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Abstract—As the obfuscation is widely used by malware
writers to evade antivirus scanners, so it becomes important to
analyze how this technique is applied to malwares. This paper
explores the malware obfuscation techniques while reviewing
the encrypted, oligomorphic, polymorphic and metamorphic
malwares which are able to avoid detection. Moreover, we
discuss the future trends on the malware obfuscation
techniques.
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L.

The obfuscation is a technique that makes programs
harder to understand [1]. For such a purpose, it converts a
program to a new different version while making them
functionally equal to each other. Originally, this technology
aimed at protecting the intellectual property of software
developers, but it has been broadly used by malware authors
to elude detection [2]-[6]. That is, in order to evade antivirus
scanners, malwares evolve their body into new generations
through the obfuscation technique. Clearly, it is important to
analyze the obfuscation techniques to efficiently address
malwares.

In this paper, we explore the malware obfuscation
techniques. For this goal, we firstly overview the history of
the malwares that have been developed to defeat signature-
based antivirus scanners. Then, the malware obfuscation
techniques are introduced with examples. The example code
is extracted from Win95/Zmist and reversed on the debugger
OllyDBG [6]. Also, we discuss the future trends on the
malware obfuscation techniques while focusing on the web
and smartphone malwares.

This paper is organized as follows. In section 2, we
describe the encrypted, oligomorphic, polymorphic and
metamorphic malwares. Section 3 explores the obfuscation
techniques commonly wused by polymorphic and
metamorphic malwares, and then section 4 discusses the
future trends. Finally, we conclude in section 5.

INTRODUCTION

II.  ENCRYPTED, OLIGOMORPHIC, POLYMORPHIC AND

METAMORPHIC MALWARES

A. Encryped Malware

The first approach to evade the signature based antivirus
scanners is to use encryption [2]-[4]. In this approach, an
encrypted malware is typically composed of the decryptor
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and the encrypted main body. The decryptor recovers the
main body whenever the infected file is run. For each
infection, by using a different key, the malware makes the
encrypted part unique, thus hiding its signature. However,
the main problem of this approach is that the decryptor
remains constant from generation to generation. That makes
it possible for the antivirus scanners to detect this kind of
malwares based on the descriptor’s code pattern.

B.  Oligomorphic and Polimorphic Malwares

In order to address the shortcoming of the encrypted
malwares, malware authors devised technologies, through
which malwares can mutate their decryptor from one
generation to the next [2]-[4]. The first attempt was the
oligomorphic malware capable of changing its decryptor
slightly [2][4]. However, this malware can generate at most a
few hundreds of different decryptors, thus still being able to
be detected with signatures. For overcoming the limitation,
the malware authors developed the polymorphic malware
[2][4]. The polymorphic malware achieves to create
countless number of distinct decryptors with the help of the
obfuscation methods including dead-code insertion, register
reassignment, and so forth [4]-[6]. Especially, due to the
powerful toolkits such as “The Mutation Engine (MtE)” [2],
it was a critical problem. The toolkits help the malware
writers to easily convert their non-obfuscated malware into
the polymorphic version. Even though the polymorphic
malwares can effectively thwart the signature matching, their
constant body, which appears after decryption, can be used
as an important source for detection. In order to exploit this
vulnerability, antivirus tools adopt the emulation technique
[2][3]. Through this technique, the tools execute a malware
in an emulator (called “Sandbox’) without resulting in any
harm. Once the constant body is loaded into memory after
decrypted, the conventional detection, i.e., signature based,
can be applied. In order to detect and prevent such emulation,
the polymorphic malwares used the armoring technique [2].
However, as the antivirus scanners became matured, they
were capable of addressing this technique, thus effectively
defeating the polymorphic malwares.

C. Metamorphic Malware

The metamorphic malware was proposed as a novel
approach beyond the oligomorphic and polimorphic ones
[3]-[6]. Note that this malware makes best use of obfuscation
techniques to evolve its body into new generations, which
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look different but work essentially the same. For such an
evolution, it should be able to recognize, parse and mutate its
own body whenever it propagates. It is important that the
metamorphic malware never reveals its constant body in
memory due to not using encryption or packing. That makes

it so difficult for the antivirus scanners to detect this malware.

