
Malware Obfuscation Techniques: A Brief Survey

Ilsun You
School of Information Science

Korean Bible University
Seoul, Republic of Korea

isyou@bible.ac.kr

Kangbin Yim
Dept. of Information Security Engineering

Soonchunhyang University
Asan, Republic of Korea

yim@sch.ac.kr

Abstract—As the obfuscation is widely used by malware
writers to evade antivirus scanners, so it becomes important to
analyze how this technique is applied to malwares. This paper
explores the malware obfuscation techniques while reviewing
the encrypted, oligomorphic, polymorphic and metamorphic
malwares which are able to avoid detection. Moreover, we
discuss the future trends on the malware obfuscation
techniques.

Keywords-Malware, Obfuscation, Metamorphic, Polymorphic

I. INTRODUCTION
The obfuscation is a technique that makes programs

harder to understand [1]. For such a purpose, it converts a
program to a new different version while making them
functionally equal to each other. Originally, this technology
aimed at protecting the intellectual property of software
developers, but it has been broadly used by malware authors
to elude detection [2]-[6]. That is, in order to evade antivirus
scanners, malwares evolve their body into new generations
through the obfuscation technique. Clearly, it is important to
analyze the obfuscation techniques to efficiently address
malwares.

In this paper, we explore the malware obfuscation
techniques. For this goal, we firstly overview the history of
the malwares that have been developed to defeat signature-
based antivirus scanners. Then, the malware obfuscation
techniques are introduced with examples. The example code
is extracted from Win95/Zmist and reversed on the debugger
OllyDBG [6]. Also, we discuss the future trends on the
malware obfuscation techniques while focusing on the web
and smartphone malwares.

This paper is organized as follows. In section 2, we
describe the encrypted, oligomorphic, polymorphic and
metamorphic malwares. Section 3 explores the obfuscation
techniques commonly used by polymorphic and
metamorphic malwares, and then section 4 discusses the
future trends. Finally, we conclude in section 5.

II. ENCRYPTED, OLIGOMORPHIC, POLYMORPHIC AND
METAMORPHIC MALWARES

A. Encryped Malware
The first approach to evade the signature based antivirus

scanners is to use encryption [2]-[4]. In this approach, an
encrypted malware is typically composed of the decryptor

and the encrypted main body. The decryptor recovers the
main body whenever the infected file is run. For each
infection, by using a different key, the malware makes the
encrypted part unique, thus hiding its signature. However,
the main problem of this approach is that the decryptor
remains constant from generation to generation. That makes
it possible for the antivirus scanners to detect this kind of
malwares based on the descriptor’s code pattern.

B. Oligomorphic and Polimorphic Malwares
In order to address the shortcoming of the encrypted

malwares, malware authors devised technologies, through
which malwares can mutate their decryptor from one
generation to the next [2]-[4]. The first attempt was the
oligomorphic malware capable of changing its decryptor
slightly [2][4]. However, this malware can generate at most a
few hundreds of different decryptors, thus still being able to
be detected with signatures. For overcoming the limitation,
the malware authors developed the polymorphic malware
[2][4]. The polymorphic malware achieves to create
countless number of distinct decryptors with the help of the
obfuscation methods including dead-code insertion, register
reassignment, and so forth [4]-[6]. Especially, due to the
powerful toolkits such as “The Mutation Engine (MtE)” [2],
it was a critical problem. The toolkits help the malware
writers to easily convert their non-obfuscated malware into
the polymorphic version. Even though the polymorphic
malwares can effectively thwart the signature matching, their
constant body, which appears after decryption, can be used
as an important source for detection. In order to exploit this
vulnerability, antivirus tools adopt the emulation technique
[2][3]. Through this technique, the tools execute a malware
in an emulator (called “Sandbox”) without resulting in any
harm. Once the constant body is loaded into memory after
decrypted, the conventional detection, i.e., signature based,
can be applied. In order to detect and prevent such emulation,
the polymorphic malwares used the armoring technique [2].
However, as the antivirus scanners became matured, they
were capable of addressing this technique, thus effectively
defeating the polymorphic malwares.

