same amount of time. (This is believa- 
ble since this attacker had no previous 1108 expe- 
rience.) 

5.3 Instrumentation 

In early August of 1984, permission was granted 
to instrument a VAX Unix System to measure 
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sharing and analyze viral spreading. Data at this 
time is quite limited, but several trends have ap- 
peared. The degree of sharing appears to vary 
greatly between systems, and many systems may 
have to be instrumented before these deviations 
are well understood. A small number of users 
appear to account for the vast majority of sharing, 
and a virus could be greatly slowed by protecting 
them. The protection of a few ‘social’ individuals 
might also slow biological diseases. The instru- 
mentation was conservative in the sense that infec- 
tion could happen without the instrumentation 
picking it up, so estimated attack times are unreal- 
istically slow. 

As a result of the instrumentation of these 
systems, a set of ‘social’ users were identified. 
Several of these surprised the main systems ad- 
ministrator. The number of systems administra- 
tors was quite high, and if any of them were 
infected, the entire system would likely fall within 
an hour. Some simple procedural changes were 
suggested to slow this attack by several orders of 
magnitude without reducing functionality. 

Two systems are shown in Fig. 10, with three 
classes of users (S for system, A for system ad- 
ministrator, and U for normal user). ‘# #’ in- 
dicates the number of users in each category, 
‘spread’ is the average number of users a virus 
would spread to, and ‘time’ is the average time 
taken to spread to them once they logged in, 
rounded up to the nearest minute. Average times 
are misleading because once an infection has re- 
ached the ‘root’ account on Unix, all access is 
granted. Taking this into account leads to take- 

System 1 
iclass: # :spread: time : 

: s :3: 22 : 0 : 

8 A :1: 1 : 0 : 

: u :4: 5 I18 : 

System 2 
:class: # :spread: time : 

: s :5 : 160: 1 : 

: A : 7: 78 : 120 : 

I u :7: 24 : 600 : 

over times on the order of one minute which is so 
fast that infection time becomes a limiting factor 
in how quickly infections can spread. This coin- 
cides with previous experimental results using an 
actual virus. 

Users who were not shared with are ignored in 
these calculations, but other experiments indicate 

that any user can get shared with by offering a 
program on the system bulletin board. Detailed 
analysis demonstrated that systems administrators 
tend to try these programs as soon as they are 
announced. This allows normal users to infect 
system files within minutes. Administrators used 
their accounts for running other users’ programs 
and storing commonly executed system files, and 
several normal users owned very commonly used 
files. These conditions make viral attack very 
quick. The use of separate accounts for systems 
administrators during normal use was immediately 
suggested, and the systematic movement (after 
verification) of commonly used programs into the 
system domain was also considered. 

5.4 Summary and Conclusions 

The Fig. 11 summarizes the results of these and 
several other experiments. The systems are across 
the horizontal axis (Unix, Bell-LaPadula, . . .), 
while the vertical axis indicates the measure of 
performance (time to program, infection time, 
number of lines of code, number of experiments 
performed, minimum time to takeover, average 
time to takeover, and maximum time to takeover) 
where time to takeover indicates that all privileges 
would be granted to the attacker within that delay 
after introducing the virus. 

Viral attacks appear to be easy to develop in a 
very short time, can be designed to leave few if 
any traces in most current systems, are effective 

Fig. 11. Experimental results Fig. 10. Summary of spreading. 
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against modem security policies for multilevel 
usage, and require only minimal expertise to im- 
plement. Their potential threat is severe, and they 
can spread very quickly through a computer sys- 
tem. It appears that they can spread through 
computer networks in the same way as they spread 
through computers, and thus present a widespread 
and fairly immediate threat to many current sys- 
tems. 

The problems with policies that prevent con- 
trolled security experiments are clear; denying 
users the ability to continue their work promotes 
illicit attacks; and if one user can launch an attack 
without using system bugs or special knowledge, 
other users will also be able to. By simply telling 
users not to launch attacks, little is accomplished. 
Users who can be trusted will not launch attacks 
but users who would do damage cannot be trusted, 
so only legitimate work is blocked. The perspec- 
tive that every attack allowed to take place re- 
duces security is, in the author’s opinion, a fallacy. 
The idea of using attacks to learn of problems is 
even required by government policies for trusted 
systems [16,17]. It would be more rational to use 
open and controlled experiments as a resource to 
improve security. 

6. Summary, Conclusions, and Further Work 

To quickly summarize, absolute protection can be 
easily attained by absolute isolationism, but that is 
usually an unacceptable solution. Other forms of 
protection all seem to depend on the use of ex- 
tremely complex and/or resource intensive ana- 
lytical techniques, or imprecise solutions that tend 
to make systems less usable with time. 

Prevention appears to involve restricting 
legitimate activities, while cure may be arbitrarily 
difficult without some denial of services. Precise 
detection is undecidable, however, statistical 
methods may be used to limit undetected spread- 
ing either in time or in extent. Behavior of typical 
usage must be well understood in order to use 
statistical methods, and this behavior is liable to 
vary from system to system. Limited forms of 
detection and prevention could be used in order to 
offer limited protection from viruses. 

It has been demonstrated that a virus has the 
potential to spread through any general purpose 
system which allows sharing. Every general pur- 

pose system currently in use is open to at least 
limited viral attack. In many current ‘secure’ sys- 
tems, viruses tend to spread further when created 
by less trusted users. Experiments show the viabil- 
ity of viral attack, and indicate that viruses spread 
quickly and are easily created on a variety of 
operating systems. Further experimentation is still 
underway. 

The results presented are not operating system 
or implementation specific, but are based on the 
fundamental properties of systems. More im- 
portantly, they reflect realistic assumptions about 
systems currently in use. Further, nearly every 
‘secure’ system currently under development is 
based on the Bell-LaPadula or lattice policy alone, 
and this work has clearly demonstrated that these 
models are insufficient to prevent viral attack. The 
virus essentially proves that integrity control must 
be considered an essential part of any secure 
operating system. 

Several undecidable problems have been identi- 
fied with respect to viruses and countermeasures. 
Several potential countermeasures were examined 
in some depth, and none appear to offer ideal 
solutions. Several of the techniques suggested in 
this paper which could offer limited viral protec- 
tion are in limited use at this time. To be perfectly 
secure against viral attacks, a system must protect 
against incoming information flow, while to be 
secure against leakage of information a system 
must protect against outgoing information flow. 
In order for systems to allow sharing, there must 
be some information flow. It is therefore the major 
conclusion of this paper that the goals of sharing 
in a general purpose multilevel security system 
may be in such direct opposition to the goals of 
viral security as to make their reconciliation and 
coexistence impossible. 

The most importam ongoing research involves 
the effect of viruses on computer networks. Of 
primary interest is determining how quickly a 
virus could spread to a large percentage of the 
computers in the world. This is being done through 
simplified mathematical models and studies of 
viral spreading in ‘typical’ computer networks. 
The implications of a virus in a secure network are 
also of great interest. Since the virus leads us to 
believe that both integrity and security must be 
maintained in a system in order to prevent viral 
attack, a network must also maintain both criteria 
in order to allow multilevel sharing between com- 
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puters. This introduces significant constraints on 
these networks. 

Significant examples of evolutionary programs 
have been developed at the source level for pro- 
ducing many evolutions of a given program. A 
simple evolving virus has been developed, and a 
simple evolving antibody is also under develop- 
ment. 
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