II1.

This section introduces the obfuscation techniques
commonly used in the polimorphic and metamorphic
malware.

A. Dead-Code Insertion
Dead-code insertion is a simple technique that adds some

OBFUSCATION TECHNIQUES

ineffective instructions to a program to change its appearance,

but keep its behavior [1][4][6]. An example of such
instructions is nop. Figures 1 and 2 show the original code is
easily obfuscated through insertion of nop instructions.
However, the signature based antivirus scanners can defeat
this technique by just deleting the ineffective instructions
prior to analysis. Consequently, in order to make detection
more difficult, some code sequences were presented as
illustrated in Figure 3.

Ba4a1665  GEFe MOl EST, EAX
BEdalGE7|  3E:SABE HMOU AL, EYTE PTR DS:[EAX]
eada16ar| G408 TEST AL, AL
BE4E1GEC |~ 74 46 JE SHORT Test.@0401054
BE4E1GEE. B3 FUSH EBX
BE4A1GEF | 3E:8FES P4F948I FOF DWORD PTR DS: [4GF9741
BE4E161E|  DI0B RCR EEN, CL
BE4E1G15|  BFCE BSWAF EBY
BE4E1G1A| 62 BE1A4BGE | FUSH Test.BB4@1656
BiadaiGiF| BB FOF EEN
BE4G1G26|  3E:8983 HOW OWORD PTR DS: [EBX1, EAX
BAdalEE3 43 INC EEN
Gad4a1624|  @FBOC2 BSR_ERX, EDY
BE4a1G27|  AS 4EASTEOC | TEST EAX,DCTEA946
eEdalG20|  BBC2 MOU ER, EDX
BE4E] G2E PUSH_ED%
BE4EIGEF|  BE 86 MO CH, 26
BE4E1GS1|  BE 27 Moy EL, 27
BE4E1623|  BE FCFAALTF | HOW EAR, PFALFARC
BA4E1852 |+ EE B1 JHP SHORT Test.B8481636
BEdaiEIa 98 HOF
Ba4alG2E|  BFBCCE BSF EAM, EDX
Bo4E1GEEE|  BE:CPBS FCES41l HOU DWORD PTR DS:[4188FCI, B
ga4a1649) 20 21A0ESES | SUB EAY, BIESG0Z21
BA4a1G4E|  69DA ESrr0490 | IMOL EBX,EOX, S00477ES
Figure 1. A Sample Code
SEFB |nov EsT,EAX
3E:2ABD | MOU_AL,BYTE PTR DS:CEAX]
840 | TEST AL,
v 74 49 | JE SHORT Test.o@401057
53 | PUSH_EBX
WORD PTR DS:[48F9741
EBX, CL
BFCE | ESURP_EBS%
gg 59104000 EUSH Test .08481859
WORD PTR DS:[EEXI, EAX
TINC EBx
8FBOC2 | BSR_ERx, EDX
A9 46A9780C | TEST EAX, DC7SA%46
8BC2 | HoU EAx, EDX
1 OH, 86
B3 27 |nov BL,27
BS 7CFARIPF | HOU EAX, PFALFATC
v EB @1 ,ﬁgs SHORT Test.0@49103E
| BSF EAX, EDX

BFBCC2

3E:C7@S FC894LIHUU
20 _z1B8DESB?
65DA ES77D490

OWORD PTR DS: [4188FC, 0
ERX, B3 2
f[HUL EBX, EDX, 3DD477ES

Figure 2. Dead —Code Insertion
(The original code is shown in Figure 1)
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8BFO HOU EST,

3E: 3R00 HOU AL, BUTE PTR DS: CERKD

24ca TEST

74 40 JE SHORT Test.B80481058

53 PUSH EBX

3E:8FOS 74F9461 POP DWORD PTR DS:[48F974)