C. Metamorphic Malware
The metamorphic malware was proposed as a novel

approach beyond the oligomorphic and polimorphic ones
[3]-[6]. Note that this malware makes best use of obfuscation
techniques to evolve its body into new generations, which

2010 International Conference on Broadband, Wireless Computing, Communication and Applications

978-0-7695-4236-2/10 $26.00 © 2010 IEEE

DOI 10.1109/BWCCA.2010.85

297

2010 International Conference on Broadband, Wireless Computing, Communication and Applications

978-0-7695-4236-2/10 $26.00 © 2010 IEEE

DOI 10.1109/BWCCA.2010.85

297

2010 International Conference on Broadband, Wireless Computing, Communication and Applications

978-0-7695-4236-2/10 $26.00 © 2010 IEEE

DOI 10.1109/BWCCA.2010.85

297

look different but work essentially the same. For such an
evolution, it should be able to recognize, parse and mutate its
own body whenever it propagates. It is important that the
metamorphic malware never reveals its constant body in
memory due to not using encryption or packing. That makes
it so difficult for the antivirus scanners to detect this malware.

III. OBFUSCATION TECHNIQUES
This section introduces the obfuscation techniques

commonly used in the polimorphic and metamorphic
malware.

A. Dead-Code Insertion
Dead-code insertion is a simple technique that adds some

ineffective instructions to a program to change its appearance,
but keep its behavior [1][4][6]. An example of such
instructions is nop. Figures 1 and 2 show the original code is
easily obfuscated through insertion of nop instructions.
However, the signature based antivirus scanners can defeat
this technique by just deleting the ineffective instructions
prior to analysis. Consequently, in order to make detection
more difficult, some code sequences were presented as
illustrated in Figure 3.

Figure 1. A Sample Code

Figure 2. Dead –Code Insertion
(The original code is shown in Figure 1)

Figure 3. Ineffective Code Sequences

B. Register Reassignment
Register reassignment is another simple technique that

switches registers from generation to generation while
keeping the program code and its behavior same [4][6].
Figure 4 describes how this technique is applied. In this
example, the original code shown in Figure 1 is evolved by
switching the registers. (used by Win95/Regswap virus [4])

Figure 4. Register Reassignment

(The original code is shown in Figure 1 and registers EAX, EBX
and EDX are reassigned to EBX, EDX and EAX respectively)

Note that the wildcard searching can make this technique
useless.

C. Subroutine Reordering
Subroutine reordering obfuscates an original code by

changing the order of its subroutines in a random way [4].
This technique can generate n! different variants, where n is
the number of subroutines. For example, Win32/Ghost had
ten subroutines, leading to 10! = 3628800 different
generations [4].

D. Instruction Substitution
Instruction substitution evolves an original code by

replacing some instructions with other equivalent ones [6].

298298298

For example, xor can be replaced with sub and mov can be
replaced with push/pop as shown in Figure 5.

Figure 5. Instruction Substitution

(The original code is shown in Figure 1)

Note that this technique can effectively change the code
with a library of equivalent instructions.

E. Code Transposition
Code transposition reorders the sequence of the

instructions of an original code without having any impact
on its behavior [5]. There are two methods to achieve this
technique.

Figure 6. Code Transposition based on Unconditional Branches

Figure 7. Code Transposition based on Independent Instructions

The first method, which is demonstrated in Figure 6,

randomly shuffles the instructions, and then recovers the
original execution order by inserting the unconditional
branches or jumps. Clearly, it is not difficult to defeat this
method because the original program can be easily restored
by removing the unconditional branches or jumps. On the
other hand, the second method creates new generations by
choosing and reordering the independent instructions that
have no impact on one another. Because it is a complex
problem to find the independent instructions, this method is
hard to implement, but can make the cost of detection high.
Figure 7 shows an example of this method.