D30B RCR_EEX,CL

aFCe BSUAP_EBR

€8 50104000 | PUSH Test. 00401050

3E:8903 H0U DUORD PTR DS: [EBX1, ERX

43 INC EER

BFBDCZ BSR_EAX, EDX

A9 46A978DC | TEST EAX,DC7SA946

96 HOP

42 INC EOX

52 PUSH_EDX

FEGC24 DEC BYTE PTR $S:[ESP]
JOEC EDX

T THOU OH, 86

B3 27 | MOU BL,27

BS FCFRAIPF | MOV EAR, 7FAIFAPC

EE 01 | JHP SHORT Test.@0401842

56 | HOP

BFBCC2 BSF EAX,EDX

3E:C705 FCS3410 HOU DWORD PTR DS:[4188FC, 8

20 21BDESE9 | SUB EAYX,BYESBOZ1

€3DA ES77048D | INUL EBX,EDX, 90D477ES

Figure 3. Ineffective Code Sequences

B.  Register Reassignment

Register reassignment is another simple technique that
switches registers from generation to generation while
keeping the program code and its behavior same [4][6].
Figure 4 describes how this technique is applied. In this
example, the original code shown in Figure 1 is evolved by
switching the registers. (used by Win95/Regswap virus [4])

Ga4aiaas]  2BF3 MOL EST, EBX

Ga4a1067  3E:EALB Hay EL,BYTE PTR OS:[EER]

oadainea 2408 TEST BL,EL

GE461GAC[~ 74 43 JE_SHORT Test.pm481058

ga4alaeEl 52 PLSH _EDX

£E4G100F |  3E:SFBS T4FS480 FOP OWORD FTR DS:[48F374]

oadainlel  DS0A RCR_EDX, CL

BE4E1012(  BFCA BSWAP_ED

OE4E101A| 62 52194808 | PUSH Test.BB481852

BE4E101F(  GA POP ED%

BE4E1626)  3E:1891A MOU DWORD PTR DS: [EDXI, EBX

op4m1Ezsl 42 IHC EDX

oR4G1024  BFEODS BSR_EEYX, EAX

GE4G10E7|  FPC3 46ASTEO0C | TEST EEM, DCTEAS4E

gE4a10z0(  SBO3 MOl B, EA

oE4alEzF  Sa PUSH EAX

gp4@1ozel B4 96 i nH 86

gm4@iezz| B2 2F roy o

oad4aiazd) BB FCFAALYE ML EBK ?FHIFH?C

GE461639)~ EB 81 JHE SHORT Tozt.BB481030

oadalazel  oa HOP

Ba4a103C|  BFECOS BSF EBY, EAX

G34a103F|  3E:CPES FC2S411MOW OWORD PTR DS:[4188FC1,a

fa4aiG4n|  S1EE 21BDESER | SUE EBX, BIESEDZ1

Bo401858] 6308 EEFFOM3D | IMUL_EDX, EAX, SOD47FES
Figure 4. Register Reassignment

(The original code is shown in Figure 1 and registers EAX, EBX
and EDX are reassigned to EBX, EDX and EAX respectively)

Note that the wildcard searching can make this technique
useless.

C. Subroutine Reordering

Subroutine reordering obfuscates an original code by
changing the order of its subroutines in a random way [4].
This technique can generate n! different variants, where n is
the number of subroutines. For example, Win32/Ghost had
ten subroutines, leading to 10! 3628800 different
generations [4].

D. Instruction Substitution

Instruction substitution evolves an original code by
replacing some instructions with other equivalent ones [6].



For example, xor can be replaced with sub and mov can be
replaced with push/pop as shown in Figure 5.

SBFB MOV ESI,ERX
. TE PTR DS:[ERX]
BACH OR AL, AL
v 73 a5 JE ol Test.00401854
3 PUSH EEX

S
3E: 8F@S 74F9401 POP DWORD PTR DS:[48F374]
D30B RCR EBX,CL

GFCE BSWAP EBX
68 56104000 ngH Test.08401056
SE: 8903 HOY DWORD PTR DS:[EBX],ERX
43 INC EBX
c2 PUSH_EDR
B 86 HOU D » 86
Bz 27 MOU BL, 27
B2 7CFARLTF MOU EAX, PFALFA7C
v EB 01 JHP SHORT Test.B@491038

BFBCCZ BSF ERX, EDX
SE:C795 FC3841( MOV DWORD PTR DS:[4188FC],0
20 218DESE? Ue EAX,

S B9
&650A ES?704590 | IHUL EBX EDX, 90D477ES

Figure 5. Instruction Substitution
(The original code is shown in Figure 1)

Note that this technique can effectively change the code
with a library of equivalent instructions.

E.  Code Transposition

Code transposition reorders the sequence of the
instructions of an original code without having any impact
on its behavior [5]. There are two methods to achieve this
technique.

EE 20 [ JHP SHORT Test.oodnioey ]
53 | PUSH_EBX

3E:8FQS 74F940( POP DWORD PTR DS:[40F9741]
D30B RCR

BFCB BSWAP_EBX

68 SC104000 PUSH Test.084810SC

SB POP EBX

3E: 8903 1NOU DWORD PTR DS:[EBX],ERX
43 NC EB

I
BSR_ERX, EDX
TEST ERX DC?3Q946

Tect OQR4AQ1Q22

@FBDC2 |
A9 46RA3780C \
. EB op ]

BF! UU E

el HDUTQL BVTE PTR DS: [EAX]
74 2R JE_SHORT Test.®84010SA
ER DS JMP_SHORT Te<t.AR4A1ARZ
8BC2 | .

52 PUSH EDX

BE 86 MOV DH, 86

B3 27 MOV BL,27

B8 7CFAAL7F MOV ERX, PFA1FA7C

EB 01 JMP SHORT Test.08401041

i) HOP

OFBCCZ LEOR
3E:C705 FC8841( MOV DWORD PTR DS:[4188FCI,0
20 210DESES | SUB EAX,BIESED21

€90 ES770490 | IMUL_EB%, EOX, S00477ES

Figure 6. Code Transposition based on Unconditional Branches

FE 1F

53

3E:8FBS 74F3401
D30B

POP DwORD PTR DS: [40F974]
RCR EBX,CL

]

aFCB BSURP EBX
68 SE104000 PUSH Test 8846185E
s ER 12 Tect QQ4AA10O21
BE 86 r U DH 86
B3 27 MOU BL, 27
B8 7CFRA17F MOV ERX, 7FA1FA7C
FB 1F MP_SHORT Tect.AR4A1A43
98 NOP
Fa MOV ESI,ERX
3E: 8R0O MOV AL,BYTE PTR DS: [EAX]
ca TEST AL, AL
74 20 JE_SHORT Test.0848105C
ER D& JMP_SHORT Test.ARdA1AAZ
POP EBX
3E: 8903 MOV DWORD PTR DS:[EBX]1,EAX
INC EBX
B@FBDC2 BSR_EAX, EDX
A9 46A9780C TEST ERX DC78A946
8BC2 BgHE L EOX

P
JHMP_SHORT Test.B840181A

MOU DWORD PTR DS:([4188FC1,8
SUB EAYX, BIESBD21
IHUL_EEX, EDX, 9DD477ES

s2

EB D7

OFBCCZ
3E:C70S FCE841

20 218DESEY
690A ES?70490

299

Figure 7. Code Transposition based on Independent Instructions

The first method, which is demonstrated in Figure 6,
randomly shuffles the instructions, and then recovers the
original execution order by inserting the unconditional
branches or jumps. Clearly, it is not difficult to defeat this
method because the original program can be easily restored
by removing the unconditional branches or jumps. On the
other hand, the second method creates new generations by
choosing and reordering the independent instructions that
have no impact on one another. Because it is a complex
problem to find the independent instructions, this method is
hard to implement, but can make the cost of detection high.
Figure 7 shows an example of this method.