F. Code Integration
In code integration, introduced by the Win95/Zmist

malware (called Zmist), a malware knits itself to the code of
its target program [6]. In order to apply this technique, Zmist
firstly decompile its target program into manageable objects,
seamlessly adds itself between them, and reassembles the
integrated code into a new generation. As one of the most
sophisticated obfuscation techniques, code integration can
make detection and recovery so difficult.

IV. FUTURE TRENDS
As shown in the advanced malwares such as Zmist, the

malware obfuscation technologies have become
sophisticated and complex. Clearly, such a tendency is
expected to be retained based on the growth of the hardware
and software technologies. Also, they will be revised to be
suit for the popular infrastructures such as web and
smartphone.

In this section, we describe the future trends in the
malware obfuscation techniques while focusing on web and
smartphone malwares.

A. Web Malware
Due to the abundance and popularity of web applications,

web malwares have considerably increased, thus being the
main security threats nowadays [7]. It is natural that the
authors of web malwares apply the obfuscation technologies
to make it so difficult for their malware to be analyzed. Note
that web malwares are generally distributed by exploiting
web browsers’ vulnerabilities and malicious (or
compromised) websites. Thus, the current obfuscation
technologies will be revised for such exploitation and
adapted to web environment. Especially, the obfuscation
technologies for the malicious JavaScript will be continually
presented and sophisticated because JavaScript is mainly
used as a vehicle for malware distribution [7]. For example, a
new web malware, called “JS_VIRTOOL”, was recently
found [8]-[10]. In order to make analysis difficult, the
malware uses a code obfuscation method where the malware
body for each infected page is encrypted with a unique secret
key derived from that page’s URL. Thus, it is impossible to

299299299

recover the encrypted malware body without knowing the
original URL.

B. Smartphone Malware
Smartphones have gained considerable success, but been

the most attractive target for malware writers [11]-[14]. Thus,
it is not surprising that the smartphone malwares are being
increased. For instance, recently, an iPhone malware named
“Rickrolling” was found [13]. Once successfully infecting a
device, the malware silently sends the device owner’s
privacy information such as e-mail, contacts, SMSs,
calendars, photos and so forth to its host machine.

It is obvious that the obfuscation technologies will be
actively considered and applied for these malwares. We
expect that in addition to just using the current obfuscation
technologies, malware authors will develop new ones that
are not only energy and resource efficient, but also
appropriate for their target platform such as iPhone or
Android.

C. Virtual Machine-based Malware
One of the most difficult issues to be solved by malware

writers is to hide the behavior of the extractor and the plain
body of the malwares after extraction. Instructions to be
fetched for execution need to be loaded first in the primary
memory as they are designed based on the Von Neumann
architecture. This means that a thorough dynamic analysis on
the dedicated memory region can give hints to understanding
the body [18][19].

Emulating multiple personalized virtual processors has
been considered as an ultimate solution to hiding a plain
code body between small groups of researchers. For
malwares in this approach, the code body is reprogrammed
or recompiled into world-unique instructions prior to release.
To understand the behavior of the body, analyzers need to
understand the unknown architecture and accordant
unknown code of the selected virtual processor and program.

This job requires too much overhead because the
executing context of the native code in the emulator is really
far from that of the original unknown code that the emulator
interprets. Especially, the instruction sets can be selected
randomly. Even though the analyzers completely understand
the functionality of the code after several days or weeks, the
code will be already updated for another unknown virtual
processor. Several examples for the virtual machine
obfuscation can be found in documents and practical
applications recently [15]-[17].