F.  Code Integration

In code integration, introduced by the Win95/Zmist
malware (called Zmist), a malware knits itself to the code of
its target program [6]. In order to apply this technique, Zmist
firstly decompile its target program into manageable objects,
seamlessly adds itself between them, and reassembles the
integrated code into a new generation. As one of the most
sophisticated obfuscation techniques, code integration can
make detection and recovery so difficult.

IV. FUTURE TRENDS
As shown in the advanced malwares such as Zmist, the
malware  obfuscation  technologies have  become

sophisticated and complex. Clearly, such a tendency is
expected to be retained based on the growth of the hardware
and software technologies. Also, they will be revised to be
suit for the popular infrastructures such as web and
smartphone.

In this section, we describe the future trends in the
malware obfuscation techniques while focusing on web and
smartphone malwares.

A.  Web Malware

Due to the abundance and popularity of web applications,
web malwares have considerably increased, thus being the
main security threats nowadays [7]. It is natural that the
authors of web malwares apply the obfuscation technologies
to make it so difficult for their malware to be analyzed. Note
that web malwares are generally distributed by exploiting
web  browsers’  vulnerabilities and malicious (or
compromised) websites. Thus, the current obfuscation
technologies will be revised for such exploitation and
adapted to web environment. Especially, the obfuscation
technologies for the malicious JavaScript will be continually
presented and sophisticated because JavaScript is mainly
used as a vehicle for malware distribution [7]. For example, a
new web malware, called “JS VIRTOOL”, was recently
found [8]-[10]. In order to make analysis difficult, the
malware uses a code obfuscation method where the malware
body for each infected page is encrypted with a unique secret
key derived from that page’s URL. Thus, it is impossible to



recover the encrypted malware body without knowing the
original URL.

B.  Smartphone Malware

Smartphones have gained considerable success, but been
the most attractive target for malware writers [11]-[14]. Thus,
it is not surprising that the smartphone malwares are being
increased. For instance, recently, an iPhone malware named
“Rickrolling” was found [13]. Once successfully infecting a
device, the malware silently sends the device owner’s
privacy information such as e-mail, contacts, SMSs,
calendars, photos and so forth to its host machine.

It is obvious that the obfuscation technologies will be
actively considered and applied for these malwares. We
expect that in addition to just using the current obfuscation
technologies, malware authors will develop new ones that
are not only energy and resource efficient, but also
appropriate for their target platform such as iPhone or
Android.

C. Virtual Machine-based Malware

One of the most difficult issues to be solved by malware
writers is to hide the behavior of the extractor and the plain
body of the malwares after extraction. Instructions to be
fetched for execution need to be loaded first in the primary
memory as they are designed based on the Von Neumann
architecture. This means that a thorough dynamic analysis on
the dedicated memory region can give hints to understanding
the body [18][19].

Emulating multiple personalized virtual processors has
been considered as an ultimate solution to hiding a plain
code body between small groups of researchers. For
malwares in this approach, the code body is reprogrammed
or recompiled into world-unique instructions prior to release.
To understand the behavior of the body, analyzers need to
understand the unknown architecture and accordant
unknown code of the selected virtual processor and program.

This job requires too much overhead because the
executing context of the native code in the emulator is really
far from that of the original unknown code that the emulator
interprets. Especially, the instruction sets can be selected
randomly. Even though the analyzers completely understand
the functionality of the code after several days or weeks, the
code will be already updated for another unknown virtual
processor. Several examples for the virtual machine
obfuscation can be found in documents and practical
applications recently [15]-[17].

V.

In this paper, we briefly surveyed the malware
obfuscation technologies such as dead-code insertion,
register reassignment, subroutine reordering, instruction
substitution, code transposition and code integration, which
have been mainly used by polymorphic and metamorphic
malwares to evade antivirus scanners. As a future trend,
these obfuscation techniques will be more sophisticated and
complex while being combined with one another. Especially,

CONCLUSIONS
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these obfuscation techniques will be revised to be
appropriate for the web and smartphone malwares.
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