V. CONCLUSIONS
In this paper, we briefly surveyed the malware

obfuscation technologies such as dead-code insertion,
register reassignment, subroutine reordering, instruction
substitution, code transposition and code integration, which
have been mainly used by polymorphic and metamorphic
malwares to evade antivirus scanners. As a future trend,
these obfuscation techniques will be more sophisticated and
complex while being combined with one another. Especially,

these obfuscation techniques will be revised to be
appropriate for the web and smartphone malwares.

REFERENCES

[1] A. Balakrishnan and C. Schulze, “Code Obfuscation Literature
Survey,” http://pages.cs.wisc.edu/~arinib/writeup.pdf, 2005.

[2] M. Schiffman, “A Brief History of Malware Obfuscation: Part 1 of 2
,” http://blogs.cisco.com/security, Feb. 2010.

[3] M. Schiffman, “A Brief History of Malware Obfuscation: Part 2 of 2
,” http://blogs.cisco.com/security, Feb. 2010.

[4] W. Wong and M. Stamp, “Hunting for Metamorphic Engines,”
Journal in Computer Virology, vol. 2, no. 3, pp. 211-229, Dec. 2006.

[5] M. Christodorescu and S. Jha, “Static Analysis of Executables to
Detect Malicious Patterns,” Proceedings of the 12th conference on
USENIX Security Symposium, Vol. 1, pp. 169-186, Aug. 2003.

[6] E. Konstantinou, “Metamorphic Virus: Analysis and Detection,”
RHUL-MA-2008-02, Technical Report of University of London, Jan.
2008. http://www.rhul.ac.uk/mathematics/techreports

[7] R. Chakraborty, “Increase in Web Malware Activity,”
http://maliciousbrains.blogspot.com/2009/11/increase-in-web-
malware-activity.html, Nov. 2009.

[8] L. Constantin, “Web Malware Employs New Obfuscation
Technique,” http://news.softpedia.com/news/Web-Malware-Employs-
New-Obfuscation-Technique-115349.shtml, June 2009

[9] J. San Jose, “New Anti-analysis Technique for Script Malware,”
http://blog.trendmicro.com/new-anti-analysis-technique-for-script-
malware/, June 2010.

[10] P. Likarish, E. Jung and I. Jo, “Obfuscated Malicious Javascript
Detection using Classification Techniques,” Proceedings of the 4th
International Conference on Malicious and Unwanted Software, pp.
47-54, Oct. 2009.

[11] A. Schmidt et Al., “Smartphone Malware Evolution Revisited:
Android Next Target?,” Proceedings of Malware 2009, Oct. 2009.

[12] M. Hypponen, “Malware Goes Mobile,” Scientific American, pp. 70-
77, Nov. 2006.

[13] C. Foresman, “Truly malicious iPhone malware now out in the wild,”
http://arstechnica.com/apple/news/2009/11/truly-malicious-iphone-
malware-now-out-in-the-wild.ars, Nov. 2009.

[14] T. Kessler, “Jailbreakers beware: iPhone malware evolves rapidly,”
http://reviews.cnet.com/8301-13727_7-10395178-263.html, Nov.
2009.

[15] Rolf Rolles, “Unpacking Virtualzation Obfuscators,” Proceedings of
the 3rd USENIX Workshop On Offensive Technologies, Aug. 2009.

[16] Craig Smith, “Creating Code Obfuscation Virtual Machines,”
Tutorial in RECON08

[17] Jean Borello, Eric Filiol and Ludovic Me, “Are current antivirus
programs able to detect complex metamorphic malware? An
empirical evaluation,” Proceedings of the 18th EICAR Annual
Conference. May 2009.

[18] Min Gyung Kang, Pongsin Poosankam, and Heng Yin, “Renovo: A
Hidden Code Extractor for packed Executables,” Proceedings of
WORM07, Nov. 2007.

[19] Kyungroul Lee, Ilsun You and Kangbin Yim, “A Hint to the Analysis
of the Packed Malicious Codes,” Proceedings of the WISA2010, Aug.
2010.

300300300

